
  
JST: Smart Systems and Devices 

 Volume 32, Issue 1, January 2022, 009-016 
 

9 

   

Auto-Tuning Parameters of the Offline Optimal Motion Cueing Algorithm 
with Mean-Variance Mapping Optimization 

 
Pham Duc An, Nguyen Duc Toan* 

School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam 
*Email: toan.nguyenduc@hust.edu.vn 

 

Abstract 

A motion cueing algorithm (MCA) not only maintains the simulator within its physical limits but also generates 
such movements of the driving simulator that the necessary motion cues of drivers on the realistic vehicle are 
equivalently reproduced. The offline optimal MCA focuses on finding the best combination of the translational 
acceleration and tilt angles of the motion platform to maintain drivers’ motion perception. However, the best 
combination depends on the MCA’s parameters, tuned mainly by trial and error with experts in the loop. 
Moreover, for different amplitude input signals, the parameters are accordingly modified. This manual tuning 
procedure is so time-consuming that the generic optimization, named Mean-Variance mapping optimization, 
was proposed to search the suitable parameters for the optimal algorithm. This tuning method uses the specific 
cost function of constraint conditions such as workspace limits, avoiding false cues, and improving motion 
fidelity to achieve the best parameters for optimal MCA with the particular input signals.  

Keywords: Motion cueing algorithm, Mean-Variance mapping optimization method, false cues. 

 
1. Introduction* 

The motion cueing algorithms aim to preserve the 
perceptual realism of the simulation by using tilt 
coordination to mimic sustained translational 
acceleration. The classical MCA is first developed by 
Conrad and Schmidt [1], then several MCAs have been 
developed with a different optimal technique [1-4]. 
The tuning of the MCA is complicated due to the 
intransparent parameters of the MCA. Most tuning 
techniques were introduced for the classical algorithm 
to solve the intransparent problem [5, 6]. Moreover, 
the numerous parameters of the MCAs and fitting 
characteristics of human motion perception are also 
complex tuning tasks. Hence, the overall goal of the 
tuning is to improve the perceived motion inside the 
simulator to resemble the feeling of driving a real car 
and avoid simulator sickness at the same time. 

Further, a driver or pilot-in-the-loop tuning as 
suggested by Grant and Reid [7] is very time-
consuming. Thus it has to be investigated whether 
other tuning methods, such as maneuver-specific 
tuning, can be satisfactory as well. However, the 
parameters of the MCAs have severe effects on the 
simulated motion that can lead to motion sickness if 
the motion and visual cues are not consistent. Thus, for 
particular motion simulation, tuning the best 
parameters of an MCA remains a challenging task [7]. 
Moreover, an open question remains whether well-
tuned classical algorithms are sufficient or whether 
complex new strategies have to be developed 
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In the literature, the first tuning is to find the 
appropriate parameters with which the MCAs generate 
the simulated quantities in the defined ranges. For a 
specific drive task, the tuning processes were fulfilled 
mostly by trial and error; thus, it is very time-
consuming and requires drivers' experience in the 
simulation field [8, 9]. The methods used fuzzy control 
theory to constrain angular velocity false cues and the 
position of the driving simulator in the motion 
platform’s workspace. 

After finding the suitable parameters, the 
objective and subjective assessments were 
implemented for extensive tuning the MCAs to 
achieve realistic simulation. The tuning process is also 
done by trial and error with experts in-the-loop, and 
the optimal parameters depend on the specification of 
driving simulators and simulation tasks, etc. For 
example, an MCA is objectively tuned for generating 
necessary motion cues and eliminating the false cues. 
In another approach, the participant can subjectively 
evaluate the level of realism of a driving simulation 
based on the scores, or the statements were given after 
taking the simulation task, then the parameters will be 
modified to bring a better experience to the drivers.  
Because of the lack of information of the human 
receptors, the tuning process including two stages is 
necessary.  For example, Reid and Nahon [3] firstly 
used the objective assessment for roughly tuning, then 
the subjective assessment for fine-tuning for the 
MCAs in the flight simulator.  
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Besides, the fidelity criteria for objective 
assessment of the simulated quantities were inferred 
from the subjective assessment. The criteria can save 
time-consuming for trial and error and be investigated 
in some research related to flight simulation [9, 10]. 
Therefore, the tuning of the parameters is an open issue 
because the parameters are not intuitive for 
inexperienced simulator users. The optimal tracking or 
the MPC strategy were applied to correspond 
explicitly to the motion system physical limits and 
motion detection thresholds. However, automated 
tuning would be desirable in order to ease the user to 
implement the time-consuming task. 

This work’s main objectives are 1) definition of 
the well-tuned index tuning procedure, 2) designation 
of automatic tuning procedures for any motion task 
and kinds of the motion platform, 3) application of the 
Auto-Tuning procedures for an offline optimal 
algorithm, and  4), implementation of the strategies for 
the offline optimal MCA for the various amplitude of 
input signals. 

In the next section, the offline optimal MCA is 
firsly introduced. Secondly, the Auto-Tuning method 
(AT) and its cost functions are explained in detail. 
Thirdly, an example that applied the AT method for 
offline optimal MCA with various amplitude of input 
signals is implemented. Lastly, the results are 
discussed in the conclusion section. 

2. Numerical Method Assessing the Well-Tuned 
Parameters for an MCA 

Table 1. Priority levels for tuning process 

Order Statement in the literature 
1st - False cues give large decrease of the 

motion fidelity [7] ; 
- Distortions in the reproduction of motion 
cues may even have more adverse effect 
than not having motion cues [13,14]; 
- Opposite motion cues, and false lateral 
specific force due to the cockpit rotation 
make motion fidelity even lower than in the 
case of fixed-base simulation [15]. 

2nd Phase lag due to the low–pass filter gives 
the significant reduce of motion 
fidelity [7]; 
-Missing cues is the serious case of scale 
errors [7]. 

3rd Down-scaling the specific force is 
suggested to be the most desirable [16]. 

4th The well-tuned parameter for classical 
algorithm could give the similar perception 
as lane position algorithm, which uses the 
tilt-coordination when 
there is no better choice [17] 

In the literature (Table. 1), an MCA parameters 
are tuned to generate the suitable motions inside the 
restricted workspace of a driving simulator and have 
no false cues as well as provide as much as benefit 
motion cues.  

Based on the statements in the literature, the 
significant effect of the errors of motion cues and 
usage of the workspace are clear seen. In order to 
satisfy all the tuning criteria for a MCA, in some 
simulation case, is impossible. Therefore, the priority 
order, that classifies the significance into 4 levels, is 
given such as:  

(1st) The false cues → (2nd) missing cues, phase 
lag → (3rd) scale errors → (4th) using more 
translational movement The order is based on the 
statements in the literature, that emphasized the 
significant effect of the false cues, missing cues on the 
motion fidelity. Moreover, the quite clear effect of the 
scale factor and using more translational motion for 
reproducing linear acceleration are considered. 

 

 

Fig. 1. Scale error of the simulated acceleration 

The scale error (Fig. 1) describing the strong 
motion reproduced in the driving simulator is defined 

as 𝑒𝑒𝑠𝑠𝑠𝑠 = ∫𝑎𝑎𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑

∫𝑎𝑎𝑉𝑉𝑆𝑆𝑑𝑑𝑑𝑑
, where Sya dash black line represents 

simulated acceleration and Vya solid blue. line 
represents target acceleration.  

In this works, a proposed method classifies the 
level of well-tuned parameters according to the criteria 
prioritized 𝐺𝐺𝑖𝑖 with 𝑖𝑖 = {1. . .4} (1st: being 
implementable inside the workspace; 2nd: having no 
false cues, 3rd: generating suitable scale simulated 
signal (related to the small scale error, 𝑒𝑒𝑠𝑠𝑠𝑠  Fig. 1); and 
4th: generating more translation motion the rotational 
motion). The well-tuned index is computed as 

WI = 23𝐺𝐺1 + 22𝐺𝐺2 + 21𝐺𝐺3 + 20𝐺𝐺4. (1) 

where  

𝐺𝐺1 = 1: means no violation and a proper condition for 
tilt-coordination 
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𝐺𝐺2 = 1: means no false cues due to either specific 
force distortion or extra rotational cues  

𝐺𝐺3 = 1: means to avoid too weak motion cues 

𝐺𝐺4 = 1: means to using as much translational 
movement as possible to simulate lateral acceleration 

The priority is described as levels of a binary 
number in which the high level is obtained if all criteria 
are satisfied. The worst level is for the occurring false 
cues, and the violation situation occurs if the first 
criterion is not satisfied. The criteria 𝐺𝐺𝑖𝑖 can be applied 
to distinguish three levels: High (WI = 14-15), 
Medium (WI = 12-13), Low (WI=7-10). If WI <8 there 
is limit violation.  

The formulations for checking the criteria are 
showed in the Table 2. 

Table 2. The criteria formulation 

Criteria Formulations 
𝐺𝐺1 = 1 𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚  ; 𝛼𝛼𝑆𝑆 ≤ 300;  

𝐺𝐺2 = 1 𝜔𝜔𝑆𝑆𝑚𝑚 ≤ 𝜔𝜔𝑑𝑑ℎ; �̇�𝜔𝑆𝑆𝑚𝑚 ≤ �̇�𝜔𝑑𝑑ℎ ; ℎ. �̇�𝜔𝑑𝑑ℎ ≤ 𝑘𝑘𝑓𝑓𝑓𝑓  ; 
𝑒𝑒𝑓𝑓,𝑠𝑠ℎ
∗

𝛿𝛿0
≤ 𝑘𝑘𝑒𝑒 

𝐺𝐺3 = 1 𝑘𝑘𝑆𝑆 ∈ [𝑘𝑘𝑆𝑆,𝑚𝑚𝑖𝑖𝑚𝑚 , 𝑘𝑘𝑆𝑆,𝑚𝑚𝑎𝑎𝑚𝑚] 
𝐺𝐺4 = 1 ∫ 𝑎𝑎𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑

∫ 𝑎𝑎𝑉𝑉𝑆𝑆𝑑𝑑𝑑𝑑
≥ 𝑘𝑘𝑎𝑎,𝑚𝑚𝑖𝑖𝑚𝑚 

 
where: 
𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚  are the simulated position and the 
limitation of the workspace, respectively 
𝛼𝛼𝑆𝑆 is the tilt angles due to the tilt coordination 
technique.  
𝜔𝜔𝑆𝑆𝑚𝑚  𝑎𝑎𝑎𝑎𝑑𝑑 �̇�𝜔𝑆𝑆𝑚𝑚 are the simulated angular velocity and 
acceleration 
𝜔𝜔𝑑𝑑ℎ 𝑎𝑎𝑎𝑎𝑑𝑑 �̇�𝜔𝑑𝑑ℎ are the thresholds values of angular 
velocity and acceleration. 
𝑒𝑒𝑓𝑓,𝑠𝑠ℎ
∗  is the maximum of shape errors (Fig. 2) of 

simulated specific force regarding to target one. 
𝑘𝑘𝑓𝑓,𝑓𝑓 is the maximum value of specific force (𝑓𝑓 = 𝑎𝑎 −
𝑔𝑔, 𝑎𝑎 is the acceleration and 𝑔𝑔is the garvity 
acceleration) causing by tilt angular acceleration 
𝑘𝑘𝑒𝑒 is the maximum ratio of shape error to the threshold 
of otolith system 
ℎ is the distance between the center of rotation with the 
drivers head. 
𝑘𝑘𝑎𝑎,𝑚𝑚𝑖𝑖𝑚𝑚 is the minimum ratio of simulated translational 
acceleration to the target one. 
𝑘𝑘𝑆𝑆 is the global scale factor of simulated specific force. 
𝑎𝑎𝑆𝑆𝑆𝑆 , 𝑎𝑎𝑉𝑉𝑆𝑆: are the simulated and target acceleration, 
respectively. 

The shape error is defined as 𝑒𝑒𝑠𝑠ℎ = 𝑘𝑘𝑎𝑎𝑉𝑉𝑆𝑆 − 𝑎𝑎𝑆𝑆𝑆𝑆 , 
with k scaled down factor regarding target signal. The 
larger factor could lead to more false cues during 
simulation. 

 

 
Fig. 2.  Shape error of the simulated acceleration 

 
Table 3. Boundary values of the criteria [10] 

0δ  thω  thω  𝑘𝑘𝑆𝑆,𝑚𝑚𝑖𝑖𝑚𝑚 

0.17(𝑑𝑑𝑒𝑒𝑔𝑔/ 𝑠𝑠2) 6(𝑑𝑑𝑒𝑒𝑔𝑔/ 𝑠𝑠) 11(𝑑𝑑𝑒𝑒𝑔𝑔/ 𝑠𝑠2) 0.36 
𝑘𝑘𝑆𝑆,𝑚𝑚𝑎𝑎𝑚𝑚  𝑘𝑘𝑎𝑎,𝑚𝑚𝑖𝑖𝑚𝑚  𝑘𝑘𝑓𝑓𝑓𝑓 𝑘𝑘𝑒𝑒 

1 0.50 0.1(𝑚𝑚/𝑠𝑠2) 1 
 

The boundary values for the criteria can be 
reviewed from the related experiments in the literature 
or from the specific investigation for a specific 
manuever task. In the paper, all the boundary values 
showed in Table. 3 are gathered from the publications 
that are in detail listed in the Pham (2017) [10]. Note 
that, the criteria are particularly developed for the 
Rollercoaster simulation running along planar S-curve 
with only lateral acceleration, but the criteria could be 
applied for other situations with the change of suitable 
parameters. 

3. Offline Optimal Motion Cueing Algorithm 

The algorithm (Fig. 3), first introduced by Zywiol 
and Romano [4], solves the problem as an optimal 
tracking problem, whose cost function in (1) that aims 
to find the appropriate time history for the control input 
vector 𝐮𝐮 = [𝑢𝑢1,𝑢𝑢2]𝑓𝑓  to make the output signal  
𝐲𝐲 = [𝑦𝑦1,𝑦𝑦2]𝑓𝑓track the reference output vector, which 
is 𝐲𝐲𝐫𝐫 = [𝑓𝑓𝑟𝑟 , 0]𝑓𝑓.  

The output motion includes translational 
acceleration 𝑎𝑎𝑆𝑆 and tilt angle 𝜑𝜑𝑆𝑆 that are used to 
compute the simulated translational acceleration 𝑎𝑎𝑆𝑆 
and tilt angle 𝜑𝜑𝑆𝑆that are used to compute the simulated 
specific force 𝑓𝑓𝑆𝑆 perceived by human’s vestibular 
system. 

 
Fig. 3. Diagram of offline optimal MCA 
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𝐉𝐉 = ∫ [(𝐲𝐲 − 𝐲𝐲𝐫𝐫)𝑓𝑓𝐐𝐐(𝐲𝐲 − 𝐲𝐲r) + 𝐮𝐮𝑓𝑓𝐑𝐑𝐮𝐮]𝑑𝑑𝑓𝑓
𝑑𝑑0

𝑑𝑑𝑑𝑑. (2) 

where 1 2}{q ,qr diag=Q and 1 2}{r , rdiag=R  are the 
weighting matrices. Moreover, the two first-order 
filters PT1 are added in both channels (Fig. 3) to 
smoothen the simulated signals. Therefore, the 
algorithm has six parameters 2 1 21 , r , r , c, }{q ,q γ  that 
must be tuned appropriately for generating suitable 
motion. 

4. The Auto-Tuning Method with Mean Variant 
Mapping Optimization 

Mean-Variance mapping optimization (MVMO), 
a population-based stochastic optimization technique 
developed by Erlich et al., mixes the good 
performance of a specific number of best individuals 
to achieve an expected better generation for the 
following optimizing stages [12]. This method uses its 
unique transformation strategy for mutated genes of 
the offsprings based on the Mean-Variance of the n-
best population by employing the concepts of 
selection, mutation, and crossover from evolutionary 
computation algorithms. 

 

Table 4. Functions of cost functions for the auto-tuning procedure 

Penalty function Formulation 
Position  

𝐽𝐽𝑃𝑃 = �
0 No violation

�(𝑒𝑒(𝑀𝑀𝑖𝑖𝑚𝑚(𝑃𝑃)−𝐿𝐿)2 − 1) + (𝑒𝑒(𝑀𝑀𝑎𝑎𝑚𝑚(𝑃𝑃)−𝑈𝑈)2 − 1) Violation  

  𝑀𝑀𝑖𝑖𝑎𝑎(𝑃𝑃),𝑀𝑀𝑎𝑎𝑀𝑀(𝑃𝑃) represents the minimum / maximum position of the motion platform,  
and L / U represents the lower / upper physical limit of the motion platform. 

Shape error  
𝐽𝐽𝑒𝑒𝑠𝑠ℎ = �

0 if 𝑚𝑚𝑎𝑎𝑀𝑀�𝑒𝑒𝑓𝑓𝑠𝑠ℎ� < 𝛿𝛿𝑂𝑂
𝑒𝑒(𝑚𝑚𝑎𝑎𝑚𝑚�𝑒𝑒𝑓𝑓𝑠𝑠ℎ�−𝛿𝛿𝑂𝑂)2−1 if 𝑚𝑚𝑎𝑎𝑀𝑀�𝑒𝑒𝑓𝑓𝑠𝑠ℎ� ≥ 𝛿𝛿𝑂𝑂

 

 𝛿𝛿𝑂𝑂 is the otolith threshold value.  

Angular velocity  
𝐽𝐽𝜔𝜔 = �

0 if |𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚| < 𝛿𝛿𝑆𝑆
𝑒𝑒(𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚−𝜔𝜔𝑆𝑆)

2−1 if |𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚| ≥ 𝛿𝛿𝑆𝑆
 

|𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚| is the maximum of the absolute simulated angular velocity, and 𝛿𝛿𝑆𝑆 is threshold value of 
the angular velocity perceived by the sesemicircular organ. 

Angular acceleration 
𝐽𝐽�̇�𝜔 = 𝐽𝐽𝜔𝜔 = �

0 if |�̇�𝜔𝑚𝑚𝑎𝑎𝑚𝑚| < �̇�𝜔𝑆𝑆
𝑒𝑒(�̇�𝜔𝑚𝑚𝑚𝑚𝑚𝑚−�̇�𝜔𝑆𝑆)

2−1 if |�̇�𝜔𝑚𝑚𝑎𝑎𝑚𝑚| ≥ �̇�𝜔𝑆𝑆
 

�̇�𝜔𝑚𝑚𝑎𝑎𝑚𝑚  is the maximum of the absolute simulated angular acceleration, and �̇�𝜔𝑆𝑆 is threshold value 
of the angular acceleration perceived by the semicircular organ. 

Scale error max 2

min 2

min 2

( ) min max

( ) min

( ) min

( 1) if ,

1 if 

1 if 

S S

S S

S S

k k
Jsc S S S

k k
sc S S

k k
S S

k e k k k

J e k k

e k k

−

−

−

  − ∈  
= − <


− >

 

 �𝑘𝑘𝑆𝑆𝑚𝑚𝑖𝑖n, 𝑘𝑘𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚  � represents the range of the desired scale factors. The factor 𝑘𝑘𝐽𝐽𝑠𝑠𝑠𝑠  reduces the 
values of 𝐽𝐽𝑠𝑠𝑠𝑠 when is in the allowed range compared to those when 𝑘𝑘𝑆𝑆 is outside. 

Translational motion 
𝐽𝐽𝑑𝑑𝑟𝑟 = �

0 if 𝑘𝑘𝑎𝑎 ≤ 𝑘𝑘𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚

𝑒𝑒(𝑘𝑘𝑚𝑚−𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 if 𝑘𝑘𝑎𝑎 > 𝑘𝑘𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚 

𝑘𝑘𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚denotes the minimum desired ratio of translational movement to reproduce the 
translational specific force. 

Washout  
𝐽𝐽𝑊𝑊𝑊𝑊 = �

0 if 𝜑𝜑𝑆𝑆(𝑑𝑑𝑓𝑓) = 0
𝑒𝑒(𝑔𝑔𝜑𝜑𝑆𝑆(𝑑𝑑𝑓𝑓))2−1 if 𝜑𝜑𝑆𝑆(𝑑𝑑𝑓𝑓) ≠ 0

 

𝜑𝜑𝑆𝑆�𝑑𝑑𝑓𝑓� denotes the final tilt angle and 𝑔𝑔 is the gravity acceleration. 
 

Note 𝑘𝑘𝑆𝑆 : The ratio of simulated signal to target signal. 
𝑘𝑘𝑎𝑎:  The ratio of translational motion to target motion 
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 The parameters of the offline optimal algorithm 
are tuned to achieve the high well-tuned index MF. 
Thus, the cost function of the Auto-Tuning process 
with the MVMO method represents the combination of 
the penalty functions 𝐽𝐽( ) (see Table 4. for a full 
explanation) defined as: 

𝐹𝐹𝑀𝑀𝑉𝑉𝑀𝑀𝑂𝑂 = ∑ 𝑤𝑤𝑘𝑘𝐽𝐽𝑘𝑘𝑖𝑖∈{𝑃𝑃,𝑒𝑒𝑠𝑠ℎ,𝜔𝜔,�̇�𝜔,𝑠𝑠𝑠𝑠,𝑑𝑑𝑟𝑟,𝑊𝑊𝑊𝑊} .  (3) 
The selected cost function 𝐽𝐽( ) is to solve all the 

tuning problems (Fig. 4) related to 1) limited 
workspace; 2) constraining scale factor; 3) type of 
false cues; 4) defined good levels; 5) amount of motion 
errors. The cost function, which combines the 
advantage of the numerical index [11] (Fig. 4a) and the 
well-tuned index [12] (Fig. 4b), is aimed to pull the 
simulated signals under threshold values of motion 
perception, such as acceleration and angular velocity. 
As presented in Fig. 4a, the numerical index criterion 
𝜆𝜆𝑚𝑚,𝑚𝑚, where 𝑚𝑚 = {1𝑓𝑓, 1𝜔𝜔} and 𝑎𝑎 = {𝑠𝑠ℎ, 𝑠𝑠𝑠𝑠} represent 
the numerical indices related to specific force error (f) 
and angular velocity errors (𝜔𝜔). Therefore, it is hard to 
find suitable parameters even if the numerical indices 
have small total values and components.  On the other 
hand, Fig. 4b presents well-tuned index proposed by 
Duc-An with 4 levels of MF including good, medium, 
low, existing violation case [10]. The well-tuned 
indices provide the sign of appearing the false cues 
type, limiting condition and  defined good levels by 
using the working and good perception boundary. 

The penalty function, for example the angular 
velocity penalty function demostrated in Fig. 4c,  
considers only the amount of motion error of the 

simulated quantities regarding to target one, other 
problems: limit workspace, type of false cues, 
constraining scale factor. The penalty functions use  
the exponential function to  pull the maximum angular 
velocity under its threshold values. The technique are 
applied to other quantites  such as: scale factor, limit 
boundary, and for washout   technique.  Therefore, the 
Auto-Tuning process  with the penalty function can 
find the suitable parameters that reduce all false cues, 
and avoid violation with physical limits and exploit the 
linear motion of the motion platform 

5. Applying Auto-Tuning Method for the Optimal 
Tracking Algorithm  

This section describes the application of the 
Auto-Tuning methods to find the suitable parameters 
for ZyRo algorithm to generate the maximum global 
scale factor [10]. A test case for Auto-Tuning 
parameters is a lateral acceleration, 𝑎𝑎, of a ride with 
constant velocity v = 3.6 (m/s) of a virtual roller 
coaster along the planar S-curve rail (Fig. 5) 

The result of the test case in reference [10] 
proved the feasibility of the Auto-Tuning method. 
Concretely, as listed in Table. 5, the maximum global 
scale factor is 𝑘𝑘𝑆𝑆∗ = 0.92. Considering the false cues, 
all angular velocities and accelerations (𝜔𝜔𝑆𝑆 and �̇�𝜔𝑆𝑆) are 
under their threshold values (Fig. 5) due to the penalty 
function 𝐽𝐽𝜔𝜔 and 𝐽𝐽�̇�𝜔. Note that the penalty function 𝐽𝐽𝜔𝜔 
constraints the angular velocity to reach its threshold. 
This property is hard to obtain if the parameters of the 
ZyRo algorithm are manually tuned.  

 

 
Fig. 4.  Principle of Auto-Tuning method a) numerical indices,  b) Well-tuned indices, c) Penalty functions
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Moreover, the simulated specific forces 𝑓𝑓𝑆𝑆𝑆𝑆tracks 
well the target 𝑓𝑓𝑉𝑉𝑆𝑆with small shape errors 𝑒𝑒𝑠𝑠ℎ = 0.018 
that is much smaller than the otolith threshold 𝛿𝛿𝑂𝑂.   
Fig. 6 shows two elements of the simulated specific 
force which are tilted acceleration 𝑎𝑎𝑓𝑓𝑆𝑆 and linear 
acceleration 𝑎𝑎𝑆𝑆𝑆𝑆. Thanks to the washout penalty 
function 𝐽𝐽𝑊𝑊𝑊𝑊, the simulated angle Sϕ which is pulled to 
zero at the end of the simulation cause the 𝑎𝑎𝑓𝑓𝑆𝑆come to 
zero at the moment. By using Auto-Tuning 
parameters, the algorithm generates more tilt angles to 
compensate for the large acceleration. 

 

Table 5. Optimal values of the parameters ([10]) 

𝒒𝒒𝟏𝟏 𝒒𝒒𝟐𝟐 𝒓𝒓𝟏𝟏 𝒓𝒓𝟐𝟐 
[0.001,0.1] [1,100] [1,300] [0.001,10] 

0.0553 93.1597 57.0096 7.4812 
𝒄𝒄 𝜸𝜸 𝒌𝒌𝑺𝑺∗  𝑾𝑾𝑾𝑾 

[0.001,1] [0.01, 1] [0.4,1] - 
0.8169 0.0229 0.92 14 

 

 
Fig. 5. S-curve trajectory of the test case with constant 
velocity 3.6 m/s (based on [10]) 

 

 
Fig. 6. Simulated angular velocity and angular 
acceleration (based on [10]) 

 

 

 
Fig. 7. Simulated specific forces and accelerations 
(based on [10]) 

 

The tilt angle is even generated early to prepare 
workspace for large linear acceleration 𝑎𝑎𝑆𝑆𝑆𝑆. 

6. Auto-Tuning Parameters of Offline Optimal 
MCA for the Various Amplitude of Input Signals 

Based on the good result of the test case in 
reference [10], a test case for Auto-Tuning parameters 
for a lateral acceleration of a ride with constant 
velocity v = 3.6 (m/s) of a virtual roller coaster along 
the planar S-curve rail, the Auto-Tuning procedures 
are used to the tuned parameter of the optimal MCAs 
with various input signals that have successively 
increased amplitudes of {v, 1.3v, 1.5v, 2.0v} the 
amplitude of the lateral acceleration. 

Moreover, each ride's threshold values were 
selected according to the general psychophysical 
Weber’s law of Just Noticeable Differences: the 
difference is a constant proportion of the original 
stimulus value ∆I/I = constant, with I represents the 
initial stimuli intensity, ∆I represents the differential 
threshold)19. The selected thresholds for different 
amplitudes of input signals {v, 1.3v, 1.5v, 2.0v} are 
{0.1, 0.17, 0.225, 0.4} (rad/s) respectively. The tuned 
weighting values are shown in Table 6, and the 
responses of the optimal MCA are shown in Fig. 5. It 
could see that the Auto-Tuning procedures can find the 
best weighting values for small velocity case. The 
simulated specific force closely tracks the target 
specific force, while the angular velocity is under 
threshold values.  If the amplitude of velocity 
gradually increases with 130% - 200%, the higher 
amplitude of target specific force is achieved. The 
optimal MCA still has high well-tuned index MF=14 
with the case of 1.3 v; however, the well-tuned index 
for the case of 1.5 v is reduced to medium level, 
especially for case 2.0 v, the MF is to low level because 
the simulated angular velocity is over its threshold 
level.  Note that, at the end of the simulating period, 
the specific force and angular velocity are pulled to 
zero due to the effect of the washout penalty function 
𝐽𝐽𝑊𝑊𝑊𝑊. The washout effect is not considered in the 
algorithm, but it can be fulfilled with the cost function 
of the auto-tuing process. 
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Table 6. Tuned weighting values for optimal MCA for 
each amplitude of input signals. 

Velocity c γ q1 q2 r1 r2 

v 0.5821 0.1879 6.7386 100 198.5741 1 

1.3 v 0.9078 0.0555 5.0235 69.4231 244.6879 104.3443 

1.5 v 0.8422 0.0838 2.6850 87.2158 57.0902 164.5792 

2.0 v 0.5460 0.0277 9.3471 73.5014 37.3821 220.8595 

 

 
Fig. 8.  Responses of optimal MCAs for different 
amplitude of input signals with auto-tuned parameters 
a) lateral specific forces, b) tilt rate – roll angular 
velocity 

7. Conclusion 

In summary, tuning parameters for optimal MCA 
for the different amplitude of input signals focus on 
reducing false cues and reproducing scaled specific 
force. This paper introduces a novel Auto-Tuning 
method that combines numerical index and well-tuned 
index for systematically tuning weighting values of the 
optimal MCA. Applying the Auto-Tuning procedure 
has several advantages compared to manual tuning 
methods. Firstly, the approach is flexible and saves 
time-consuming for tuning suitable parameters for 
optimal MCA to remove the false cues, especially for 
the large amplitude of input signals. A designer can 
easily adjust the weighting parameters for tuning 
purposes and transparently evaluate the maximum 
amplitude of input signals for a particular driving 
simulator. Secondly, the tuning method considers two 
main quantities: the position, angular velocity, and 
various physical quantities related to the human 
perception. Finally, in the future, the Auto-Tuning 
process can be applied to find the parameters for online 
MCAs with different drive-tracks in offline mode.  
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