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Abstract
With the rapid proliferation of renewable energy sources (RES) in modern power grids, the application of operational
optimization strategies has become pivotal in maintaining system efficiency and stability. In particular, the hybrid deep learning
model long short-term memory (LSTM) neural network combined with inductive conformal prediction (ICP) significantly
enhances the accuracy of renewable energy forecasting and management. This paper presents the integration of big data
analytics (BDA) with the LSTM+ICP framework for optimizing smart grid operations, particularly under real-time conditions.
A suite of machine learning and deep learning models, especially the hybrid LSTM+ICP, is deployed to address critical
challenges such as renewable output forecasting, load balancing, and fault detection. Owing to its capability to capture
temporal dependencies and generate reliable prediction intervals, the LSTM+ICP model achieved a mean absolute percentage
error (MAPE) of 2.91%, thus improving the reliability of renewable energy scheduling and enabling more efficient resource
allocation. The implementation of real-time BDA in conjunction with LSTM+ICP reduced load variance by 44.3%, peak
demand by 24.2%, and frequency deviations by 52.9%, thereby strengthening grid reliability and operational stability. In
predictive maintenance, the LSTM+ICP model achieved a detection accuracy of 97.2% with an average lead time of 6.2 hours,
enabling proactive interventions and minimizing fault risks. For system optimization, the application of reinforcement learning
augmented by BDA led to a 33.9% reduction in power losses, a 22.4% increase in voltage stability, and a 29.1% decrease in
reactive power, thereby enhancing operational efficiency. From both economic and environmental perspectives, the BDA-driven
approach resulted in monthly cost savings of C36,150 and a 30.2% reduction in CO2 emissions, demonstrating the efficacy and
sustainability of the proposed methodology.
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1. Introduction

The rapid proliferation of renewable energy sources
(RES) within modern power systems introduces both
significant opportunities and complex challenges in
maintaining grid stability and operational efficiency.
While solar and wind energy offer clean and sustainable
alternatives to fossil fuels, their inherent intermittency
and unpredictability pose major difficulties in power
dispatch coordination and in maintaining voltage
and frequency stability across the grid [1, 2]. As
power systems shift from centralized to decentralized
architectures, the demand for intelligent, adaptive real-
time control strategies becomes increasingly critical.

Big data analytics (BDA) has demonstrated
substantial potential in optimizing smart grid operations
by enabling the collection and processing of massive
volumes of data from distributed energy resources,
smart meters, meteorological stations, and grid assets.
Advances in BDA facilitate not only renewable energy
forecasting but also fault detection, load balancing, and
overall grid optimization [3, 4]. Deep learning models
such as long short-term memory (LSTM) networks

have been widely employed for RES forecasting.
However, these models often struggle to provide reliable
probabilistic forecasts when faced with high uncertainty
and volatility intrinsic to renewable energy generation.

Research in [5] proposed a U-Shaped long short-term
memory - Attention-Free transformer (U-LSTM-AFT)
architecture that improves hourly solar irradiance
forecasting while explicitly providing reliable prediction
intervals, making it suitable for operational decision-
making in microgrids. Mohammadi et al. introduced
a multi-timescale fusion framework combining Many-
to-many long short-term memory (MTM-LSTM) and
multilayer perceptron (MLP) models, which effectively
reduces systematic errors by separating and learning
different frequency components in solar radiation
time-series data [6]. In addition, Yang et al. presented
a rigorous evaluation and interpretability framework
for hybrid deep neural networks, emphasizing the
necessity of reliability metrics and calibrated uncertainty
in time-series forecasting applications with complex
dynamics [7]. These studies consistently indicate that
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hybrid LSTM models combined with uncertainty
quantification techniques are essential for achieving
accurate and reliable operation in smart grid systems.

To address this limitation, the present study proposes
the integration of LSTM with inductive conformal
prediction (ICP), a robust uncertainty quantification
technique, to enhance forecast accuracy and deliver
meaningful prediction intervals. The integration of
BDA and deep learning enables smart grid systems to
adapt proactively to real-time changes in load profiles,
generation patterns, and fault events [8, 9]. Previous
research has utilized machine learning models such as
Support Vector Machines (SVM), Random Forests (RF),
and LSTM to improve RES forecasting. Nonetheless,
these approaches lack robust uncertainty handling and
often fall short of delivering the reliability required for
real-world deployment [10, 11].

The objective of this paper is to develop a
comprehensive methodology that combines LSTM,
ICP, and reinforcement learning to optimize renewable
energy management in smart grids. The main
contributions include a hybrid forecasting framework
leveraging both machine learning and deep learning,
a high-accuracy predictive maintenance system, and
a reinforcement learning-based grid optimization
controller designed to reduce power losses and
enhance voltage stability. Furthermore, this paper
provides a thorough economic and environmental
impact assessment of BDA deployment in smart grids,
highlighting its potential for significant cost savings and
environmental protection.

2. Methodology
This study adopts a structured data-driven

approach to evaluate the impact of big data analytics
(BDA) on renewable energy management and the
optimization of smart grid operations. The research
methodology encompasses data collection, renewable
energy forecasting, real-time load control, predictive
maintenance, and the assessment of economic and
environmental impacts.

2.1. Data Collection and Preprocessing
The data used in this study were collected from

field datasets of the Dong Nai photovoltaic power
plant and the Con Co wind farm [12], combined
with manufacturer operational reports, notably the
FusionSolar report (04/2024) [13]. These sources were
employed to construct a dataset for a hypothetical
microgrid, including photovoltaic (PV) and wind power
(WP) generation, aggregated load demand, and relevant
operational parameters. Associated meteorological data-
solar irradiance, wind speed, ambient temperature,
and humidity-were time-synchronized with the power
generation data to support time-series forecasting.
The use of real operational datasets ensures that the
data realistically represents near real-time operating
conditions of renewable energy systems.

Due to differences in recording frequencies, all
data were synchronized and resampled to a 15-
minute resolution, consistent with operational cycles
in smart grid load balancing. The preprocessing
procedure included short-gap linear interpolation for
missing values, statistical outlier removal, and min–max
normalization of input variables. The processed data
were then organized using a sliding-window approach,
where each input sample consisted of 48 historical time
steps (12 hours) for model training and evaluation. The
conceptual structure of the proposed LSTM+ICP model
is shown in Fig. 1.

Fig. 1. LSTM+ICP model

2.2. Renewable Energy Forecasting with LSTM+ICP

The LSTM network was employed to forecast
renewable energy output from solar and wind sources.
LSTM is capable of learning long-term dependencies
in time series data, making it suitable for accurate
prediction of future energy generation. However, a
key limitation of LSTM is its inability to provide
reliable prediction intervals. To address this issue,
the ICP method was integrated with the LSTM
model to generate probabilistic prediction intervals,
thereby improving the reliability of the forecasts. The
combined LSTM+ICP approach yields more accurate
and actionable predictions, enabling grid operators to
make more informed decisions in managing renewable
energy resources. Fig. 2 presents the PV power
forecasting results over a 24-hour horizon along with the
prediction intervals generated by the ICP method.

Fig. 2. Results and ICP forecast range
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2.3. Real-Time Load Balancing and Grid Control

The system utilizes Apache Spark Streaming to
perform grid load balancing at 15-minute intervals,
leveraging data from smart meters. The application of
BDA significantly reduces load variance, peak demand,
and frequency deviations, thereby enhancing the stability
and operational efficiency of the grid. This approach
enables real-time adjustment of grid parameters to
ensure optimal and equitable allocation of renewable
energy resources.

2.4. Fault Detection and Proactive Predictive
Maintenance

After training, the LSTM combined with ICP
was deployed as a forecasting module within the
load balancing and grid control system. At each
inference cycle, the model generates 96 consecutive
prediction steps, corresponding to a 24-hour ahead
horizon, providing both point forecasts and associated
prediction intervals. These intervals are produced by
ICP based on the calibration set defined during training,
enabling explicit quantification of uncertainty at each
forecast step. The system is designed to complete
data acquisition, LSTM inference, and ICP interval
generation within a few seconds, while the operational
update cycle is 15 minutes. Consequently, at each
15-minute interval, the grid controller receives an
updated rolling-horizon forecast reflecting the latest load
and weather conditions. Point forecasts are used for
scheduling and power allocation, whereas prediction
intervals support risk-aware control decisions under high
renewable variability.

2.5. Grid Optimization and Reinforcement
Learning-Based Control

Reinforcement learning algorithms were integrated
with insights from BDA to optimize power flow
and voltage regulation in real time. The control
system effectively reduces power losses, stabilizes
voltage levels, and minimizes reactive power. By
enabling autonomous and adaptive optimization,
the reinforcement learning-based approach enhances
operational efficiency and responsiveness of the grid.

In this study, the reinforcement learning (RL)
controller was implemented using the Deep Q-Network
(DQN) algorithm, which enables the system to learn
optimal grid control policies by interacting with a
simulated environment. The RL objective was defined
to penalize power losses and voltage deviations while
rewarding actions that improve energy efficiency and
operational stability. Concretely, at each step t we use
a penalty-based cost:

Jt = αCloss
t +βCvoltage

t +κBe f f
t +ηCpenalty

t (1)

where Closs
t measures network power losses, Cvoltage

t
measures voltage deviations beyond acceptable bounds,
Be f f

t quantifies efficiency/stability gains (treated as a
positive bonus), and Cpenalty

t is a large penalty for
constraint violations; the scalars α,β ,κ,η balance
economic vs reliability objectives.

The Deep Q-network is implemented as a fully
connected approximator (input = system state including
LSTM+ICP forecasts and state of charge (SOC); hidden
layers = 128 → 64 ReLU units; output = discrete
action values), trained with experience replay and a
slowly updated target network to ensure convergence
and stabilize learning. The agent is trained offline on
historical operational data and periodically retrained
(fine-tuned) online so the controller remains scalable
and robust under high uncertainty and frequent load
fluctuations.

2.6. Economic and Environmental Impact Assessment
of BDA

A comprehensive evaluation was conducted to assess
the economic benefits and environmental improvements
enabled by BDA deployment. The integration of
BDA led to significant monthly cost savings and
substantial reductions in CO2 emissions, reinforcing
the system’s sustainability. These analyses highlight
not only the technical efficacy but also the economic
and environmental value of implementing big data
analytics in smart grid infrastructure. As shown in
Fig. 3, the proposed smart grid management framework
consists of sequential stages including data acquisition,
forecasting, real-time load balancing, fault detection,
grid optimization, and economic and environmental
assessment.

Fig. 3. Smartgrid management process

2.7. Data Privacy and Security Considerations

The integration of BDA into smart grid systems
raises concerns about data privacy and cybersecurity,
particularly with high-resolution data collected from
thousands of smart meters. To mitigate these risks,
several strategies can be adopted, such as homomorphic
encryption for privacy-preserving computation,
blockchain-based data authentication, and federate
learning for decentralized model training. These
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technologies ensure that individual-level consumption
patterns remain confidential while still enabling accurate
analytics and forecasting. Moreover, a multi-layered
security architecture involving encryption, intrusion
detection systems, and secure communication protocols
is essential to prevent unauthorized access and ensure
system integrity.

3. System Modeling and Formulation
This section introduces an advanced optimization

framework leveraging BDA, which integrates multiple
components including hybrid forecasting, grid load
regulation, fault detection, real-time reinforcement
learning-based control, and economic evaluation. The
proposed methodology is formulated as a multi-
objective optimization problem aimed at enhancing
the operational efficiency, long-term sustainability, and
resilience of smart grid systems.

3.1. Unified Objective Function
The primary objective is to minimize forecasting

errors, fault misclassification rates, grid power losses,
and operational costs, while simultaneously maximizing
prediction accuracy, voltage stability, and environmental
benefits. This objective is mathematically represented
through the following cost function:

min
θ

J =α1MAPE+α2RMSE+α3FPR+α4Ploss

+α5Cop −β1FDA−β2Lindex −β3∆CO2

(2)

In this formula, J is a multi-objective cost function
to be minimized, parameterized by the model weights
θ and the priority weights αi,βi; its subcomponents
include MAPE and RMSE (forecasting errors of
renewable power), FPR (false positive rate) and FDA
(fault detection accuracy) assessing fault-detection
performance, Ploss (grid power losses), Cop (total
operational cost), Lindex (voltage stability index), and
∆CO2 (CO2-emission reduction benefit).

3.2. Component Sub-Objectives and Metric
Formulations
3.2.1. Forecasting error metrics

MAPE =
100%

n

n

∑
t=1

∣∣∣∣At −Ft

At

∣∣∣∣
RMSE =

√
1
n

n

∑
t=1

(At −Ft)2

(3)

In this formulation, At denotes the true observed
value at time step t, Ft represents the corresponding
forecasted value produced by the model at the same
instant, and n is the total number of time steps
(observations) considered; together, these variables form
the basis for computing error metrics, such as MAPE and
RMSE, by quantifying the deviation |At −Ft | at each step
and averaging it over the full n-point time horizon.

3.2.2. Fault detection metrics

FDA=
T P+T N

T P+T N +FP+FN
, FPR=

FP
FP+T N

(4)

In this classification context, T P (True Positives)
refers to the count of actual positive instances correctly
identified by the model, T N (True Negatives) to the
count of actual negative instances correctly classified,
FP (False Positives) to negative instances incorrectly
labeled as positive, and FN (False Negatives) to positive
instances that the model fails to detect (misclassified as
negative). These four counts form the confusion matrix,
which underpins the calculation of key performance
metrics.

3.2.3. Grid power losses

Ploss =
n

∑
i=1

I2
i Ri (5)

which Ii represents the current flowing through line i and
Ri denotes the resistance of that line. The power loss due
to the Joule effect on each line is given by the product
of the squared current and the resistance, quantifying
the amount of electrical energy dissipated as heat during
transmission.

3.2.4. Voltage stability index

Li =

∣∣∣∣∣1− ∑
j∈N

Fi j
Vj

Vi
e j(δ j−δi)

∣∣∣∣∣, Lindex =
1
n

n

∑
i=1

Li (6)

In this power-flow formulation, Vi and Vj denote
the voltage magnitudes at nodes i and j, while δi
and δ j are their respective phase angles. Fi j is the
power distribution factor between those two nodes,
indicating the proportion of total transferred power
flowing along the branch connecting i and j. N
represents the set of neighboring nodes considered in
the network model. Together, these variables underpin
linearized or sensitivity-based methods for analyzing and
approximating power flows in electrical networks.

3.2.5. Operational cost and environmental benefit

Cop =Cbe f ore−Sop, ∆CO2 =CO2be f ore−CO2a f ter (7)

here, Cbe f ore and Ca f ter represent the monthly
operational costs before and after optimization, Sop
denotes the cost after BDA deployment, and CO2be f ore
and CO2a f ter indicate the monthly carbon emissions
before and after applying the optimization solution.
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3.3. Constraints

Optimization is subject to the following constraints:

Voltage and load balancing:

V min
i ≤Vi ≤V max

i , ∑Pgeneration =∑Pload +Ploss (8)

Model performance thresholds:

Accuracy ≥ 90%, FPR ≤ 5%,

Lead Time ≥ 3 hrs
(9)

Economic and environmental bounds:

Cop ≤Cbudget , ∆CO2 ≥ ∆target (10)

3.4. Optimization Approach

This multi-objective optimization problem can be
addressed using one or two approaches:

1) Weighted-sum approach, in which weighting
coefficients αi,βi are assigned to prioritize different
objectives (e.g., cost versus reliability), allowing
scalarization of the multi-objective problem into a
single-objective formulation.

2) Pareto front-based techniques, such as Genetic
Algorithms (GA), Particle Swarm Optimization
(PSO), or Reinforcement Learning (RL), which
explore trade-offs among conflicting objectives
without the need for objective normalization or
weighting.

Learning models such as LSTM+ICP, LSTM,
XGBoost, and Support Vector Machines (SVM) are
trained on high-frequency data from the power grid and
renewable energy sources (RES). The outputs from these
models are iteratively integrated into the optimization
process in real-time or near real-time settings, enabling
continuous adaptation and decision-making under
dynamic grid conditions.

In addition to standard optimization algorithms,
the proposed system architecture supports hybrid
solvers that combine the exploration capabilities of
metaheuristics (such as PSO) fine-tuning abilities of
reinforcement learning. The integration of BDA enables
real-time updates to the optimization parameters,
facilitating dynamic adaptation without the need to
restart training processes. This flexibility is especially
useful for practical deployment in rapidly changing grid
environments.

4. Results and Discussion

This section presents a comprehensive evaluation of
the proposed BDA framework for optimizing renewable
energy management in smart grid systems. The
experiments were designed to assess the performance of
the hybrid LSTM+ICP model, real-time load balancing,

fault detection, grid optimization, and the economic
and environmental impacts of BDA integration. The
results highlight the transformative potential of BDA in
addressing the operational challenges of modern smart
grids, particularly those incorporating high penetrations
of renewable energy sources (RES).

4.1. Experimental Setup

The experimental evaluation was conducted using
a dataset collected from two renewable energy sources
in Vietnam, as described above. These two sites
represent distinct climatic conditions and operational
characteristics, thereby ensuring that the proposed
methodology is validated under diverse environmental
and real-world operating scenarios, which in turn
enhances the generalizability of the research findings.

The dataset was collected with a temporal resolution
of 15 minutes and includes:

• Power generation data from photovoltaic systems and
wind turbines, reflecting power output, operational
efficiency, and key performance indicators.

• Smart metering data from the load side, providing
detailed insights into electricity consumption
patterns and load profiles.

• Grid operational data, including frequency, voltage,
and load measurements, obtained from Supervisory
Control and Data Acquisition (SCADA) systems.

• On-site meteorological data, including temperature,
solar irradiance, wind speed, humidity, and
atmospheric pressure.

The BDA framework was implemented using a
robust computational infrastructure, leveraging Apache
Spark for distributed data processing, Python (with
libraries such as Pandas, PySpark, and TensorFlow) for
model development, and the Hadoop Distributed File
System (HDFS) for scalable data storage. Analytical
tasks included renewable energy forecasting, real-time
load balancing, fault detection, and grid optimization,
all of which were executed on a cluster comprising
4 to 8 nodes to evaluate scalability. To ensure
real-time applicability, the system was benchmarked
for computational efficiency. The framework achieved
a horizontal scalability factor of 1.8× when scaling
from a 4-node to an 8-node Spark cluster, demonstrating
its ability to handle increased data volumes without
significant performance degradation. The end-to-end
latency for forecasting and control loops was consistently
below 0.5 seconds, making the system suitable
for near-real-time deployment in large-scale smart
grid environments. This low latency is critical for
applications requiring rapid decision-making, such as
dynamic load balancing and fault response.

The forecasting models evaluated included
traditional time-series methods (e.g., ARIMA), machine
learning models (e.g., Random Forest, XGBoost),
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and deep learning models (e.g., LSTM, LSTM+ICP).
Additionally, K-means clustering was used for load
segmentation, and Support Vector Machines (SVM)
were employed for fault classification. The hybrid
LSTM+ICP model was trained on historical data
spanning 12 months, with a 70-20-10 split for training,
validation, and testing, respectively. The forecasting
model is a stacked LSTM network with two hidden layers
consisting of 64 and 32 neurons, respectively, followed
by a fully connected output that produces all 96 future
steps (24-hour multi-step forecast) in a single forward
pass; dropout is applied between layers. Training used
the Adam optimizer with MSE loss and hyperparameter
tuning via grid search on training/validation splits. Saved
inference artifacts include model weights, min–max
scalers, calibration nonconformity scores for ICP,
and an inference pipeline (preprocessing → LSTM
forward → ICP interval generation). This setup enables
fast, efficient online inference that returns both point
forecasts and calibrated prediction intervals for each
forecast step.

4.2. Renewable Energy Forecasting Accuracy
Enhancement via BDA

Accurate forecasting plays a pivotal role in the
integration of renewable energy sources (RES) into the
power grid. In this study, we evaluated and compared
traditional time-series forecasting models, such as
ARIMA, with machine learning (ML) and deep learning
(DL) approaches, using key performance indicators
including mean absolute percentage error (MAPE), root
mean square error (RMSE), and computational time.

Table 1. Forecasting model performance for PV output
prediction

Model MAPE (%) RMSE (kW) Time (s)
ARIMA 12.34 42.6 1.2
Random
Forest

6.21 26.1 2.8

XGBoost 5.97 24.3 3.5
LSTM 3.42 19.8 6.4
LSTM+ICP 2.91 14.7 7.2

The LSTM+ICP model achieved the lowest MAPE
(2.91%) and RMSE (14.7 kW), outperforming other
models (Table 1) due to its ability to capture temporal
dependencies in time-series data and provide reliable
prediction intervals through ICP. The inclusion of
ICP addressed a key limitation of standalone LSTM
models by quantifying uncertainty, which is particularly
valuable for handling the volatility of renewable energy
sources like solar and wind. For example, in the coastal
region, where wind speeds fluctuate significantly, the
LSTM+ICP model maintained a MAPE below 3%,
compared to 6–12% for other models in Fig. 4.

The superior performance of LSTM+ICP can be
attributed to its ability to learn complex temporal
patterns and adapt to non-linear relationships in the

Fig. 4. Forecasting model performance for PV output
prediction

data. For instance, the model effectively captured diurnal
variations in solar irradiance and seasonal trends in wind
patterns, which improved the reliability of day-ahead
scheduling. These results underscore the value of
integrating deep learning with uncertainty quantification
for renewable energy forecasting.

4.3. Grid Load Balancing Using Real-Time BDA
Insights

We implemented real-time BDA to dynamically
manage grid load across smart substations. The
Spark-based streaming engine processes data from
12,000 smart meters and adjusted power distribution
every 15 minutes. The system’s effectiveness was
assessed based on peak load reduction and load variance
minimization.

The integration of BDA reduced average load
variance by 44.3%, smoothing load curves and
mitigating the risk of grid instability (Table 2).
Peak load was reduced by 24.2%, alleviating stress
on grid infrastructure during high-demand periods.
Notably, frequency deviations decreased by 52.9%,
ensuring compliance with the ENTSO-E tolerance
range (±50 mHz). These improvements were most
pronounced in the temperate region, where load patterns
exhibited moderate variability, allowing the system to
optimize power allocation efficiently. Fig. 5 compares
the grid load balancing performance before and after the
integration of big data analytics.

Table 2. Grid load balancing performance pre- and
post-BDA implementation.

Metric No BDA With BDA Imp. (%)
Avg Load Var
(kW)

150.3 83.7 44.3

Peak Load
(kW)

1,874.2 1,420.5 24.2

Freq Dev
(/day)

17 8 52.9

The results demonstrate that BDA-driven load
balancing not only enhances grid stability but also
improves resource utilization, reducing the need for
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Fig. 5. Grid load balancing performance pre- and
post-BDA

expensive reserve capacity. This capability is particularly
valuable in decentralized grids, where distributed energy
resources require coordinated management.

4.4. Fault Detection and Predictive Maintenance
Enabled by BDA

The application of BDA for predictive maintenance
can significantly reduce downtime and operational costs.
Fault detection models were trained using historical
SCADA logs in conjunction with real-time alerts. The
key performance indicators of these models include
detection accuracy, false positive rate (FPR), and lead
time prior to fault occurrence.

Table 3. Fault detection model evaluation

Model Acc (%) FPR (%) Time (h)
Log. Regression 84.2 9.3 2.1
SVM 89.5 7.1 3.4
XGBoost 92.6 5.3 4.2
LSTM 95.1 3.9 5.1
LSTM+ICP 97.2 3.3 6.3

The LSTM+ICP model achieved a detection
accuracy of 97.2%, a false positive rate of 3.3%, and
an average lead time of 6.3 hours, outperforming other
models (Table 3). This high accuracy is attributed to the
model’s ability to detect subtle anomalies in time-series
data, such as voltage sags or equipment degradation, by
leveraging temporal dependencies. The extended lead
time enabled proactive interventions, such as scheduling
maintenance before faults escalated into failures.

For example, in the coastal region, the model
identified early signs of transformer overheating with a
lead time of 7.1 hours, allowing technicians to address
the issue before it caused a blackout. Compared to prior
work [4], which reported fault detection accuracies of
85–90% with lead times of 1–3 hours, the proposed
approach significantly enhances predictive maintenance
capabilities.

Fig. 6. Fault detection accuracy trends over time

To evaluate the effectiveness of different fault
detection approaches, Fig. 6 compares the performance
of several models in terms of detection accuracy,
false positive rate, and response time. The low FPR
is particularly important, as it minimizes unnecessary
maintenance actions, reducing operational costs. The
integration of ICP further enhanced reliability by
providing confidence intervals for fault predictions,
enabling grid operators to prioritize high-risk events.

4.5. Real-Time Grid Optimization Through
BDA-Driven Control

By integrating reinforcement learning algorithms
with insights derived from big data analytics, we
optimized grid parameters in real time. The objective
was to minimize energy losses while maintaining voltage
stability and ensuring high power quality across all
substations.
Table 4. Grid optimization metrics before and after
BDA-based control

Parameter Pre-BDA Post-BDA Change (%)
Loss
(kWh/day)

1,275.6 843.2 -33.9

Volt
Stability

0.76 0.93 +22.4

React
Power

524.1 371.6 -29.1

The RL-based controller reduced total power losses
by 33.9%, primarily by optimizing power flow paths and
minimizing transmission inefficiencies (Table 4). The
voltage stability index improved by 22.4%, reflecting
enhanced grid reliability under varying load conditions.
Reactive power was reduced by 29.1%, improving power
quality and reducing stress on grid components.

The DQN algorithm’s success stemmed from its
ability to learn optimal control policies through
interaction with a simulated grid environment. The
reward function prioritized energy efficiency and
stability, penalizing deviations in voltage and power
losses. Experience replays and target networks ensured
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stable learning, even in the presence of high uncertainty.
Compared to traditional optimization methods, such as
linear programming, which typically achieve 10–20%
loss reductions [5], the RL-based approach offers
superior performance in dynamic environments.

4.6. Economic and Environmental Impact Assessment

We evaluated the impact of BDA integration on cost
reduction and CO2 emission savings. The results were
obtained through a 30-day simulation of grid operations
under two scenarios: with and without BDA integration.

Table 5. Economic and environmental impact of BDA
integration.

Metric No BDA With BDA Savings (%)
Cost
(C/mo)

148,600 112,450 24.3

CO2 (t/mo) 412.5 287.8 30.2
Penalty
(C/mo)

8,450 2,340 72.3

The economic benefits of BDA stem from improved
forecasting accuracy, reduced reserve requirements, and
optimized energy distribution (Table 5). The associated
reduction in CO2 emissions aligns with the European
Union’s 2030 sustainable energy targets. The distribution
of economic and environmental benefits achieved
through the integration of big data analytics is illustrated
in Fig. 7, highlighting the relative contributions of
operational cost savings, forecasting penalty reduction,
and carbon emission mitigation.

Fig. 7. Breakdown of savings categories with BDA

4.7. Summary of Key Findings

• The LSTM model achieved the highest forecasting
accuracy, with an MAPE of 2.91%.

• Real-time load balancing reduced grid load
fluctuations by 44.3%.

• Fault detection accuracy reached 97.2%, enabling
proactive interventions with a lead time exceeding
5 hours.

• Grid optimization reduced power losses by 33.9%
and improved voltage stability by 22.4%.

• Operational costs decreased by C36,150 per
month, accompanied by a 30.2% reduction in CO2
emissions.

5. Conclusion

This study demonstrates the transformative impact
of BDA on optimizing renewable energy management
in smart grids. By leveraging high-resolution data and
advanced machine learning algorithms, the research
addresses critical operational challenges such as accurate
forecasting, load balancing, fault detection, and grid
optimization. In the forecasting domain, the LSTM+ICP
model outperformed other approaches, achieving a
MAPE of 2.92% and a RMSE of 14.7 kW, thereby
enabling more precise renewable energy scheduling.
Real-time BDA-driven data transmission reduced load
fluctuations by 44.3%, peak load by 24.2%, and
improved frequency stability by 52.9%, collectively
enhancing overall grid stability. For predictive
maintenance, the LSTM+ICP model achieved a fault
detection accuracy of 97.2%, a false positive rate of
3.3%, and an average lead time of 6.3 hours, supporting
proactive fault management. Grid optimization using
reinforcement learning techniques led to a 33.9%
reduction in energy losses, a 22.4% improvement in
voltage stability, and a 29.1% decrease in reactive power.
From both economic and environmental perspectives,
the integration of BDA resulted in a monthly operational
cost reduction of C36,150, a 30.2% decrease in CO2
emissions, and a 72% reduction in forecasting penalties.
Overall, BDA plays a pivotal role in enhancing the
efficiency, stability, and sustainability of smart grid
systems. Future research may explore the integration
of distributed analytics, edge computing, and advanced
security measures to further strengthen data-driven grid
management.
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