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Abstract 

In the paper, we propose a novel beamforming-based Orthogonal Time Frequency Space (OTFS) transmission framework 
for UAV-to-Satellite Communication (U2SC) tailored for 6G-Enabled Internet of Vehicles (IoV) networks. To address the 
unique challenges of high Doppler shifts, long-range line-of-sight (LoS) links, and fast-moving Low Earth Orbit (LEO) 
satellites, we adopt OTFS modulation due to its inherent robustness against doubly dispersive channels. A Uniform Linear 
Array (ULA) is equipped on the UAV to enable highly directional transmission. Furthermore, we propose a Deep Q-Learning 
(DQL) framework for adaptive beamforming, in which the beam control problem is formulated as a Markov Decision Process 
(MDP). By leveraging DQL, the agent learns to dynamically steer the beam to align with the satellite’s trajectory, optimizing 
both link quality and energy efficiency while minimizing misalignment. Simulation results demonstrate significant gains in 
signal robustness and beam alignment accuracy compared to conventional methods. In addition, future work will focus on 
building a hardware-in-the-loop (HIL) testbed using a UAV platform with phased-array antennas to validate the proposed 
model under real orbital satellite trajectories and Doppler conditions. 

Keywords: 6G, Deep Q-Learning, IoV, LEO satellite, OTFS, UAV, U2SC. 

 
1. Introduction1 

1.1. UAV-to-Satellite Communication 

The sixth generation (6G) wireless systems-enabled 
Internet of Vehicles (IoV) will adopt space-air-ground-
sea integrated communications to achieve ubiquitous 
connectivity. Therefore, satellite communication and 
Unmanned Aerial Vehicle (UAV) to Satellite 
communication (U2SC) play an important role. U2SC 
refers to the integration of UAV and satellites to enhance 
communication capabilities, especially in areas where 
terrestrial networks are limited or unreliable [1].  

As UAVs become increasingly vital in applications 
such as disaster recovery, maritime monitoring, and 
intelligent transportation, the need for reliable long-
range connectivity grows. While terrestrial 
communication networks provide high throughput, their 
limited coverage makes them unsuitable for remote or 
mobile aerial platforms. Low earth orbit satellites like 
Starlink offer global coverage and high-speed backhaul, 
making them ideal complements for UAV 
communications [2]. 

U2SC enables global 6G coverage but poses several 
challenges: high Doppler shifts from satellite motion, 
dynamic geometry, beam misalignment, and UAV 
power constraints. Addressing these issues requires 
modulation schemes and beam control methods that are 
resilient, adaptive, and energy efficient. In both  
Long-Term Evolution (LTE) and the fifth generation 
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(5G) New Radio (NR) systems, Orthogonal Frequency 
Division Multiplexing (OFDM) and its variants have 
been widely adopted for high-speed wireless 
transmissions [3]. However, OFDM is inherently 
sensitive to Doppler effects, which can disrupt the 
orthogonality among subcarriers. This disruption leads 
to increased inter-carrier interference (ICI) and inter-
symbol interference (ISI), severely degrading system 
performance in high-mobility scenarios [4]. 

1.2. Orthogonal Time Frequency Space Modulation 

Orthogonal Time Frequency Space (OTFS) 
modulation is specifically designed to address the 
limitations of traditional schemes such as OFDM in 
rapidly time-varying and doubly dispersive wireless 
channels [5]. This transformation yields several key 
advantages for high-mobility communication. First, 
OTFS exhibits strong resilience to Doppler and delay 
spread, as each transmitted symbol is spread over the 
entire time-frequency plane, allowing it to experience 
the full diversity of the channel. This significantly 
improves robustness against both time selectivity  
(e.g., Doppler shift) and frequency selectivity  
(e.g., multipath delay) [6]. Second, OTFS effectively 
converts a sparse delay-Doppler channel into a well-
conditioned channel matrix in the symbol domain, 
enhancing the reliability of symbol detection and 
decoding. Third, due to the inherent sparsity of the 
channel in the delay-Doppler domain, low-complexity 
equalization methods such as message passing or 
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MMSE can be employed with near-optimal 
performance. Lastly, OTFS is highly compatible with 
multiple-input and multiple-output (MIMO) and 
beamforming techniques, enabling spatial diversity and 
multiplexing gains even under rapidly time-varying 
channel conditions [7].  

These properties make OTFS a compelling candidate 
for U2SC, where the link is dominated by high mobility, 
large Doppler shifts, and strong line-of-sight (LoS) 
propagation. By leveraging delay-Doppler 
representation, OTFS enhances signal robustness and 
improves communication reliability under the dynamics 
of spaceborne systems [8]. 

In U2SC, maintaining a strong and stable link is 
challenging due to the rapid motion of Low Earth Orbit 
(LEO) satellites and the mobility of UAV platforms. 
Directional beamforming using Uniform Linear Arrays 
(ULA) at the UAV plays a vital role in focusing 
transmission energy to the satellite, thereby improving 
link quality and extending communication range [9]. 
However, the effectiveness of beamforming relies 
heavily on accurate and timely beam alignment with the 
moving satellite. Traditional beam steering techniques, 
such as exhaustive search or fixed-point tracking, are 
often computationally inefficient or slow to adapt to the 
rapidly changing geometry of U2SC links. Moreover, 
frequent misalignment leads to significant signal 
degradation and increased energy consumption due to 
retransmissions or power ramping [10]. 

To address this, Artificial Intelligence (AI)-based 
tracking approaches, particularly Deep Q-Learning 
(DQL), have emerged as promising solutions. DQL 
enables the UAV to learn an optimal beam control policy 
through interaction with the environment, dynamically 
adjusting the beam direction based on estimated satellite 
position, received signal strength, Doppler shift, or 
alignment error. Over time, the learning agent can 
generalize different trajectories and satellite velocities, 
offering robust performance under uncertainty and 
channel dynamics. When combined with OTFS 
modulation, AI-powered beamforming creates a 
synergistic framework: OTFS ensures modulation-level 
robustness in Doppler-rich environments, while  
DQL-driven beam control maintains spatial alignment. 
This integration is essential for enabling resilient,  
low-latency, and energy-efficient communication in 
future 6G U2SC systems [11]. 

1.3. Related Works 

Satellite communication has become a key 
component in the development of 5G and future 6G 
networks, particularly in providing ubiquitous coverage 
in remote, rural, or disaster-stricken areas. Recent 
advances in LEO satellite constellations, such as Starlink 
and OneWeb, have enabled low-latency,  
high-throughput backhaul links that complement 
terrestrial networks.  

In [12], the authors conceive a combination of Code 
Division Multiple Access (CDMA) and OTFS. This is 
an interesting study that combines the advantages of 
CDMA with OTFS, providing a robust candidate for 
high-Doppler and doubly dispersive channels. In [13], 
wavelet-aided orthogonal time-frequency space  
(W-OTFS) modulation is proposed as a novel approach 
for high-mobility vehicular communication, the 
advantage of discrete wavelet transforms improved 
performance over existing OTFS modulation. 

Several works have demonstrated the superiority of 
OTFS over OFDM in high-mobility environments and 
satellite communication. For example, the work in [14] 
proposed OTFS with Non-Orthogonal Multiple Access 
(NOMA), the work in [15] proposed Intelligent 
Reflecting Surface (IRS)-Aided uplink OTFS-SCMA 
and the work in [16] proposed Wavelet-Based OTFS 
Scheme for Low Earth Orbit (LEO) Satellite 
Communication. OTFS maps data symbols in the  
delay-Doppler domain, allowing them to experience the 
full diversity of the channel, which improves reliability 
and robustness. 

Beamforming has been widely applied in UAV 
systems to improve link quality, directional gain, and 
interference management. Both analog and digital 
beamforming architectures have been explored using 
Uniform Linear Arrays (ULA) or planar arrays mounted 
on UAVs [17]. Challenges include maintaining beam 
alignment during UAV motion, handling limited 
payload constraints, and dealing with fast angular 
variations due to the UAV’s dynamic positioning.  

Adaptive and intelligent beamforming is therefore 
crucial for UAV communication in long-range and 
dynamic environments such as UAV-to-satellite links. 
AI, especially Reinforcement Learning (RL), has 
recently gained traction in solving complex control 
problems in wireless communication, including beam 
tracking and dynamic beam selection. In [18], a Robust 
Beamforming Design for OTFS-NOMA is proposed for 
sharing the spectrum with multiple low-mobility NOMA 
users under uncertain and time-varying environments.  

1.4. Motivation and Contributions of this Paper 

In conventional non-terrestrial networks, direct 
communication between mobile users and LEO 
satellites requires high transmission power at the user 
equipment (UE) and suffers from significant 
propagation loss and Doppler-induced distortion. 
Motivated by the mentioned research gap, in this paper, 
we propose the use of a UAV as an aerial relay or flying 
Base Station, acting as an intelligent intermediary 
between ground UEs and satellites. 

Our proposed relay-based U2SC architecture has the 
following advantages: 

• Reduced UE transmit power, as the UAV provides 
a closer, lower-loss uplink target; 
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• Lower interference footprint, particularly in dense 
user environments, since the UAV can manage 
scheduling and power control locally; 

• Improved link reliability and coverage, especially 
in obstructed or remote areas; 

• Enhanced flexibility, as the UAV can reposition 
itself dynamically to optimize satellite visibility 
and user distribution. 

By integrating this UAV relay concept with OTFS 
modulation and AI-based beamforming, our system 
significantly improves the overall spectrum and energy 
efficiency of U2SC in 6G-Enabled networks. To address 
the unique challenges of U2SC in 6G-Enabled IoV 
networks, we propose a comprehensive approach that 
integrates network architecture design, advanced 
modulation, and intelligent beamforming. Our research 
approaches include: 

- Towards an Edge BS architecture on UAV, where 
the UAV acts as an aerial base station (BS) serving 
ground users and relaying aggregated data to the 
satellite, thereby reducing user transmit power, 
interference, and enabling centralized beam and 
resource management;  

- Towards OTFS-based uplink transmission, 
enhancing robustness against Doppler and delay 
dispersion through full delay–Doppler diversity; 

- Towards DQL for beamforming control, where 
beam steering is formulated as a Markov Decision 
Process (MDP) and a DQL agent adaptively aligns the 
beam using real-time feedback, e.g., Signal-to-
Interference-plus-Noise Ratio (SINR), Doppler, 
ensuring precise and energy-efficient satellite tracking.  

This paper proposes a robust solution combining 
OTFS modulation and beamforming with DQL to enable 
high-performance, energy-aware UAV-to-satellite 
communication in 6G-Enabled IoV networks. 

Our contributions in this paper are summarized as 
follows: 

1) A novel UAV-to-satellite edge architecture 
improving coverage, flexibility, and energy efficiency 
by employing the UAV as an aerial BS for LEO satellite 
relaying. 

2) An OTFS-based delay–Doppler signal model 
capturing high-mobility Rician channel effects for 
robust transmission. 

3) A DQL-based adaptive beamforming algorithm 
achieving accurate, low-power beam alignment and 
maintaining high link reliability under dynamic orbital 
motion. 

Beyond simulation, this work provides a theoretical 
foundation for the implementation of a small-scale 
testbed. The testbed will use a UAV-mounted  

software-defined radio (SDR) and electronically 
steerable antenna array to validate beam tracking 
performance in a semi-realistic environment. 

The rest of the paper is organized as follows. In 
Section 2, the proposed system model is shown. 
Section 3 presents proposed beam tracking with deep  
Q-Learning, Section 4 provides simulation results and 
performance of the proposed algorithm. Finally, the 
conclusion of this paper is to conclude remarks, and 
suggestions for further research.  

Throughout the paper, bold uppercase letters are 
denoted for matrices, while bold lowercase letters are for 
vectors, (.)T and (.)H stand for transpose, Hermitian 
respectively. 

2. System Model 

2.1. Overall Architecture of Proposed U2SC System 

Fig. 1. shows the proposed system model. The 
system consists of a single UAV flying at altitude huav, 
equipped with a Nt element uniform linear antenna array 
and a directional beamforming system capable of 
steering a transmission beam toward a LEO satellite at 
altitude Hsat. The UAV serves U ground users by 
collecting their uplink data and forwarding it to the 
satellite using OTFS-modulated beamformed 
transmission. At each time instant, the UAV aligns its 
beam with a single satellite. Additionally, the UAV 
maintains a directional backhaul link to a terrestrial Next 
Generation Node B (gNB), supporting control signaling 
and optional data offloading. This architecture allows 
the UAV to function as an aerial Base Station (BS), 
enabling reduced user transmit power, improved link 
robustness, and adaptive satellite connectivity in 
dynamic 6G-Enabled IoV environments. 

2.2. OTFS Signal Model 

We propose a system model in which the UAV acts 
as a relay BS between ground users and the satellite. 
Specifically, the i-th User Equipment (UE), located at a 
distance di, transmits a signal si(t) to the UAV. Upon 
receiving this signal, the UAV performs necessary 
processing and forwards it to the satellite using 
directional beamforming and OTFS modulation to 
ensure robustness under high-mobility channel 
conditions. 

Let [ , ]ix k l ∈  denote the complex data symbol of  
i-th UE located at delay index {0,1,..., 1}k N∈ −  and 
Doppler index {0,1,..., 1}l M∈ −  received from i-th UE. 
The OTFS modulation process consists of the following 
steps as follows. 

Step 1. Inverse Symplectic Finite Fourier Transform 
(ISFFT): The data matrix [ , ]ix k l in the delay-Doppler 
domain is transformed into the time-frequency domain 
Xi[n,m] via the ISFFT as 
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Fig. 1. Proposed beamforming OTFS for U2S system model 
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where n = 0, 1, ..., N−1, and m = 0, 1, ..., M−1 represent 
time and frequency indices, respectively. 

Step 2. Heisenberg Transform at the transmitter: The 
time-frequency samples Xi[n,m] are modulated into a 
continuous-time signal si(t) using a transmit pulse gtx(t) 
as 

1 1
2 ( )

0 0
( ) [ , ] ( )

N M
j m f t nT

i i tx
n m

s t X n m g t nT e π
− −

∆ −

= =
= ⋅ − ⋅∑ ∑ , (2) 

where T is time spacing between OTFS symbols, Δf is 
subcarrier spacing (Δf = 1/T), gtx(t) is transmit pulse 
(commonly rectangular or raised cosine). 

Step 3. Wigner Transform and SFFT at the receiver: 
The receiver applies a matched filter grx(t) to obtain 
time-frequency samples as follows 

* 2 ( )[ , ] ( ) ( ) j m f t nT
i i rxY n m r t g t nT e dtπ− ∆ −= ⋅ − ⋅∫ . (3) 

These samples are then transformed back to the 
delay-Doppler domain using the Symplectic Finite 
Fourier Transform (SFFT) which is presented as 
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The OTFS signal model provides a robust end-to-end 
link capable of operating effectively under high Doppler 
and rapidly time-varying satellite channels. Detection 
can be performed using MMSE, message passing, or 
other equalization techniques in the delay-Doppler 
domain. 

2.3. UAV-to-Satellite Communication Model 

Suppose the satellite operates in LEO (Low Earth 
Orbit) with an altitude Hsat of approximately 550 km, the 
UAV flies at an altitude huav of approximately 1÷5 km. 
The straight-line distance between the UAV and the 
satellite at time t is 

2 ( ) ( ) ( )u s sat uavd t t t= −p p , (5) 
where, 3( ), ( )sat uavt t ∈p p 

 are satellite coordinates 
(calculated according to orbit) and UAV coordinates 
(can be fixed or circling), respectively.  

Free Space Path Loss (FSPL) is calculated as 

dB 10 u2s

10 10

( ) 20log ( )
420log 20logc

PL t d t

f
c
π

= +

 +  
 

, (6) 

where du2s(t) is UAV to satellite distance at time t, fc is 
carrier frequency, and c is speed of light. 

The UAV-to-Satellite Rician Fading Channel Model 
with Doppler shift is represented as 

( ) 1( ) ( ) ( )
( ) 1 ( ) 1

LOS NLOS
K tH t h t h t

K t K t
= ⋅ + ⋅

+ +
, (7) 

where ( ) ( )2 D t tj f
LOSh t e π=  is Doppler phase of Line of Sight 

(LOS) component, ( ) ( )0,1NLOSh t ∼   is random 
fading Non-Line of Sight (NLOS) component, K(t) is 
Rician coefficient, characterizing the LOS/NLOS ratio 
at time t. The Doppler shift based on relative velocity 
between UAV and satellite is calculated as 

u2s
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D
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= = ⋅ , (8) 
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where /c fλ =  is wavelength, vref(t) is relative velocity 
between UAV and satellite. 

K-factor Model which depends on satellite distance 
is expressed as 

0
0

u2s

( )
( )

dK t K
d t

γ
 

= ⋅ 
 

, (9) 

where K0 is LOS coefficient at standard distance d0, γ is 
attenuation factor (usually 1.5-3). The signal received at 
the satellite is 

( ) ( ) ( ) ( ( )) ( )i ir t G t H t s t t w tτ= ⋅ ⋅ − + . (10) 

2.4. Satellite Mobility and Geometry Model 

In the proposed system, we consider LEO satellites 
operating at altitudes ranging from 500 to 600 km, 
typical of commercial constellations such as Starlink. 
These satellites orbit the Earth at high speeds, 
approximately 7.5 km/s, completing a full revolution in 
about 90–100 minutes. As a result, the relative geometry 
between the satellite and the UAV changes rapidly over 
time, which directly affects the link distance, angle of 
elevation, and Doppler shift. 

Satellite Position Model is as follows. Let the 
satellite follow a circular LEO orbit at altitude Hsat , with 
Earth radius Re. The position of the satellite in a 2D plane 
(simplified case) at time t can be expressed as: 

sat sat

cos( )
( ) ( ) sin( )

0
e

t
t R H t

ω
ω

 
 = +  
  

p , (11) 

The angular velocity of the satellite is 
sat sat( )ev R Hω = + , where vsat is approximately of 

7.5×103 m/s. The UAV is assumed to fly at a constant 
altitude huav  with the position of uav uav[ , , ]u ux y h=p . The 
instantaneous distance between UAV and satellite is 

u2s sat uav( ) ( )d t t= −p p , (12) 
The elevation angle α(t) from the UAV to the satellite 

is given by 
sat uav

u2s

( ) arcsin
( )
h

d t
Htα

 −
=  

 
. (13) 

This elevation angle plays a critical role in 
determining LOS availability, estimating the Rician K-
factor in the channel model, and guiding the 
beamforming direction from the UAV toward the 
satellite. Due to orbital motion, the UAV can only 
maintain a connection with a given satellite within a 
limited visibility window. The contact duration Tc of the 
UAV with the satellite is 

sat sat

2 arccose e
c

e

R RT
v R H

 ≈ ⋅  + 
. (14) 

In practical systems, beam steering and handover 
between satellites must occur before the end of this 
duration. 

2.5. ULA-Based Beamforming Model at UAV 

The digital domain signal from one Radio Frequency 
(RF) chain is fed to K transmit antennas to perform 
transmit analog precoding. The analog precoder vector 
is expressed as 

( 1)
0 1 ( 1)[ , , ] , 0,1,..., 1T K

k k k kK ta a a k N×
− ∈= = −a 

, (15) 

where 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑒𝑒𝑗𝑗𝜙𝜙𝑖𝑖𝑖𝑖, 𝐴𝐴𝑖𝑖𝑖𝑖 is attenuator factor and 𝜙𝜙𝑖𝑖𝑖𝑖 is 
phase shift. Finally, every data symbol is transmitted by 
the sub-antenna array of Nt antennas. 

The transmitted signal vector is  
𝐬𝐬𝑢𝑢[𝑘𝑘] = �𝑠𝑠0

(𝑢𝑢)[𝑘𝑘], 𝑠𝑠1
(𝑢𝑢)[𝑘𝑘], … , 𝑠𝑠𝑁𝑁𝑡𝑡−1

(𝑢𝑢) [𝑘𝑘]�, where each 
component is 

[ ] [ ] , 0,1,..., 1.k k t
u

k
us k y k k N= = −a  (16) 

Assume the UAV collects data from U ground users 
and forwards all data to the satellite through a single 
uplink uav-satR . Then, the total system sum-rate is   

sum uav-sat
1

U

i
i

R R R
=

= =∑ . (17) 

Assuming the UAV transmits with power Pt , the 
total channel gain is G(t), and the total noise is N0B, the 
total sum-rate is 

uav-sat 2
0

( )( ) log 1 tP G tR t B
N B
⋅ = ⋅ + 

 
, (18) 

where B is channel bandwidth, N0 is noise power spectral 
density (W/Hz), respectively.  

The total channel gain G(t) is  
2( )

( )
( )

tx satF
t G G

G t
PL t

=
H

, (19) 

where Gtx is transmit antenna gain, Gsat is satellite 
antenna gain, PL(t) is total pathloss, H(t) is the 
small-scale fading matrix, which depends on the 
wavelength, relative velocity of UAV and satellite and 
Doppler spread, and 2.

F
denotes the matrix Frobenius 

norm. Since the UAV uses beamforming with Nt 
antennas, an additional beamforming gain GBF equals Nt 
is included in the total sum-rate as [19] 

uav-sat 2
0

( )( ) log 1 t tP N G tR t B
N B

⋅ ⋅ = ⋅ + 
 

, (20) 

and the received power is 

( )r t tP P N G t⋅ ⋅= . (21) 

3. Proposed Beam Tracking with Deep Q-Learning 

3.1. Problem Formulation  

Beam Alignment is defined as a Markov Decision 
Process as follows. The beam alignment task between 
the UAV and a moving satellite is modeled as a Markov 
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Decision Process (MDP), where the UAV must 
continuously adjust its beam direction to maintain 
alignment with the satellite’s dynamic position. The 
environment evolves based on satellite motion and 
channel conditions, and the UAV agent learns to make 
sequential decisions to maximize long-term signal 
quality. At each step, the agent selects a beam direction 
that influences the next observed signal state and the 
reward. 

3.2. State, Action, Reward Design 

• State St includes observable features such as 
estimated elevation angle ˆ( )tθ , recent beam 
direction, received signal power or SINR, Doppler 
shift, and tracking error. 

• Action At corresponds to discrete adjustments of 
the beam angle, e.g., ˆ ˆ( 1) ( )t tθ θ θ+ = + ∆ , where 

{ ,0, }θ δ δ∆ ∈ − + . 

• Reward Rt is designed to encourage precise 
tracking, e.g., 

ˆSINR | ( ) ( ) |t tR t tα β θ θ= ⋅ − ⋅ −  , (22) 

where α, β > 0 control the trade-off between signal 
quality and angular error. 

3.3. DQL Agent Architecture and Training 

A Deep Q-Network (DQN) is used to approximate 
the optimal action-value function ( , )t tQ S A . The 
network takes the current state as input and outputs the 
estimated value of each action. DQN is trained using 
experience replay and target network stabilization: 

• Network input: State vector St. 

• Output: Q-values for each beam adjustment 
action. 

• Loss function: 

( )2*
target 1max ( , ) ( , )t a t t tr Q S A Q S Aγ ′ +

 = + −   . (23) 

The agent is trained over simulated satellite 
trajectories with known channel conditions and then 
fine-tuned online. 

We extend the DQL beam tracking policy to include 
energy awareness by modifying the reward function as 

trackSINR ( ) ( )t t bR E t E tα β γ= ⋅ − ⋅ − ⋅ , (24) 

where Eb denotes the energy consumption per 
successfully transmitted bit, and trackE   is the energy per 
beam update as 

total
track ctrl align,b

b
P TE E P T
η
⋅

= = ⋅  ,  (25) 

where Tb is time to transmit one bit, η is transmission 
success rate (accounts for retransmissions), and Talign is 
duration of beam realignment phase. 

High-frequency alignment leads to more accurate 
tracking but increases Etrack. Balancing alignment 
frequency is crucial for energy efficiency. The agent 
now balances beam accuracy and energy cost, learning a 
policy that adapts tracking frequency and action 
aggressiveness based on the UAV’s remaining energy 
and satellite visibility window. This approach allows 
real-time, onboard learning for energy-optimal tracking 
under mobility and channel uncertainty. Finally, the 
proposed Beam Tracking with Deep Q-Learning is as 
follows. 

Algorithm 1. Proposed Deep Q-Learning for Beam 
Tracking 

Initialization: 
Initialize the Q-Network ( , )t tQ S A  for action At 
Initialize replay memory D with capacity C  
Initialize beam at random angle θ0 

end for  
Learning: 
while not convergence do 

Initialize environment and observe initial state s0 
for iteration do 

Obtain receive power level Pr, UE angle 
( )tθ , beam error ˆ( ) ( )t tθθ θ−∆ =  

if c <= ϵ then 
Choose action At randomly 
(exploration), with probability ϵ. 

else 
select the action *arg max ( , )t t t

A
A Q S A=  

end if 
Execute action by applying vector 
beamforming in (15) 
Get new signal power Pr, t+1 
Calculate reward Rt according to (24) 
Store the experience ( )1, ,,t t trRS A S +  into 
replay memory D 
Update Q: 

*
1

( , ) ( , )

max ( , ) ( , )

t t t t

t t t t
A

Q S A Q S A

R Q S A Q S Aα γ +

= +

 + − 
 

Perform gradient descent step on loss 
according to (23) 
Update θ to minimize   
Update current state 1t tS S +←  
if satellite out of view then 

break 
end if 

end for // iteration 
end while //not convergence 
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4. Simulation Results 

In this section, the numerical results are presented. 
The Monte-Carlo simulation is used to evaluate the 
system performance to verify the efficiency of the 
proposed system in different simulation conditions. The 
simulation is used to evaluate the performance of the 
proposed system and estimate the impact of parameters 
on the performance of the whole system. Bit error rate 
(BER) with 5×106 channel realizations is used to 
evaluate the system performance. The simulation 
parameters are listed in Table 1. All the simulations run 
on a workstation with CPU Intel E5-1603 v3  
@ 2.80GHz RAM 15.8 GB and GPU Nvidia GTX 1050 
Ti (4 GB), using Python 3.12. 

The simulation was conducted using the proposed 
method and compared with two baseline strategies as 
follows. The first baseline is the Fixed Offset approach, 
which assumes an ideal scenario where the UAV beam 
is perfectly aligned with the satellite direction (offset 
equals to 0). The second baseline is the Beam Switching 
method, which mimics conventional directional 
scanning: the entire angular domain is divided into 
discrete directions, and the UAV cyclically scans all 
directions to select the one with the highest received 
signal power.  

In the first simulation, we investigated the impact of 
the number of transmit antennas {8,16,32}tN ∈ on the 
BER for the proposed OTFS-based algorithm and 
compared it with two baseline methods. The Rician  
K-factor is fixed at K equals 10 dB to reflect a realistic 
line-of-sight dominant scenario in UAV-to-Satellite 
communication.  Fig. 2 demonstrates that the proposed 
method achieves consistently lower BER as the number 
of antennas increases, thanks to its beamforming 
adaptability and delay–Doppler channel structure 
exploitation. In contrast, baseline methods show less 
sensitivity to antenna scaling, highlighting the efficiency 
of the proposed approach under high spatial diversity 
conditions. 

Table 1. Simulation Parameters 

Parameter Symbol Value 

Carrier frequency fc 12 GHz 

Bandwidth B 10 MHz 

UAV transmit power Pt -5÷35 dBm 

UAV number of antennas Nt {8, 16, 32, 64} 

UAV-SAT distance du2s(t) 500 km  

UAV altitude huav 1 km 

Satellite altitude Hsat 500 km 

Satellite antenna gain Gsat 35 dBi 

Orbital velocity vsat ≈ 7.5 km/s 

Rician K-factor  K(t) {5, 10, 15} dB 

Doppler shift  fD(t) 100 ns  

Noise spectral density N0 −174 dBm/Hz  

Noise figure NF –9 dB 

Pulse shaping gtx(t) Raised Cosine 

Number of subcarriers M 64 

Doppler bins N 64 
 

The hyperparameters for learning model is described 
in Table 2. 

Table 2. Hyperparameters for learning models 

Parameter Value 

Learning rate 0.001 

Replay memory buffer size 50000 

Minibatch 64 

Discount factor 0.99 

Number of Episode 200 
 

 

 
Fig. 2. BER vs number of transmit antennas comparison at K=10dB: (a) Nt=8; (b) Nt =16; and (c) Nt =32 
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Fig. 3. BER performance comparison with various K values (5, 15 dB): (a) Nt = 16; (b) Nt = 32; and (c) Nt = 64 

 

  
Fig. 4. OTFS vs OFDM BER comparison at Nt = 8 with various Rician fading: (a) K = 5 dB; (b) K = 10 dB; and  
(c) K = 15 dB 
 

Next, we evaluated the impact of Rician K-factors on 
the performance of the proposed algorithm compared 
with baseline method. Specifically, we compare the bit 
error rate under different Rician fading conditions:  
K equals 5 dB (purely scattered), K equals 15 dB 
(moderate line-of-sight) with the number of transmit 
antennas at Nt equals 16, 32, and 64. Fig. 3 presents the 
results, showing that the proposed OTFS-based method 
benefits from increasing K-factors, due to improved 
channel predictability and robustness. This trend is 
particularly evident when compared to the baseline 
methods under harsh fading conditions. 

Finally, we compare the performance of OTFS and 
OFDM modulation schemes under different Rician  
K-factors. The number of transmit antennas is fixed at 
low value of Nt equals 8, and the Rician fading 
conditions are varied by K equals 5, 10, and 15 dB to 
observe how LOS dominance affects system robustness. 
Fig. 4 illustrates that OTFS consistently outperforms 
OFDM, particularly in high mobility or severe fading 
conditions (low K), thanks to its delay-Doppler domain 
resilience. As the K-factor increases, the performance 
gap narrows due to improved channel coherence for both 
schemes.  

The proposed DQL beamforming framework is 
qualitatively compared with Kalman filter–based and 
geometric beam tracking approaches. Unlike model-
based methods, DQL learns beam control policies 
directly from interaction with the environment, 

providing more stable alignment and lower energy 
consumption under non-linear satellite motion. 
Compared with policy gradient and actor–critic 
reinforcement learning, DQL achieves faster 
convergence and lower computational complexity, 
making it suitable for real-time UAV implementation. 

The control signaling overhead for beam updates 
between UAV and gNB is minimal (below 1% of total 
bandwidth). Under rain fade and ionospheric 
scintillation at 12 GHz, attenuation of 2–4 dB may 
occur, which can be mitigated by adaptive power control 
and beamwidth adjustment integrated into the learning 
policy. Overall, the proposed OTFS–DQL framework 
demonstrates robust and energy-efficient performance 
under realistic non-terrestrial 6G conditions. 

5. Conclusion 

In this paper, we have proposed a UAV-to-Satellite 
communication system using OTFS modulation 
combined with Deep Q-Learning algorithm to control 
beam direction. We simulated the proposed system in a 
Rician fading channel environment with a 12 GHz 
frequency band with a transmission distance of up to 
500 km, fully simulating realistic factors such as 
background noise, propagation loss, and antenna gain. 
BER simulation results show that OTFS demonstrates 
effective transmission in complex channel 
environments, especially under large K-factor 
conditions, when compared with the traditional 
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Quadrature Phase Shift Keying (QPSK) modulation 
method. Integrating delay–Doppler channel estimation 
and OTFS simulation according to the standard pipeline 
has helped to accurately reproduce the transmission 
characteristics in the time–frequency domain, 
demonstrating the advantages against multipath 
interference and large delays.  

The next research direction is to build a hardware-in-
the-loop testbed using a UAV platform with phased-
array antennas to validate the proposed model under real 
orbital satellite trajectories and Doppler conditions and 
integrate sensing and communication (ISAC) to 
simultaneously transmit data and monitor position and 
Doppler from UAVs. 
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