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Abstract 

This article proposes an option to execute conveniently the traditional Model Predictive Control (GPC), called 
the Alternative Generalized Predictive Control (AGPC). In this AGPC the disturbed discrete-time input-output 
mapping of controlled plant is utilized directly for the prediction of plant outputs, instead of its transfer function 
as being done in the conventional approach. Hence, solving Diophantine equations will be avoided. Within 
this AGPC all recorded values of plant inputs/outputs in the last time-horizon are matched into separate vectors 
for computing predictive control signals at the next control step, which helps therefore that its implementation 
becomes more manageable. To verify via virtually real simulation the control performance of this proposed 
AGPC a Simscape water tank model, which is chosen as the controlled plant, had been created among 
Thermal Fluids Toolbox. The simulation is carried out for two different circumstances, one by using AGPC and 
the other by applying conventional PID, for comparison purposes. The simulation demonstrates also how to 
realize this AGPC in practice. 

Keywords:  MPC, alternative GPC, PID, optimization, virtually real tank model. 

 

1. Introduction1 

Model Predictive Control (MPC) is a control 
concept of using a dynamic model of processes to 
predict the signal control by minimizing an appropriate 
cost function [1-4]. But different to conventional 
optimal controller such as LQR (Linear Quadratic 
Regulator) for linear processes or DP (Dynamic 
Programming) for non-linear processes in general [5], 
with MPC concept it is allowed the tracking 
performance of processes in current control time 
instant to be optimized while keeping future tracking 
errors in account. This is achieved by optimizing an 
appropriate cost-function belonging to a fixed time-
horizon. Afterward, only the control signals at the 
current time instant are implemented. This 
optimization will be executed repeatedly step by step 
for receiving control signals in the next timeslots [1]. 
The control concept of MPC had shown its superiority 
in process control, compared to other methods such as 
Minimum Variance (MV), Smith Predictor, 
Generalized Minimum Variance GMV… [1-10]. 

At present there are various MPC algorithms 
available for  industrial applications, such as Model 
Algorithmic Control (MAC) [1], Dynamic Matrix 
Control (DMC) [3], Generalized Predictive Control 
(GPC) [4], Predictive Control in state space [2,11], 
Adaptive Horizon Model Predictive Control 
(AHMPC) [6] and Extended Prediction Self-Adaptive 
Control (EPSAC) [12]. However, in general, any 
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control algorithm of MPC always consists of three 
main elements: the predictive model for forecasting 
the process outputs, the objective function for 
characterizing the process tracking performance, and 
the optimization algorithm for solving this objective 
function. All aforementioned algorithms are 
distinguished from each other mainly in how to realize 
these three elements in it, accordingly to the particular 
dynamic of controlled processes [7-12]. For example, 
both MAC [1] and DMC algorithm [3] are open-loop 
controllers, in which the time response is used as a 
process model. Hence, they are only applicable if the 
processes are linear and the models are sufficiently 
exact. In the contrary GPC [4] is a closed-loop 
controller and established based on the transfer 
function model. Therefore, it could be applied for 
linear processes with disturbances. For non-linear 
processes, the multi predictive linear model around 
operating points is used to forecast future outputs [8-
10]. With these approaches and since the original 
nonlinear process model is approximated by a chain of 
linear, time-invariant sub-models around a series of 
operating points, the desired control performances 
could not hold anymore if these operating points are 
not determined sufficiently precisely online. 
Moreover, the oscillation would be happening 
inevitability there, if the control has to switch from one 
LTI subsystem to another one. This is known as the 
main disadvantage of multiple predictive LTI model-
based methods. 
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With the assumption that the controlled processes 
could be approximately linear with matched model 
error, this article will propose a substitutive option of 
conventional GPC, called the Alternative GPC 
(AGPC), in which the solving required Diophantine 
equations in GPC will be avoided. Furthermore, 
similarly with GPC, this proposed AGPC can be 
implemented also to both SISO and MIMO systems in 
an output feedback control scheme.  But in contrary, 
the proposed AGPC method can be applied for 
processes modelled by uncertain input-output mapping 
with matched model errors, instead of converting it in 
such a structure, where input signals of which have to 
satisfy the requirement for being applicable of 
Diophantine equations [1,4]. Hence, with this 
proposed AGPC it is no need to solve Diophantine 
equations by applying the conventional GPC. 
Consequently, the real-time response of closed-loop 
controlled systems by using AGPC would be 
improved. 

The main idea of AGPC is as below. Starting 
from the original uncertain input-output mapping, the 
future vectors of all system outputs k iy +  in the 
prediction horizon N will be represented as a matched 
disturbed function depending only on all input vectors 
at the present fixed time horizon 1k k Nu u + −÷  by 
applying an iterative calculation method. The 
remaining system error in the predictive model will be 
estimated optimality for compensating purposes. 
These representations of future system outputs will be 
then concatenated into objective function for 
determining general inputs at the present time instance 
by using an optimization algorithm. 

For an effective verification of the control 
performance of this proposed AGPC, in this article, the 
simulation plant is a virtually real tank model. This 
model is created with Simscape Thermal Fluids 
Toolbox, which is available in MathWorks. So it can 
be implemented in Simulink as connected 
thermodynamics blocks. The dynamic of the model is 
nonlinear, with a strong influence between system 
state variables. So it would be suitable for 
authenticating the AGPC behaviour. 

The control task is to keep tracking the level and 
the temperature of water in tank to the desired set 
points. For a true comparison purpose, besides using 
AGPC algorithm, this article implements also the 
traditional PID to control the same plant. Parameters 
of PID controllers are determined with the help of an 
optimization approach for minimizing tracking errors. 
The comparison is carried out by evaluating the 
response time, settling time, overshoot, and steady 
state error. Obtained simulation results will show 
visually the advantages and disadvantages of AGPC 
algorithm compared with traditional PID controller. 

The rest of this article is organized as follows. In 
Section 2 all theoretical substances related to AGPC 
are presented. A virtually real water tank model is 
established in Section 3. Numerical simulations and 
discussions are shown in Section 4 to authenticate the 
performance of AGPC in comparison with PID. Final 
Section provides conclusions and future works. 

2. Alternative GPC 

Consider a linear time invariant, discrete time 
plant with q inputs and p output, described by input-
output mapping as follows: 

 1,0 1 ,0

0,0 1,0 1 ,0

k k n k n k

k k m k m

y A y A y d

B u B u B u
− −

− −

+ +…+ +

= + +…+
 (1) 

which is disturbed additionally in outputs. There are in 
this mapping: 

1( ),   , ( )
T q

k qu u k u k = … ∈    is the vector of q 
inputs, 

1( ),   , ( )
T p

k py y k y k = ∈    is the vector of p 
outputs, 

1,0 ,0 0,0 ,0,   , , ,   ,n mA A B B   represent all model 
parameters, 

kd  is the vector of output disturbances, 

and k denotes the current time instant. 
The paper aims to design an output feedback 

controller such that p system outputs ky  of (1) will 
convergence asymptotically to any desired references 

kr  and this tracking performance must not be affected 
by the disturbances kd . 

2.1. Predictive Model 
According to the system model (1) it is clear that 

all p system outputs ky  at the current time instant k 
can be established approximately from system data in 
the past and from current system inputs ku  as below: 

 

( )
( )

0,0 1,0 1 ,0

/
1,0 1 ,0

  

  

k k k m k m

k n k n k

y B u B u B u

A y A y d

− −

− −

= + + +

− + + +



  (2) 

where /
kd  denotes an estimation of kd . 

Assume that kd ′  can be considered as a constant 
during whole current control horizon ,   ,k k N+ , 
then according to the approximation (1) all predictive 
system outputs , 1, 2,   ,k iy i N+ =   in this horizon 
can be calculated as follows: 

1) For 1i = : 
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( )
( )

( )
( ){

( )
}
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1,0 2,0 1 ,0 1

0,0 1 1,0 ,0 1

1,0 0,0 1,0 1 ,0

1,0 1 ,0

2,0 1 ,0 1
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k k k m k m
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k k m k m

k k m k m

k n k n k

k n k n k

k k

y B u B u B u

A y A y A y d

B u B u B u

A B u B u B u

A y A y d

A y A y d

B u B u

+ + + −

− + −

+ + −

− −

− −

− + −

+

= + +…+

′− + +…+ +

= + +…+

− + +…+

′− +…+ + 
′+ +…+ +

= + +…+ 1,1

1,1 1 ,1 1( )
)m k m

k n k n k

B u
A y A y D d

+ −

− − ′− +…+ +

 (3) 

where 

,1 ,0 1

0,1 0,0 1,1 1,0 1,0

,,0 1,0 1 1 1,0 ,0

0,0,  ,  
,  ,m m m m m

B B B B A B
B B A B B A B− +

−

= −

=

− =

= 

 (4) 

and 

1,1 ,0 1,0 1,0 ,1 1,0 ,0

1 1,0

1,1 2,0 1,0 1,0 2,1 3,0 1,0 2,0,  
 ,

,
,n n n n n

p

A A
A A A A A A A

A A A A A A

D I A
− −

= − − …

= − = −

=

=

−

 (5) 

2) For 2i = : 

( )
( )

( )
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( )
}

2 0,1 2 1,1 1 1,1 1

1,1 ,0 1 1

0,1 2 1,1 1 1,1 1

1,1 0,0 1,0 1 ,0
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0,2 2 1,2(
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+
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 (6) 

where 

0,2 0,1 1,2 1,1 2,2 2,1 1,1 0,0

1,2 1,1 1,1 1,0 2,2 1,1 ,0

1,2 2,1 1,1 1,0 2,2 3,1 1,0 2,0

1,2 ,0 1,1 1,0 ,2 1,1 ,0

2 1 1,1

,  ,  ,  
,  ,

,  ,  
,  ,

m m m m m

n n n n n

B B B B B B A B
B B A B B A B
A A A A A A A A
A A A A A A A
D D A

+ + − +

− −

= = = −

= − = −

= − = −

= − = −

= −



  (7) 

3) For 3,   ,i N= … : 

( )
( )
0, 1, 1 ,

1, 1 ,

k i i k i i k i m i i k m

i k n i k n i k

y B u B u B u

A y A y D d

+ + + − + −

− −

= + +…+
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 (8) 

where 
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1, 1, 1 , , 1 1, 1 0,0
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1, 2, 1 1, 1 1,0

2, 3, 1 1, 1 2,0

1, , 1 1, 1 1,0 ,

,  ,  
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,
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,  

i i i i

i i i i i i i i i
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B B B B
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B B A B
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A A A A A
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+ − + − − − −

+ −

− −

− −

− − − −

= =

= = −

= −
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





1, 1 ,0

1 1, 1

,i i n

i i i

A A
D D A

−

− −

= −

= −

 (9) 

Obviously, both expressions (3), (6) for the 
prediction of 1 2,  k ky y+ +  as well as calculating 
recursively (5) and (7) for their parameters, are 
contained in (8) and (9). Therefore the recursive 
equation (9)  can be also used to determine all 
parameters 0, , 1, ,,   , , ,   ,i m i i i n iB B A A+   and iD  of all 
N  predictive system outputs 1ky +  given in (8). 

The formal combination of all predictive outputs 
,  1, 2,   ,k iy i N+ =   given in (8) implies prediction 

model among current horizon as below 

 = +y Yu g  (10) 

with all elements , ,y Y u  and g  in it are defined 
precisely as below 

1,0 2,0 ,0 1

2,1 3,1 1,1 2

1, 2, ,

11,0 2,0 ,0
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B B B u
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−
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…   
   …   =
   
   …    

 … 
  …   −   
  

…      
 
 
−


 
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   


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



/

/

k

b kb

d

d





= − −Bu Ay D

 (11) 

and 

 

1 1

0,0

0,1 1,1

0, 1, ,
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N N N N N
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y u

uy

B
B B
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+ + −

+
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   
   
   = =   …   
    
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 Θ … =
 
 

…  

y u

Y


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where 

1,0 2,0 ,0

2,1 3,1 1,1

1, 2, ,

1,0 2,0 ,0

1,1 2,1 ,1

1, 1 2, 1 , 1

11

21 2

,

,

,  ,  

m

m

N N N N m N N

n

n

N N n N

kp k

kk
b b

N k m

B B B
B B B

B B B

A A A
A A A

A B B

yI u
yD u

u y

D u y

+

+ + +

− − −

−−

−−

−

… 
 … =
 
 

…  
… 

 … =
 
 

…  

   
   
   = = =
   
   
   

   

   

 



B

A

D .

k n−

 
 
 
 
 
  

 (13) 

In afore mentioned equations Θ denotes the 
matrix of all zero entries (zero matrix) and pI  is the 
identity matrix of dimension p p×  

The equation (10) is just the needed prediction 
model, which will be utilized hereafter for calculating 
the optimal inputs. 

2.2. Disturbance Estimation for Rejecting 

From the original input-output mapping (1) it is 
clear that: 

 
( )
( )
0,0 ,0

1,0 1 ,0

  

  

k k m k m

k k n k n

d B u B u

y A y A u

−

− −

= + +

− + + +





 

Hence, under the assumption that disturbances 
are sufficiently slow, it could be approximated 
accordingly as 

 

( )
( )

/
1

0,0 1 ,0 1

1 1,0 2 ,0 1

/
0,0 ,0

/
1,0 ,0

  

  

,   ,

, ,   ,

k k

k m k m

k k n k n

m b

p n b

d d

B u B u

y A y A u

B B

I A A

−

− − −

− − − −

≈

= + +

− + + +

 = … − 
 − … 

u

y



  (14) 

where
11

2/ /2

1 1

1 1

,  

kk

kk b b
b b

k m k n

k m k n

yu
yu

u y
u y

−−

−−

− − − −

− − − −

  
        = = = =             
    

yu
u y





. 

2.3. Objective Function 

According to the control task of kky r→ , i.e. of 
= − →e y r 0 , where 0 denotes the zeros vector of 

dimension ( 1)N p+ , and 

 [ ]1, ,   ,vec k k k Nr r r+ +=r   (15) 

the following objective function will be used 

 ( ) ( ) min
T T

k k kJ Q R= − − + →y r y r u u . (16) 

Substituting (10) in (16) yields 

 ( ) ( )T T
k k kJ Q R= + − + − +Yu g r Yu g r u u , 

which is obviously equivalent with 

 ( ) ( )2
TT T

k k k kJ Q R Q= + − −u Y Y u r y Yu . (17) 

To ensure that the optimization problem (16) is 
solvable, in the aforementioned objective function 
both matrices ,k kQ R  must be positive definite. Except 
that, in principle, they are chosen arbitrarily. 

2.4. Optimization 

Because the optimization problem (16), i.e. (17) 
is an unconstrained and quadratic problem, it yields 
immediately that 

 ( ) ( )1T T
k k kQ R Q

−
= + −u Y Y Y r y  (18) 

which implies therefore the needed control value ku  
at the current time instant k as follows 

 , , ,k pu I = Θ … Θ u . (19) 

2.5. Opportunity to Improve Control Performance 

The control value ku  from (19) contains in it 
freely chosen symmetric positive definite matrices 

,k kQ R . Hence, it arises here some opportunities to 
select them appropriately so that the control 
performance of closed-loop system will be improved. 

Some beneficial hints are in following: 

− The bigger kR  is chosen, the smaller | |ku  will be. 

− The smaller kQ  is chosen, the larger component of 
kR  will take part in objective function J  defined in 

(16) and hence | |ku  will become also smaller. On 
the contrary, the slower tracking process →y r  
will be. 

− The bigger kQ  is chosen, the smaller overshoot will 
be. 

2.6. Control Algorithm 

In order to facilitate the implementation of 
proposed controller the following algorithm is 
established.  
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1) Choose 2N ≥ . Using (9) to determine all matrices 
, ,, ,j i l s zA B D  for 1 j n≤ ≤ , 0 i N≤ ≤  and  

0 s N≤ ≤ . 

Establish , , ,Y A B D  accordingly to (12) and (13)
respectively, Create two arrays / ( 1)R m q

b
+∈u  and 

/ ( 1)R n p
b

+∈y . Set 0k =  and /
b =u 0 , /

b
=y 0 . 

Determine two arrays /,b mq mq q bI × = Θ u u  and 
/,np np pb b

I × = Θ y y , where i j×Θ  is the zero 
matrix of dimension i j×  and ijI  is ( )ij ij×  
identity matrix. It means that ,b b

u y  are two 
arrays of mq  and np  elements, which are 
truncated from / /,  b b

u y , respectively. Choose 
arbitrarily two symmetric positive definite 
matrices ,Q R  and in scenario of constrained 
control two positive factors 0 1µ< ≤ , 1 η< . 

2) Estimate /
kd  with (14). Calculate g  and r  

accordingly to (11), (15), respectively. 
3) Determine ku  by using (18) and (19). 

4) In the circumstance of control problem with 
constraints, do this step, otherwise, skip it. 
If ku  does not satisfy the required constraint 
| |ku U≤ , then set :R Rη=  and go back to step 3. 

5) Send ku  to the original plant (1) for a while of 
sampling time. 

6) Measure the output  
k

y  from system (1). Reorder 
two arrays / /,  b b

u y  as follows 

1

1

1 1

,  2,   , 1
, 2,   , 

 a

1

nd 

i i

j j

k k

u u i m
y y j n

u u y y

−

−

← = +
← = +

← ←



  

Determine ,b b
u y  from / /,  b b

u y  with 
/ /, ,  ,b mq mq q b np np pb b

I I× ×   = Θ = Θ   u u y y . 

Set :Q Qµ=  (in scenario of constrained control). 
Go back to step 2. 

It is clear that based on minimizing the objective 
function (16) and since both ,  k kQ R  are positive 
definite, the bigger horizon N  is chosen, the smaller 
tracking error k = −y re  belong current time horizon 
will be. Furthermore, the established control algorithm 
produces monotonously decreasing sequences ke  
and u . Hence, by disregarding system disturbances 
the closed-loop system tends to an equilibrium point. 
Because the closed-loop system with 0d =  is linear 
with a regular system matrix, it has only one 
equilibrium point at origin. Therefore, the control 
algorithm above satisfies 0k →e . 

3. Virtually Real Water Tank Model 
3.1. Physical Model and Its Linearization 

The water tank system diagram set up in Simulink 
is exhibited in Fig.1, where the water level in the tank 
is [ ]h m  and the temperature is [ ]T C° . There are two 
streams of water flowing into the tank: hot water flow 
with flow rate is 3[ ]hF m s  and temperature is  

[ ]hT C° ; cooling water flow with flow rate is 3[ ]cF m s  
and temperature is [ ]cT C° . There is also an outflow 
flow with flow rate 3[ ]oF m s . The system dynamic 
model is described by the two balance equations: mass 
and energy balance. The mass balance equation is 
described as following 

 h c o
dhA F F F
dt

= + −  (20) 

here 2[ ]A m  is cross-sectional area of the tank. 

The energy balance equation is 

 in outU U U= −  (21) 

 

 
Fig.1. MATLAB Simulink Simscape Tank Model 
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Assuming that (i) there is no heat exchange 
between water tank and the environment, (ii) the 
temperature at anywhere inside the tank has the same 
value, we obtain 

 
( )

h h h h

c c c c o

d Ah C T
F C T

dt
F C T F C T

ρ
ρ

ρ ρ

× ×
= × ×

+ × × − × ×
 (22) 

where , ,h cρ ρ ρ  is the density of water in the tank, hot 
water flow, and cooling water flow, , ,h cC C C  is the 
specific heat of water in the tank, hot water flow, and 
cooling water flow. Assume furthermore that 

h cC C C= =  and c hρ ρ ρ= = , then (22) becomes 

⇒ 

( )
h h c c o

h h c c o

d hT
A F T F T F T

dt
dh dTAT Ah F T F T F T
dt dt

= + −

+ = + −  (23) 

The substitution (20) in (23) yields 

⇒ 

( )

( ) ( )

h c o h h c c o

h h c c

dTF F F T Ah F T F T F T
dt

dTAh F T T F T T
dt

+ − + = + −

= − + −  (24) 

From (20) and (24), the dynamics of tank system is 
described as follow 

 
( ) ( )

h c o

h h c c

A h F F
Ah T T T F T T

F
F

 × = + −


× = − + −





 (25) 

The aim of control problem here is to keep the water 
level h  and temperature T  tracking to the set point. 
The simplest solution to this is to linearize the equation 
(25) then apply linear controls methods. The first step 
in linearizing the equations (25) is to approximate 
process variables 

 

;

;h h c ch c

h

F

h h T T T

F FF F F

= + =



+

= + = +








 (26) 

where the bar ( )  is the value at the operating point 
and ( )  is  the term represents incremental variations 
around this point. 

For the simulation, all parameters of system at 
operating point are given as 

0.1[ ]h m= , 45[ ]T C= ° , 5 3[2 ]10cF m s−= ×  

and 

 5 32 10 [ ]hF m s−= × . 

The second step is to find the matrix of transfer 
functions 

 y u= G   (27) 

where 

 




11 12

21 22

,  ,  
h

c

F G G
G

h
y u

F GT




 
= =   
      

 
= 
 

G  . (28) 

The matrix G  can be obtained by considering the 
effects of changes in hot and cool flow rate on the level 
and temperature of water in the tank, respectively. 
With the above parameters, the matrix G  is described 
as following 

 
5 5

31 31

4.9 10 4.9 10
71.5 1 71.5 1

s s

s s

 
 
 =

× − × 
 + + 

G  (29) 

The discretion of this model (27) with sample 
time 1sT s=  implies the input-output mapping 

 1( ) kk z zy u−= G   (30) 

with 

 

1 1

1 1
1

1 1

1 1

31 31
1 1

6805 6805
1 0.9861 1 0.98

)

61

(z

z z
z zz
z z

z z

− −

− −
−

− −

− −

 
 − − =
 −
 − − 

G  (31) 

where l
kz u−
 , r

k
z y−
  denote  k lu − ,

k r
y

−
 , respectively. 

3.2. Initializing AGPC for Water Tank 

Rewrite input-output mapping (30) with matrix 
1( )z z−G  given in (31) in the standard form, which is 

already defined in (1) 

 11,0 ,0

0,

1

0 1,0 ,01

  

  
k k k

k k m

n

m k

kA A d

B B

y y y

u u uB
− −

− −

+ + + +

= + + +

 






  

 (32) 

then there are obtained 2,  2n m= =  and starting 
matrices 1,0 2,0 0,0 1,0 2,0,  ,  ,  ,  A A B B B  as follows 

 
1,0

2,0

1.9861 0
0 1.9861

0.9861 0
0 0.9861

A

A

− 
=  − 
 

=  
 

 (33) 

and 

 
0,0 1,0

2,0

0 0 31 31
;

0 0 6805.45 6805.45

30.57 30.57
6805.45 6805.45

B B

B

   
= =   −   

− − 
=  − 

 (34) 

Since (32) is the linearization model at operation 
point, so the predictive model (10) should be described 
concretely with 
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( )

= + = + +

= + − +

y y Y g

Y u u g

 y y

y

u
 (35) 

where 

1 1

1 1

;  ;  ;  

;  ;  ;  

k k

k k

k N k N

k N k N

k N h k N

c

k k

y y y

y y yh
y

T
y y y

u uu
u uu

u

u uu

ω
ω

+ +

+ +

+ +

+ − + −

     
     

      = = = =      
      

          
    
          = = = =           

    

y

u





  







 







y y

u u

 

with ,  yu  are the vector of dimension ( 1)q N× +  and 

( 1)p N× + ,  respectively.  

The vector g  is defined as 

 
( ) ( )

/

/
1 1

b kb

b kb

d

d

= − −

= − − − −

g B A D

B u A y D

 u y

u y
 (36) 

where:  

 

1 1

2 2
1

1 1

2 2
1

;   ;

; ;  

k k

k k
b b

k m k m

k k

k k
bb

k n k n

u uu
u uu

u uu

yy y

yy y

y y y

− −

− −

− −

− −

− −

− −

    
    
    = = =
    
    

    
    
    
    = = =     
    
         

u u

y

u





 













  

y y

 

with 1 1
,  u y  are the vector of dimension ( 1)q m× +  

and ( 1)p n× + , respectively. 

The vector of disturbances /
kd  is defined as 

below:  

   ( )
( )

/ //
0,0 ,0 1,0 ,0

/
20,0 ,0

/
1,0 ,0 2

, , , , ,

, ,

, , ,

k m b p n b

m b

p n b

d B B I A A

B B

I A A

  = … − …   

 = … − 

 − … − 

u y

u

y

u

y

 (37) 

where:  

 

/ /1
2

11

/ /1
2

1 1

 

 

;  

; 

;

;

bb
bb

k mk m

bb
bb

k n k n

u u

yy

− −− −

− − − −

    
= = =    

    
    

= = =    
        

u
u

y
y













uu
u u

u

yy
y y

y

 

Correspondingly, the objective function (17) becomes 

)( ) ( ( )( )T T
k k kJ Q R= − − + − −y r y r u u u u   (38) 

with 
 ( )1 2 1,v  ec  ,    ,k N k N ku u u+ − + − −=u  . 

4. Simulations and Discussions 

As mentioned before, the control performance of 
the proposed AGPC will be verified through 
simulating and comparing with conventional PID. 

 

 
Fig. 2.  PID optimizing framework. 

 
For the scenario of control with PID, the control 

will be carried out in decentralized mode. In this 
control mode, the control variable – controlled variable 
pairs are selected as follows 

− hot flow rate hF  & level h , 

− cooling flow rate cF  & temperature T . 

The decentralized controller used in the 
simulation is the PI controller. 

 ( ) I
p

kC s k
s

= +  (39) 

The PI controller parameters are selected based 
on minimizing the tracking errors e r y= −  as 
illustrated in Fig. 2, with the cost function 

 
2

0

( ) ( , ) min
T

p
J p e p t dt= →∫  with p

I

k
p

k
 

=  
 

 (40) 

Calculating parameters of the PI controller with 
the transfer function of the controlled variable - the 
control variable loop, it is obtained 

− For the loop level h  & hot flow rate hF  loop 

 




1

5
1

0.0052( ) 31   
( ) 2.3432 10

p

h I

kH
sF

s
s k −

== ⇒ 
= ×

 

− For temperature T  and cooling flow rate cF  loop 

 




55
2

7
2

2.2403 10( ) 4.9 10   
71.5 1( ) 3.1540 10

p

c i

kT s
ss kF

−

−

 = − ×− × = ⇒ 
+ = − ×

 

By implementing AGPC controller there are 
many parameters to select. After some trials, the 
following design parameters are assigned to AGPC  

 

 

  

 

 

Water tank 
PID 

  

Optimization 
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− Sampling time 1[ ]sT s= . 

− Prediction horizon 4N = . 

− Output weight 

 [ ]
repeat for ( 1)  times

diagk

Q N

Q Q Q Q
+

= 



 

with 
67 10 0

0 300
Q

 ×
=  
 

 

− Input weight 

[ ]
repeat for ( 1)  times

diagk

R N

R R R R
+

= …


 

with 
12

12

9 10 0
0 8 10

R
 ×

=  
× 

 

Initial parameters of plant (water tank) are 

 (0) 0.1[ ]h m= , (0) 20[ ]T C= °  and 

 5 3(0) 4 10 [ ]oF m s−= × . 

The set point signal for the level and temperature 
are stepwise functions. 

The simulation has been carried out for two 
separate cases with different simulation times. 

1) Case 1: The set points 

1

1

0.15   khi  0 75
( )

0.2     khi  75 250

20     khi  0 75
( )

50     khi  75 250

sp

sp

m t s
h t

m s t s

t s
T

sC t s
C

t

≤ <
=  ≤ ≤

≤ <
=  ≤ ≤

°
°

 

are for level h  and temperature T , respectively. 

Obtained simulation results for this circumstance 
are exhibited in Fig. 3 and Fig. 4. They confirm that 
AGPC produces a more smooth tracking performance 
with smaller overshoot than the conventional PID, as 
already inferred theoretically before. 

2) Case 2: The set point for output water flow is 
5

4

3

0 3

  khi  0 75
( )

    k0 hi 
4 10
1  75 150

m s t s
F t

m s s t s

−

−

 ≤ <= 
≤ ≤

×


 

Again, all obtained simulation results, by 
applying both controllers PI and AGPC separately, are 
illustrated in Fig. 5 and Fig. 6. They authenticated the 
effectiveness of both controllers that system outputs 
had reached the set points as expected. However, the 
proposed AGPC produced a more precise tracking 

performance with shorter tracking time than by the PI, 
i.e., the AGPC drives system to steady state closer and 
faster. 

 

 
Fig. 3.  Case 1 - Output signals. 

 
Fig. 4.  Case 1 - Input signals. 

 
Fig. 5.  Case 2 - Output signals. 
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Fig. 6.  Case 2 - Input signals. 

Last but not least, all these in Fig. 3 to Fig. 6 
displayed simulation results above with their quick 
reaction of proposed AGPC against system 
disturbances show also that this approach has the 
ability to anticipate future events and can take control 
actions suitably. PID controllers do not have this 
predictive ability. Furthermore, in comparison with 
PID control, the AGPC is more robust and be able to 
account for set bounded disturbance while still 
ensuring state constraints are met. 

5. Conclusion 

This paper presents the comparison between the 
performance of the AGPC controller and the optimal-
parameters PI controller in the two case studies. In case 
study 1, it can be seen that the influence of the control 
channels on each other in use of AGPC controller is 
smaller than when applying conventional PI controller. 
In the case of study 2, the AGPC controller drives 
system output to steady state faster than by the PI 
controller when dynamics of system changes. In both 
cases, simulation results also authenticate that with the 
AGPC controller, the output responses follow the set 
point value with small overshooting and slightly 
steady state error. However, the AGPC controller 
includes too many parameters that need to be carefully 
initialized to archive the best performance. 
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