

JST: Smart Systems and Devices

 Volume 32, Issue 1, January 2022, 017-024

17

Development of Real-Time Traffic-Object and Traffic-Sign Detection

Models Applied for Autonomous Intelligent Vehicles

Xuan-Ha Nguyen*, Thanh-Tung Ngo, Duy-Anh Nguyen
 Hanoi University of Science and Technology, Hanoi, Vietnam

*Email: ha.nguyenxuan@hust.edu.vn

Abstract

Technologies for detecting traffic objects are an essential requirement for any applications in autonomous
intelligent vehicles. In this work, models for detecting traffic objects were developed. Based on the existing
datasets and the pre-trained models, fine-tuning techniques were applied to achieve trained models with
higher accuracies even for the very challenging test data. The traffic object detection was developed based
on the pre-trained YOLOv5s model. Two approaches were introduced for the traffic sign detection task. The
so-called tiling technique incorporated with the YOLOv5s model was exploited in the first approach. In the
second approach, a combination of the RetinaFace model for the localization and the MobileNetV1-SSD for
the classification was employed. The experimental results show that all developed models release a very high
rate of accuracy with a maximum AP50 of 75.9% for object detection and mAP50 of 64.2% for sign detection.
Models developed via the second approach have twofold advantages in terms of accuracy and computational
efficiency, which allows to deploy practical applications.

Keywords: Autonomous intelligent vehicles, deep learning, embedded hardware, object detection.

1. Introduction1

In recent years, autonomous intelligent vehicles
have attracted considerable interests due to their high
potential for practical applications. To work
effectively on real-world roads, the vehicles need a fast
and accurate image processing system to gain
perception of the environment. The last few years have
witnessed a huge growth in image processing by taking
advantage of deep neural networks. Therefore, there
have been many studies focusing on exploiting deep
neural networks in autonomous intelligent vehicles.

According to SAE [1], there are six different
levels of an autonomous vehicle system as shown in
Fig. 1. Nowadays, a majority of the vehicles using
among the community are at level 0, which requires
the full control of humans. At level 1, several specific
systems, for example, cruise control, or automatic
braking, could be separately controlled by the driving
assistant system. The autonomous vehicles at level 2
offer at least two simultaneous automatic functions
such as steering and acceleration/deceleration, with the
expectation that the human drivers do all remaining
driving tasks. In these lowest autonomous driving
levels, drivers have to monitor the driving situations
continuously to perform interventions. In contrast,
from level 3 on, the autonomous driving system takes
over the control of the vehicle in certain conditions, but
drivers must intervene in the control system if it is not
able to handle complex traffic situations. At level 4, a
fully automated system provides all required
operations of driving behaviors for vehicles. While no

ISSN 2734-9373
https://doi.org/10.51316/jst.155.ssad.2022.32.1.3
Received: April 16, 2021; accepted: August 25, 2021

human interventions are required, the driver is able to
take over the control and drive the vehicle manually.
At the highest level, vehicles are fully capable of
autonomy in all situations. The vehicles do not need
any human interaction anymore and could work
independently.

Two essential tasks of an image processing
system in an autonomous intelligent vehicle are the
traffic object detection and the traffic sign detection.
Several studies have been conducted on the traffic
object detection [2-4]. Investigations on the traffic
sign detection are also focused [5]. Common
characteristics of these works are the combination of
traditional computer vision techniques with advanced
deep neural networks for the image processing. Many
optimizations have been introduced in order to
improve the accuracy, the computational efficiency as
well as the robustness again dynamic changing
environments. Optimizations can be: i) the use of the
multi-sensor fusion to obtain multispectral images,
which allows to robustly detect various types of
objects such as cars, people, and bicycles in various
conditions such as daytime and nighttime [2]; ii) the
exploitation of lightweight deep neural networks to
achieve computational efficiencies for real-time
applications [3]; iii) the re-design of the network
architecture to accurately detect objects under complex
scenarios including diversified object and background
appearance, motion blur, adverse weather conditions,
and complex interactions among objects [4].

JST: Smart Systems and Devices

 Volume 32, Issue 1, January 2022, 017-024

18

Fig. 1. Autonomous driving system levels

It is visible that three important characteristics of

the traffic object/sign detection are the high accuracy,
the robustness again challenging environments, and
the fast response time under the condition of the
limited-resource hardware. These characteristics are
really challenging to obtain, especially for the bad
traffic infrastructure/condition as it is in Vietnam.
Therefore, the development of traffic object/sign
detection models under such kind of condition is
essentially needed.

In this work, deep learning models for the two
crucial tasks of an image processing system in
autonomous vehicles, including traffic object detection
and traffic sign detection are proposed. In the case of
traffic object detection, the transfer learning technique
was applied to re-train a state-of-the-art pre-trained
real-time object detection model with a dataset of
traffic objects, namely the Cityscapes [6]. To deal with
the traffic sign detection problem, two different
approaches were developed. In the first approach, the
fine-tuning technique on a pre-trained deep neural
network, namely YOLOv5s [7], was combined with
the tiling technique [8]. Two pre-trained models were
fine-tuned and incorporated in the second approach,
where one model, namely RetinaFace [9], is used to
localize the signs and the other, namely MobileNetV1-
SSD [10], is applied for the classification. The
developed models were fine-tuned and evaluated
based on a very challenging dataset, namely Zalo [11],
which consists of images having very tiny traffic signs
inside. In addition, the models for the two traffic sign

detection approaches were deployed into limited-
resource embedded hardwares, with the method
similar to the processing block in [12]. The
performance of the embedded hardware when running
the models of the two approaches was measured in
order to verify whether they are feasible for real-time
applications in autonomous intelligent vehicles.

2. Methods

2.1. Fine-Tuning Deep Learning Models

In this work, the transfer learning approach was
chosen since the datasets for each problem have only
thousands of high-quality labeled images. Fig. 2
illustrates the process of our approach for transfer
learning object detection models. As the first step, an
open dataset is selected for each specific problem. In
this step, a few pre-processing techniques are
employed to convert the dataset into a suitable format
for an object detection network. The dataset is then
divided into subsets such as the training, the validation
and the test. In the second step, a pre-trained object
detection model is chosen depending on the
advantages and disadvantages of the network and the
requirements of the problem. The pre-trained model is
trained with the prepared dataset in the third step. After
finishing the training, the model is evaluated on the test
set of the dataset. If the precision of the model on the
test set is not good enough, the trained model must be
improved by selecting another network or changing
the structure of the network.

Fig. 2. Workflow of transfer learning

JST: Smart Systems and Devices

 Volume 32, Issue 1, January 2022, 017-024

19

2.1.1. Traffic object detection

For the data preparation, the so-called Cityscapes
dataset was chosen because it is one of the most
diverse 2D traffic object detection datasets, compared
to other published open datasets such as the KITTI
dataset, and the Apollo Scapes dataset. The Cityscapes
dataset consists of a huge number of video sequences
of the daily life traffic activities in fifty different cities
in Germany. The videos were recorded at all seasons
of the years as well as under different weather
conditions. Additionally, objects in the dataset also
have a variety of shapes and sizes. Five thousand
images of the dataset were manually selected from
twenty-seven cities that have high-quality instance-
level semantic annotations. For the training purpose,
these images were divided into 3 sets: the training set
(2975 images), the validation set (500 images), and the
test set (1525 images). Since the annotation format of
the Cityscapes dataset is a polygon, it was converted to
the format suitable for training the YOLO network.

Table 1. Transfer learning configurations of
YOLOv5s models in two applications

Parameters Traffic object
detection

Traffic sign
detection

Model YOLOv5s YOLOv5s

No. of images 2975 4000

Image size 1024x1024 640x640

Batch size 30 160

Epochs 50 50

Learning rate 0.001 0.005

No. of classes 7 7

YOLOv5s, the latest version of the YOLO series,

was chosen for the traffic object detection task because
it is a state-of-the-art real-time 2D object detection
model. According to [7], YOLOv5s outperforms the
fastest and most accurate real-time object detection
models in both speed and accuracy. The model could
reach the mean average precision of 54.4% on MS
COCO dataset [13]. A transfer learning process on a
pre-trained YOLOv5s model with the Cityscapes
dataset was implemented. Seven classes of the
interested traffic objects of the Cityscapes dataset were
chosen for detection, including the car, the bicycle, the
person, the rider, the traffic signs, the pole, and the
traffic light. The configuration parameters for the
transfer learning task are set according to the values of
Table 1.

2.1.2. Traffic sign detection

For the traffic sign detection task, the so-called
Zalo AI Challenge dataset was chosen. This dataset is
very challenging but very suitable for traffic sign
detection applications in the traffic condition of
Vietnam. The dataset consists of 4500 images with
sizes of 1622x626, which were crawled from Google
Street View Map in various places in Vietnam. The
task of the problem is detecting seven common types
of traffic signs, including no entry, no parking/waiting,
no turning, max speed, other prohibition signs,
warning, and mandatory. The dataset is very
challenging since the majority of interested objects are
extremely small (<10x10). Furthermore, it has a wide
range of scenes from urban areas to rural areas, from
exceedingly crowded streets to secluded highways.
The dataset was split into two subsets including the
training set (4000 images), and the test set (500
images). The dataset was annotated in COCO format,
so its annotation was converted into YOLO format.

It can be known that although the size of images
of the Zalo dataset is large, traffic signs are very small
in comparison to the whole image because the signs
are very far from the camera. Furthermore, as an input
for the training of the model, the images must be
resized to match the dimensions of the network. This
leads to the fact that the traffic signs will be very small,
which extremely difficult to detect with a good enough
accuracy. An efficient model, which can detect such
small traffic signs as well as be able to deploy on very
lightweight hardware, is needed. Therefore, two
approaches were implemented.

As the first approach, YOLOv5s was selected for
the traffic sign detection task. YOLOv5s, an open pre-
trained model of the YOLOv5s, was fine-tuned using
the Zalo dataset. During the training process, the cross-
validation technique was applied to improve the
accuracy of the model with the limited number of
images in the dataset. Table 1 shows the configuration
of the parameters of the training operation. Because
there are a considerable number of small objects in the
dataset, a tiling-based technique was exploited for pre-
processing the dataset. The technique reduces the
detail loss of the object detection process in both the
training phase as well as the inference one. The
workflow of the method is shown in Fig. 3. In the first
step, the input image was cropped into 160x160
images using the tiling technique with a 40-stride
sliding window. In the next stage, the cropped images
were filtered into an image set which includes all
images containing traffic signs and three times as
many as that number of random images that not
containing traffic signs. After that, these filtered
images were resized to 640x640 because it is the input
image size standard of the YOLOv5s model. Then, the
YOLOv5s model was fine-tuned with the resized
images.

JST: Smart Systems and Devices

 Volume 32, Issue 1, January 2022, 017-024

20

Fig. 3. Processing pipeline in the first approach for the traffic sign detection: YOLOv5s combined with the tiling
technique

Fig. 4. Processing pipeline in the second approach for the traffic sign detection: RetinaFace [9] combined with
the MobileNetV1-SSD [10]

In the second approach, utilization of the so-

called RetinaFace [9] as a localization model and
MobileNetV1-SSD [10] as a classification model was
proposed. The approach consists of two main phases,
which are illustrated in Fig. 4. In the first phase, the
RetinaFace was customized for use with traffic signs
localization. Similar to the first approach, the tiling
technique [8] was implemented with the sliding
window of 1024x626 in size and stride 426. After that,
the cropped images were padded to 1024x1024 to
match the input dimension of the RetinaFace. Then
these images were used to train the RetinaFace model.
In the second phase, the traffic signs in localized areas
of the image were classified into seven different
classes by using MobileNetV1-SSD. Each localized
traffic sign from the first phase was padded to a 60x60
image. Then, the image was resized to 300x300 in

order to satisfy the input image size condition to train
the MobileNetV1-SSD model. This approach is
expected to get a better result than the approach using
the YOLOv5s and the tiling technique. The reason is
that the approach keeps the original size of the objects,
which allows the classification model to get higher
accuracy. Another reason is that the two selected deep
neural networks are excessively fast and lightweight
compared to other deep learning models in their fields.
As a consequence, the method would be able to deploy
efficiently on an embedded computer. Combining the
two above phases, the tiny traffic signs could be
detected with an exceedingly high speed and accuracy.
The two models were fine-tuned with the Zalo dataset.
Training configurations of the two models are shown
in Table 2.

JST: Smart Systems and Devices

 Volume 32, Issue 1, January 2022, 017-024

21

Table 2. Configurations for training RetinaFace [9]
and MobileNetV1-SSD [10]

Models RetinaFace MobileNetV1-SSD

Image size 1024x1024 300x300

Epochs 250 200

Batch size 32 48

Learning rate 0.001 0.01

2.2. Model Deployment in Embedded Hardware

In order to implement deep learning models for
an autonomous vehicle, the models would be deployed
into an embedded computer. An embedded computer
is suitable for autonomous vehicle applications since it
has a lightweight, compact size and low energy
consumption. In our approach, the NVIDIA Jetson
Nano developer kit was chosen because it is one of the
most affordable and powerful embedded computers
designed for deep learning applications. The kit has
4GB RAM and could reach 472 GFLOPS of computer
performance with a 128-core NVIDIA Maxwell GPU
and a 64-bit Quad-core Arm A57 CPU. Although the
kit provides a high computational capacity, it
consumes only 5 watts of power. The workflow of our
method to deploy deep learning models into the
embedded computer is shown in Fig. 5.

Fig. 5. The workflow of deploying deep learning
models into embedded hardware

First, a deep learning model is trained with a
custom dataset as described in section 2.1. The trained
model is saved as a weight file at the end of this step.
After that, the weight file is converted into ONNX
format. ONNX is a standard format to describe
machine learning models built from manifold different
frameworks such as PyTorch or TensorFlow. The
software or hardware able to run an ONNX model can
load deep learning models developed in a variety of
frameworks. In the next stage, the model is
transformed from ONNX format to TensorRT format,
which assists the model to run efficiently on the Jetson
Nano Kit. NVIDIA TensorRT is an SDK for high-
performance deep learning inference. It provides APIs
to do inference for deep learning models on an
embedded computer and optimizes the inference
process. TensorRT allows developers to focus on
creating innovative artificial intelligent models rather
than the performance adjusting inference deployment.
In our experiments, the environment installed on the
kit is Ubuntu18.04/cuda10.2/tensorrt7.1/opencv4.5.0.
We applied this process to deploy the two presented
traffic sign detection models on the Jetson Nano
developer kit.

3. Results and Discussion

3.1. Evaluation of the Traffic Object Detection Model

Table 3. Obtained AP50 of the traffic object detection
model using Yolov5s (%)

Class car bicycle person light

AP50 75.9 47.4 58.3 49.9

Class rider sign pole

AP50 57.8 50.7 28.5

Fig. 6. Illustration of the traffic object detection using the obtained model

JST: Smart Systems and Devices

 Volume 32, Issue 1, January 2022, 017-024

22

The metric Average Precision (AP) with an
Intersection over Union (IoU) threshold of 0.5 (AP50)
was used to evaluate the precision of the traffic object
detection model. The mean average precision for all
seven object classes on the test set of the Cityscapes
dataset is 52.6%. Table 3 shows the AP50 result of
individual traffic object classes. It is critically noticed
that six of seven classes reach very high AP50 (more
than 40%), including the car, the bicycle, the person,
the rider, the trafic light and the traffic sign The
obtained results show a high potential of using the
model for practical applications where traffic object
detection and localization are needed. Nevertheless,
the AP50 for the pole class is still low because the poles
have very few unique features. Also, the diversity in
the shape and the size of the poles is an additional
reason. As an illustration, Fig. 6 shows an example of
the output frame after running our traffic object
detection model. It is clearly seen that all of the
interested object classes can be detected efficiently.

3.2. Evaluation of the Traffic Sign Detection Models

Similar to section 3.1, the AP50 was used to
evaluate the accuracy of the two traffic sign detection
approaches using the Zalo dataset. The detailed results
of the two methods on each class of the Zalo dataset
are shown in Table 4. With the first approach, in which
the fine-tuned YOLOv5s model and the tiling
technique [8] were used, the mAP50 is 53.6%. This
result is slightly lower than the result of the second
approach, where the fine-tuned RetinaFace [9] model
and MobileNetV1-SSD [10] model are combined. A
mAP50 of 64.2% is achieved. For all classes, the two
approaches release very high accuracy, where the
highest AP50 is 77.2% for the “no parking” class.
Detections for interested classes of the dataset all reach
the AP50 over 50% in the case of combining
RetinaFace [9] and MobileNetV1-SSD [10].
Compared to the best result of the Zalo AI Challenge
[11], in which the model is trained from scratch, the

result of our second approach is higher (64.2% vs.
60.53%).

As our expectation described in section 2.1.2, the
second approach improves the accuracy compared to
the first approach. This can be explained that, in the
second approach, the input image for the classification
model (MobileNetV1-SSD) is cropped based on the
output bounding boxes of the RetinaFace model. Each
bounding box contains only an individual traffic sign.
This ensures that the cropped image has only one
traffic sign having a maximal dimension as it is in the
original frame. Thus, the best quality of the cropped
image is achieved. Subsequently, the MobileNetV1-
SSD [10] can output better results. Fig. 7 shows an
illustration of detecting the traffic signs of the Zalo
dataset [11] using the second approach. It can be seen
that an excellent result is obtained where the signs are
detected correctly with a high rate of confidence.

Table 4. Obtained AP50 of the traffic sign detection
models (%)

ID Classes Tiling
technique +
YOLOv5s

RetinaFace +
MobileNetV1-

SSD
1 No entry 46.3 51.9
2 No parking/

waiting
67.2 77.2

3 No turning 56.3 70.9
4 Max speed 64.2 69.0
5 Other

prohibition
signs

54.3 59.1

6 Warning 47.3 65.6
7 Mandatory 39.6 55.6
 mAP50 53.6 64.2

Fig. 7. Illustration of the traffic sign detection using the obtained models

JST: Smart Systems and Devices

 Volume 32, Issue 1, January 2022, 017-024

23

3.3. Computational Efficiency

Computational requirements are very important
when deploying the developed models for applications
of autonomous vehicles. These applications always
require low-power consumption and lightweight
hardware with a real-time response. Therefore, the
computational efficiency of the models of the two
approaches on the very lightweight hardware Jetson
Nano Developer Kit of Nvidia [14] was evaluated.
Table 5 shows the results where important parameters
of the two approaches are presented. It is seen that the
second approach has better computational efficiency,
where computing time is 9.5 times faster than the first
one (0.2s vs. 1.9s). Similarly, the use of the CPU and
RAM is less than that of the first approach leading to a
reduction in power consumption.

Table 5. Results of deploying models on Jetson Nano
Developer Kit [14]

Model

YOLOv5s
(traffic
object

detection)

Tiling
technique +
YOLOv5s

RetinaFace +
MobileNetV1

-SSD

Batch size 1 1 1

Mode FP16 FP16 FP16

Image
dimension 640x640 640x640 1024x1024

Computing
time 0.08 s 1.92 s 0.20 s

mAP50 52.6% 53.6 % 64.2 %

RAM usage 1.4 GB 1.4 GB 1.1 GB

Table 6. Results of deploying models on Jetson Xavier
Development Kit [15]

Model

YOLOv5s
(traffic
object

detection)

Tiling
technique +
YOLOv5s

RetinaFace +
MobileNetV1-

SSD

Batch size 1 1 1

Mode FP16 FP16 FP16

Image
dimension 640x640 640x640 1024x1024

Computing
time 0.01 s 0.24 s 0.02 s

mAP50 52.6 % 53.6 % 64.2 %

RAM usage 3 GB 3 GB 1.2 GB

Several analyses are considered. In the second
approach, since the RetinaFace model [9] was used to
localize traffic signs of the original frame and drop
them for further classifications, only a few inferences
must be performed. In contrast, in the first approach,
the original frame was split into 24 smaller frames and
then resized to the dimension fitted to the input
requirement of the YOLOv5s [7]. Consequently, 24
inferences must be performed for the classification
task. Furthermore, the architecture and the weight of
YOLOv5s [7] is heavier than the MobileNetV1-SSD
[10]. All of these reasons make the first approach less
computational efficiency and accuracy in comparison
to the second one. On such lightweight hardware, the
second approach can reach a computational capacity of
5 FPS. This shows very high potential for practical
applications where stronger hardware can be
exploited.

Implementation of the developed models was
also deployed on stronger hardware, namely the Jetson
Xavier Development Kit (GPU: 512-core Volta GPU
with Tensor Cores; CPU 8-core ARM v8.2 64-bit
CPU, 8MB L2 + 4MB L3) [15]. The results are shown
in Table 6. It is nicely detected that the computational
time is much less than the case using Jetson Nano
where a value of 100 FPS (0.01s) for the traffic object
detection and 50 FPS (0.02s) for the traffic sign
detection are achieved. This shows very high potential
for practical applications.

4. Conclusion

In this work, models for detecting traffic objects
and traffic signs have been developed successfully.
Based on the existing datasets and the pre-trained
models, the fine-tuning techniques were applied to
achieve the trained models with a higher accuracy. The
traffic object detection model can be deployed for
practical applications since it has high accuracy with a
mAP50 of more than 40%. The traffic sign detection
models also have a high accuracy. The use of the tiling
technique incorporated with the YOLOv5s should be
avoided since it is not computationally efficient. The
combination of the RetinaFace model for localizing
the signs in images and the MobileNetV1-SSD model
for the classification has twofold advantages in terms
of accuracy and computational efficiency (100 FPS on
Jetson Xavier). This approach has a very high potential
of applications in autonomous intelligent vehicles
where a low-power consumption, limited-resource
hardware, a real-time response, and a high rate of
accuracy are absolutely required. It must be
emphasized that the test data from the Zalo dataset is
very challenging in which the signs are very far from
the camera and thus have very tiny dimension.
However, this challenge is solved nicely.

This work still has some limitations. Several
shapes and size-specific traffic objects, for example,
the pole, cannot be detected accurately. The

JST: Smart Systems and Devices

 Volume 32, Issue 1, January 2022, 017-024

24

computational time should be more reduced. In the
future, a model which can at the same time localize and
classify traffic signs is intended to be developed.

Acknowledgements

Thanh-Tung Ngo was funded by Vingroup Joint
Stock Company and supported by the Domestic
Master Scholarship Programme of Vingroup
Innovation Foundation (VINIF), Vingroup Big Data
Institute (VINBIGDATA), code VINIF.2020.ThS.26.

References

[1] Taxonomy and Definitions for Terms Related to On-
Road Motor Vehicle Automated Driving Systems, SAE
Standard J3016, 2014.

[2] T. Karasawa, K. Watanabe, Q. Ha, A. Tejero-De-
Pablos, Y. Ushiku, and T. Harada, Multispectral object
detection for autonomous vehicles, in Proc. Themat.
Work. ACM Multimed. 2017, Mountain View, CA,
USA, 2017, pp. 35–43.

[3] J. Varagula, P. A. N. Kulproma, and T. Itob, Object
detection method in traffic by on-board computer vision
with time delay neural network, in Proc. KES2017,
Marseille, France, 2017, vol. 112, pp. 127–136.
https://doi.org/10.1016/j.procs.2017.08.185

[4] H. Zhang, K. Wang, Y. Tian, C. Gou, and F. Y. Wang,
MFR-CNN: Incorporating multi-scale features and
global information for traffic object detection, IEEE
Trans. Veh. Technol., vol. 67, no. 9, pp. 8019–8030,
Sept. 2018, 10.1109/TVT.2018.2843394.
https://doi.org/10.1109/TVT.2018.2843394

[5] Á. Arcos-García, J. A. Álvarez-García, and L. M. Soria-
Morillo, Evaluation of deep neural networks for traffic
sign detection systems, Neurocomputing, vol. 316, pp.
332–344, 2018, 10.1016/j.neucom.2018.08.009.
https://doi.org/10.1016/j.neucom.2018.08.009

[6] M. Cordts et al., The cityscapes dataset for semantic
urban scene understanding, in Proc. CVPR, Las Vegas,
NV, USA, 2016, pp. 3213–3223.

https://doi.org/10.1109/CVPR.2016.350

[7] G. Jocher, A. Stoken, J. Borovec, C. NanoCode012, L.
Changyu, H. Laughing, ultralytics/yolov5: v4.0,
Ultralytics, Jan. 5, 2021. [Online]. Available:
https://github.com/ultralytics/yolov5.

[8] F. Ö. Ünel, B. O. Özkalayci and C. Çiğla, The power of
tiling for small object detection, in Proc. CVPRW, Long
Beach, CA, USA, 2019, pp. 582-591.
https://doi.org/10.1109/CVPRW.2019.00084

[9] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, S. Zafeiriou,
RetinaFace: single-stage dense face localisation in the
wild, arXiv: 1905.00641, 2019. [Online].
https://doi.org/10.1109/CVPR42600.2020.00525

[10] Single Shot MultiBox Detector Implementation in
Pytorch. [Online]. Available:
https://github.com/qfgaohao/pytorch-ssd, Accessed on:
Mar. 28, 2021.

[11] Zalo AI Challenge. [Online]. Available:
https://challenge.zalo.ai/portal/traffic-sign-detection,
Accessed on: Mar. 28, 2021.

[12] N. H. Dung, Application of convolution neural network
in design and fabrication of robots for transporting
goods in factories, J. Sci. Technol., vol. 147 (2020), pp.
51-58, Nov. 2020.
https://doi.org/10.51316/30.8.9

[13] T. Y. Lin et al., Microsoft COCO: Common objects in
context, Lect. Notes Comput. Sci., vol. 8693 LNCS, no.
PART 5, pp. 740–755, 2014
https://doi.org/10.1007/978-3-319-10602-1_48

[14] Jetson Nano Developer. [online]. Available:
https://developer.nvidia.com/embedded/jetson-nano-
developer-kit.

[15] Jetson AGX Xavier Developer. [online]. Available:
Kithttps://developer.nvidia.com/embedded/jetson-agx-
xavier-developer-kit

	1. Introduction0F
	2. Methods

