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Abstract 

Technologies for detecting traffic objects are an essential requirement for any applications in autonomous 
intelligent vehicles. In this work, models for detecting traffic objects were developed. Based on the existing 
datasets and the pre-trained models, fine-tuning techniques were applied to achieve trained models with 
higher accuracies even for the very challenging test data. The traffic object detection was developed based 
on the pre-trained YOLOv5s model. Two approaches were introduced for the traffic sign detection task. The 
so-called tiling technique incorporated with the YOLOv5s model was exploited in the first approach. In the 
second approach, a combination of the RetinaFace model for the localization and the MobileNetV1-SSD for 
the classification was employed. The experimental results show that all developed models release a very high 
rate of accuracy with a maximum AP50 of 75.9% for object detection and mAP50 of 64.2% for sign detection. 
Models developed via the second approach have twofold advantages in terms of accuracy and computational 
efficiency, which allows to deploy practical applications. 
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1. Introduction1 

In recent years, autonomous intelligent vehicles 
have attracted considerable interests due to their high 
potential for practical applications. To work 
effectively on real-world roads, the vehicles need a fast 
and accurate image processing system to gain 
perception of the environment. The last few years have 
witnessed a huge growth in image processing by taking 
advantage of deep neural networks. Therefore, there 
have been many studies focusing on exploiting deep 
neural networks in autonomous intelligent vehicles. 

According to SAE [1], there are six different 
levels of an autonomous vehicle system as shown in 
Fig. 1. Nowadays, a majority of the vehicles using 
among the community are at level 0, which requires 
the full control of humans. At level 1, several specific 
systems, for example, cruise control, or automatic 
braking, could be separately controlled by the driving 
assistant system. The autonomous vehicles at level 2 
offer at least two simultaneous automatic functions 
such as steering and acceleration/deceleration, with the 
expectation that the human drivers do all remaining 
driving tasks. In these lowest autonomous driving 
levels, drivers have to monitor the driving situations 
continuously to perform interventions. In contrast, 
from level 3 on, the autonomous driving system takes 
over the control of the vehicle in certain conditions, but 
drivers must intervene in the control system if it is not 
able to handle complex traffic situations. At level 4, a 
fully automated system provides all required 
operations of driving behaviors for vehicles. While no 
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human interventions are required, the driver is able to 
take over the control and drive the vehicle manually. 
At the highest level, vehicles are fully capable of 
autonomy in all situations. The vehicles do not need 
any human interaction anymore and could work 
independently. 

Two essential tasks of an image processing 
system in an autonomous intelligent vehicle are the 
traffic object detection and the traffic sign detection. 
Several studies have been conducted on the traffic 
object detection  [2-4].  Investigations on the traffic 
sign detection are also focused [5]. Common 
characteristics of these works are the combination of 
traditional computer vision techniques with advanced 
deep neural networks for the image processing. Many 
optimizations have been introduced in order to 
improve the accuracy, the computational efficiency as 
well as the robustness again dynamic changing 
environments. Optimizations can be: i) the use of the 
multi-sensor fusion to obtain multispectral images, 
which allows to robustly detect various types of 
objects such as cars, people, and bicycles in various 
conditions such as daytime and nighttime [2]; ii) the 
exploitation of lightweight deep neural networks to 
achieve computational efficiencies for real-time 
applications [3]; iii) the re-design of the network 
architecture to accurately detect objects under complex 
scenarios including diversified object and background 
appearance, motion blur, adverse weather conditions, 
and complex interactions among objects [4].
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Fig. 1. Autonomous driving system levels 

 
It is visible that three important characteristics of 

the traffic object/sign detection are the high accuracy, 
the robustness again challenging environments, and 
the fast response time under the condition of the 
limited-resource hardware.  These characteristics are 
really challenging to obtain, especially for the bad 
traffic infrastructure/condition as it is in Vietnam. 
Therefore, the development of traffic object/sign 
detection models under such kind of condition is 
essentially needed. 

In this work, deep learning models for the two 
crucial tasks of an image processing system in 
autonomous vehicles, including traffic object detection 
and traffic sign detection are proposed. In the case of 
traffic object detection, the transfer learning technique 
was applied to re-train a state-of-the-art pre-trained 
real-time object detection model with a dataset of 
traffic objects, namely the Cityscapes [6]. To deal with 
the traffic sign detection problem, two different 
approaches were developed. In the first approach, the 
fine-tuning technique on a pre-trained deep neural 
network, namely YOLOv5s [7], was combined with 
the tiling technique [8]. Two pre-trained models were 
fine-tuned and incorporated in the second approach, 
where one model, namely RetinaFace [9], is used to 
localize the signs and the other, namely MobileNetV1-
SSD [10], is applied for the classification. The 
developed models were fine-tuned and evaluated 
based on a very challenging dataset, namely Zalo [11], 
which consists of images having very tiny traffic signs 
inside. In addition, the models for the two traffic sign 

detection approaches were deployed into limited-
resource embedded hardwares, with the method 
similar to the processing block in [12]. The 
performance of the embedded hardware when running 
the models of the two approaches was measured in 
order to verify whether they are feasible for real-time 
applications in autonomous intelligent vehicles. 

2. Methods 

2.1. Fine-Tuning Deep Learning Models 

In this work, the transfer learning approach was 
chosen since the datasets for each problem have only 
thousands of high-quality labeled images. Fig. 2 
illustrates the process of our approach for transfer 
learning object detection models. As the first step, an 
open dataset is selected for each specific problem. In 
this step, a few pre-processing techniques are 
employed to convert the dataset into a suitable format 
for an object detection network. The dataset is then 
divided into subsets such as the training, the validation 
and the test. In the second step, a pre-trained object 
detection model is chosen depending on the 
advantages and disadvantages of the network and the 
requirements of the problem. The pre-trained model is 
trained with the prepared dataset in the third step. After 
finishing the training, the model is evaluated on the test 
set of the dataset. If the precision of the model on the 
test set is not good enough, the trained model must be 
improved by selecting another network or changing 
the structure of the network. 

 

 
Fig. 2. Workflow of transfer learning 
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2.1.1. Traffic object detection 

For the data preparation, the so-called Cityscapes 
dataset was chosen because it is one of the most 
diverse 2D traffic object detection datasets, compared 
to other published open datasets such as the KITTI 
dataset, and the Apollo Scapes dataset. The Cityscapes 
dataset consists of a huge number of video sequences 
of the daily life traffic activities in fifty different cities 
in Germany. The videos were recorded at all seasons 
of the years as well as under different weather 
conditions. Additionally, objects in the dataset also 
have a variety of shapes and sizes. Five thousand 
images of the dataset were manually selected from 
twenty-seven cities that have high-quality instance-
level semantic annotations. For the training purpose, 
these images were divided into 3 sets: the training set 
(2975 images), the validation set (500 images), and the 
test set (1525 images). Since the annotation format of 
the Cityscapes dataset is a polygon, it was converted to 
the format suitable for training the YOLO network. 

Table 1. Transfer learning configurations of  
YOLOv5s models in two applications 

Parameters Traffic object 
detection 

Traffic sign 
detection 

Model YOLOv5s YOLOv5s 

No. of images 2975 4000 

Image size 1024x1024 640x640 

Batch size 30 160 

Epochs 50 50 

Learning rate 0.001 0.005 

No. of classes 7 7 

 
YOLOv5s, the latest version of the YOLO series, 

was chosen for the traffic object detection task because 
it is a state-of-the-art real-time 2D object detection 
model. According to [7], YOLOv5s outperforms the 
fastest and most accurate real-time object detection 
models in both speed and accuracy. The model could 
reach the mean average precision of 54.4% on MS 
COCO dataset [13]. A transfer learning process on a 
pre-trained YOLOv5s model with the Cityscapes 
dataset was implemented. Seven classes of the 
interested traffic objects of the Cityscapes dataset were 
chosen for detection, including the car, the bicycle, the 
person, the rider, the traffic signs, the pole, and the 
traffic light. The configuration parameters for the 
transfer learning task are set according to the values of 
Table 1. 

2.1.2. Traffic sign detection 

For the traffic sign detection task, the so-called 
Zalo AI Challenge dataset was chosen. This dataset is 
very challenging but very suitable for traffic sign 
detection applications in the traffic condition of 
Vietnam. The dataset consists of 4500 images with 
sizes of 1622x626, which were crawled from Google 
Street View Map in various places in Vietnam. The 
task of the problem is detecting seven common types 
of traffic signs, including no entry, no parking/waiting, 
no turning, max speed, other prohibition signs, 
warning, and mandatory. The dataset is very 
challenging since the majority of interested objects are 
extremely small (<10x10). Furthermore, it has a wide 
range of scenes from urban areas to rural areas, from 
exceedingly crowded streets to secluded highways. 
The dataset was split into two subsets including the 
training set (4000 images), and the test set (500 
images). The dataset was annotated in COCO format, 
so its annotation was converted into YOLO format. 

It can be known that although the size of images 
of the Zalo dataset is large, traffic signs are very small 
in comparison to the whole image because the signs 
are very far from the camera. Furthermore, as an input 
for the training of the model, the images must be 
resized to match the dimensions of the network. This 
leads to the fact that the traffic signs will be very small, 
which extremely difficult to detect with a good enough 
accuracy. An efficient model, which can detect such 
small traffic signs as well as be able to deploy on very 
lightweight hardware, is needed. Therefore, two 
approaches were implemented. 

As the first approach, YOLOv5s was selected for 
the traffic sign detection task. YOLOv5s, an open pre-
trained model of the YOLOv5s, was fine-tuned using 
the Zalo dataset. During the training process, the cross-
validation technique was applied to improve the 
accuracy of the model with the limited number of 
images in the dataset. Table 1 shows the configuration 
of the parameters of the training operation. Because 
there are a considerable number of small objects in the 
dataset, a tiling-based technique was exploited for pre-
processing the dataset. The technique reduces the 
detail loss of the object detection process in both the 
training phase as well as the inference one. The 
workflow of the method is shown in Fig. 3. In the first 
step, the input image was cropped into 160x160 
images using the tiling technique with a 40-stride 
sliding window. In the next stage, the cropped images 
were filtered into an image set which includes all 
images containing traffic signs and three times as 
many as that number of random images that not 
containing traffic signs. After that, these filtered 
images were resized to 640x640 because it is the input 
image size standard of the YOLOv5s model. Then, the 
YOLOv5s model was fine-tuned with the resized 
images. 
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Fig. 3. Processing pipeline in the first approach for the traffic sign detection: YOLOv5s combined with the tiling 
technique 

 
Fig. 4. Processing pipeline in the second approach for the traffic sign detection: RetinaFace [9] combined with 
the MobileNetV1-SSD [10] 

 
In the second approach, utilization of the so-

called RetinaFace [9] as a localization model and 
MobileNetV1-SSD [10] as a classification model was 
proposed. The approach consists of two main phases, 
which are illustrated in Fig. 4. In the first phase, the 
RetinaFace was customized for use with traffic signs 
localization. Similar to the first approach, the tiling 
technique [8] was implemented with the sliding 
window of 1024x626 in size and stride 426. After that, 
the cropped images were padded to 1024x1024 to 
match the input dimension of the RetinaFace. Then 
these images were used to train the RetinaFace model. 
In the second phase, the traffic signs in localized areas 
of the image were classified into seven different 
classes by using MobileNetV1-SSD. Each localized 
traffic sign from the first phase was padded to a 60x60 
image. Then, the image was resized to 300x300 in 

order to satisfy the input image size condition to train 
the MobileNetV1-SSD model. This approach is 
expected to get a better result than the approach using 
the YOLOv5s and the tiling technique. The reason is 
that the approach keeps the original size of the objects, 
which allows the classification model to get higher 
accuracy. Another reason is that the two selected deep 
neural networks are excessively fast and lightweight 
compared to other deep learning models in their fields. 
As a consequence, the method would be able to deploy 
efficiently on an embedded computer. Combining the 
two above phases, the tiny traffic signs could be 
detected with an exceedingly high speed and accuracy. 
The two models were fine-tuned with the Zalo dataset. 
Training configurations of the two models are shown 
in Table 2. 
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Table 2. Configurations for training RetinaFace [9] 
and MobileNetV1-SSD [10] 

Models RetinaFace MobileNetV1-SSD 

Image size 1024x1024 300x300 

Epochs 250 200 

Batch size 32 48 

Learning rate 0.001 0.01 
 
2.2. Model Deployment in Embedded Hardware 

In order to implement deep learning models for 
an autonomous vehicle, the models would be deployed 
into an embedded computer. An embedded computer 
is suitable for autonomous vehicle applications since it 
has a lightweight, compact size and low energy 
consumption. In our approach, the NVIDIA Jetson 
Nano developer kit was chosen because it is one of the 
most affordable and powerful embedded computers 
designed for deep learning applications. The kit has 
4GB RAM and could reach 472 GFLOPS of computer 
performance with a 128-core NVIDIA Maxwell GPU 
and a 64-bit Quad-core Arm A57 CPU. Although the 
kit provides a high computational capacity, it 
consumes only 5 watts of power. The workflow of our 
method to deploy deep learning models into the 
embedded computer is shown in Fig. 5.  

 

 
Fig. 5. The workflow of deploying deep learning 
models into embedded hardware 

 

First, a deep learning model is trained with a 
custom dataset as described in section 2.1. The trained 
model is saved as a weight file at the end of this step. 
After that, the weight file is converted into ONNX 
format. ONNX is a standard format to describe 
machine learning models built from manifold different 
frameworks such as PyTorch or TensorFlow. The 
software or hardware able to run an ONNX model can 
load deep learning models developed in a variety of 
frameworks. In the next stage, the model is 
transformed from ONNX format to TensorRT format, 
which assists the model to run efficiently on the Jetson 
Nano Kit. NVIDIA TensorRT is an SDK for high-
performance deep learning inference. It provides APIs 
to do inference for deep learning models on an 
embedded computer and optimizes the inference 
process. TensorRT allows developers to focus on 
creating innovative artificial intelligent models rather 
than the performance adjusting inference deployment. 
In our experiments, the environment installed on the 
kit is Ubuntu18.04/cuda10.2/tensorrt7.1/opencv4.5.0. 
We applied this process to deploy the two presented 
traffic sign detection models on the Jetson Nano 
developer kit. 

3. Results and Discussion 

3.1. Evaluation of the Traffic Object Detection Model 

Table 3. Obtained AP50 of the traffic object detection 
model using Yolov5s (%) 

Class car bicycle person light 

AP50  75.9 47.4 58.3 49.9 

Class rider sign pole  

AP50   57.8 50.7 28.5  

 

 
Fig. 6. Illustration of the traffic object detection using the obtained model 



  
JST: Smart Systems and Devices 

 Volume 32, Issue 1, January 2022, 017-024 
 

22 

The metric Average Precision (AP) with an 
Intersection over Union (IoU) threshold of 0.5 (AP50) 
was used to evaluate the precision of the traffic object 
detection model. The mean average precision for all 
seven object classes on the test set of the Cityscapes 
dataset is 52.6%. Table 3 shows the AP50 result of 
individual traffic object classes. It is critically noticed 
that six of seven classes reach very high AP50 (more 
than 40%), including the car, the bicycle, the person, 
the rider, the trafic light and the traffic sign The 
obtained results show a high potential of using the 
model for practical applications where traffic object 
detection and localization are needed. Nevertheless, 
the AP50 for the pole class is still low because the poles 
have very few unique features. Also, the diversity in 
the shape and the size of the poles is an additional 
reason. As an illustration, Fig. 6 shows an example of 
the output frame after running our traffic object 
detection model. It is clearly seen that all of the 
interested object classes can be detected efficiently. 

3.2. Evaluation of the Traffic Sign Detection Models 

Similar to section 3.1, the AP50 was used to 
evaluate the accuracy of the two traffic sign detection 
approaches using the Zalo dataset. The detailed results 
of the two methods on each class of the Zalo dataset 
are shown in Table 4. With the first approach, in which 
the fine-tuned YOLOv5s model and the tiling 
technique [8] were used, the mAP50 is 53.6%. This 
result is slightly lower than the result of the second 
approach, where the fine-tuned RetinaFace [9] model 
and MobileNetV1-SSD [10] model are combined. A 
mAP50 of 64.2% is achieved. For all classes, the two 
approaches release very high accuracy, where the 
highest AP50 is 77.2% for the “no parking” class. 
Detections for interested classes of the dataset all reach 
the AP50 over 50% in the case of combining 
RetinaFace [9] and MobileNetV1-SSD [10].  
Compared to the best result of the Zalo AI Challenge 
[11], in which the model is trained from scratch, the 

result of our second approach is higher (64.2% vs. 
60.53%). 

As our expectation described in section 2.1.2, the 
second approach improves the accuracy compared to 
the first approach. This can be explained that, in the 
second approach, the input image for the classification 
model (MobileNetV1-SSD) is cropped based on the 
output bounding boxes of the RetinaFace model. Each 
bounding box contains only an individual traffic sign. 
This ensures that the cropped image has only one 
traffic sign having a maximal dimension as it is in the 
original frame. Thus, the best quality of the cropped 
image is achieved. Subsequently, the MobileNetV1-
SSD [10] can output better results. Fig. 7 shows an 
illustration of detecting the traffic signs of the Zalo 
dataset [11] using the second approach. It can be seen 
that an excellent result is obtained where the signs are 
detected correctly with a high rate of confidence. 

Table 4. Obtained AP50 of the traffic sign detection 
models (%) 

ID Classes Tiling 
technique + 
YOLOv5s 

RetinaFace + 
MobileNetV1-

SSD 
1 No entry 46.3 51.9 
2 No parking/ 

waiting 
67.2 77.2 

3 No turning 56.3 70.9 
4 Max speed 64.2 69.0 
5 Other 

prohibition 
signs 

54.3 59.1 

6 Warning 47.3 65.6 
7 Mandatory 39.6 55.6 
 mAP50 53.6 64.2 

 

 

Fig. 7. Illustration of the traffic sign detection using the obtained models 
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3.3. Computational Efficiency 

Computational requirements are very important 
when deploying the developed models for applications 
of autonomous vehicles. These applications always 
require low-power consumption and lightweight 
hardware with a real-time response. Therefore, the 
computational efficiency of the models of the two 
approaches on the very lightweight hardware Jetson 
Nano Developer Kit of Nvidia [14] was evaluated. 
Table 5 shows the results where important parameters 
of the two approaches are presented. It is seen that the 
second approach has better computational efficiency, 
where computing time is 9.5 times faster than the first 
one (0.2s vs. 1.9s). Similarly, the use of the CPU and 
RAM is less than that of the first approach leading to a 
reduction in power consumption. 

 
Table 5. Results of deploying models on Jetson Nano 
Developer Kit [14] 

Model 

YOLOv5s 
(traffic 
object 

detection) 

Tiling 
technique + 
YOLOv5s 

RetinaFace + 
MobileNetV1

-SSD 

Batch size 1 1 1 

Mode FP16 FP16 FP16 

Image 
dimension 640x640 640x640 1024x1024 

Computing 
time 0.08 s 1.92 s 0.20 s 

mAP50  52.6% 53.6 % 64.2 % 

RAM usage  1.4 GB 1.4 GB 1.1 GB 
 

Table 6. Results of deploying models on Jetson Xavier 
Development Kit [15] 

Model 

YOLOv5s 
(traffic 
object 

detection) 

Tiling 
technique + 
YOLOv5s 

RetinaFace + 
MobileNetV1-

SSD 

Batch size 1 1 1 

Mode FP16 FP16 FP16 

Image 
dimension 640x640 640x640 1024x1024 

Computing 
time 0.01 s 0.24 s 0.02 s 

mAP50  52.6 % 53.6 % 64.2 % 

RAM usage  3 GB 3 GB 1.2 GB 
 

Several analyses are considered. In the second 
approach, since the RetinaFace model [9] was used to 
localize traffic signs of the original frame and drop 
them for further classifications, only a few inferences 
must be performed. In contrast, in the first approach, 
the original frame was split into 24 smaller frames and 
then resized to the dimension fitted to the input 
requirement of the YOLOv5s [7]. Consequently, 24 
inferences must be performed for the classification 
task. Furthermore, the architecture and the weight of 
YOLOv5s [7] is heavier than the MobileNetV1-SSD 
[10]. All of these reasons make the first approach less 
computational efficiency and accuracy in comparison 
to the second one. On such lightweight hardware, the 
second approach can reach a computational capacity of 
5 FPS. This shows very high potential for practical 
applications where stronger hardware can be 
exploited.  

Implementation of the developed models was 
also deployed on stronger hardware, namely the Jetson 
Xavier Development Kit (GPU: 512-core Volta GPU 
with Tensor Cores; CPU 8-core ARM v8.2 64-bit 
CPU, 8MB L2 + 4MB L3) [15]. The results are shown 
in Table 6. It is nicely detected that the computational 
time is much less than the case using Jetson Nano 
where a value of 100 FPS (0.01s) for the traffic object 
detection and 50 FPS (0.02s) for the traffic sign 
detection are achieved. This shows very high potential 
for practical applications. 

4. Conclusion 

In this work, models for detecting traffic objects 
and traffic signs have been developed successfully. 
Based on the existing datasets and the pre-trained 
models, the fine-tuning techniques were applied to 
achieve the trained models with a higher accuracy. The 
traffic object detection model can be deployed for 
practical applications since it has high accuracy with a 
mAP50 of more than 40%. The traffic sign detection 
models also have a high accuracy. The use of the tiling 
technique incorporated with the YOLOv5s should be 
avoided since it is not computationally efficient. The 
combination of the RetinaFace model for localizing 
the signs in images and the MobileNetV1-SSD model 
for the classification has twofold advantages in terms 
of accuracy and computational efficiency (100 FPS on 
Jetson Xavier). This approach has a very high potential 
of applications in autonomous intelligent vehicles 
where a low-power consumption, limited-resource 
hardware, a real-time response, and a high rate of 
accuracy are absolutely required. It must be 
emphasized that the test data from the Zalo dataset is 
very challenging in which the signs are very far from 
the camera and thus have very tiny dimension. 
However, this challenge is solved nicely. 

This work still has some limitations. Several 
shapes and size-specific traffic objects, for example, 
the pole, cannot be detected accurately. The 
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computational time should be more reduced. In the 
future, a model which can at the same time localize and 
classify traffic signs is intended to be developed.    
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