

JST: Smart Systems and Devices

Volume 32, Issue 1, January 2022, 102-110

102

Low Computational Cost Algorithms for Solving
Variational Inequalities over the Fixed Point Set

Nguyen Thi Dinh*, Dang Hong Linh

Hanoi University of Science and Technology, Hanoi, Vietnam
*Email: dinh.nt211309m@sis.hust.edu.vn

Abstract
The variational inequality problem has many important applications in the fields of signal processing, image
processing, optimal control, and many others. In this paper, we discuss several extragradient-like algorithms
for solving variational inequalities over the fixed point set of a nonexpansive mapping. The considered
methods are based on some existing ones. Our algorithms use dynamic step-sizes, chosen based on
information of previous steps and under the assumptions that the involving mapping is pseudomonotone and
Lipschitz continuous, the sequence generated by our algorithms converges to the desired solution. Compared
with the original extragradient algorithm, the new ones have an advantage: they do not require to compute
any projection onto the feasible set. This feature helps to reduce the computational cost of our methods.
Moreover, to implement the new algorithms, we do not need to know the Lipschitz constant of the involving
mapping. Also, we present some numerical experiments to verify the efficiency of the new algorithms.

Keywords: Variational inequality, Lipschitz continuity, pseudomonotonicity, extragradient algorithm.

1. Introduction

Let*𝐶𝐶 be a nonempty, closed and convex set in
Euclidean space ℝ𝑚𝑚, 𝐴𝐴 : 𝐶𝐶 → 𝐶𝐶 be a mapping. The
variational inequality problem of 𝐴𝐴 on 𝐶𝐶 is:

To find 𝑥𝑥∗ ∈ 𝐶𝐶 such that

〈𝐴𝐴𝑥𝑥∗, 𝑥𝑥 − 𝑥𝑥∗〉 ≥ 0 ∀𝑥𝑥 ∈ 𝐶𝐶. (1)

This problem is an important tool in economics,
operations research, and mathematical physics. It
includes many problems of nonlinear analysis in a
unified form, such as optimization, fixed point
problems, Nash equilibrium problems, saddle point
problems. A lot of algorithms for solving this problem
have been proposed. Among them, the Gradient
projection algorithm is the simplest one:

�
𝑥𝑥0 ∈ 𝐶𝐶,

𝑥𝑥𝑘𝑘+1 = 𝑃𝑃𝐶𝐶�𝑥𝑥𝑘𝑘 − 𝜆𝜆𝐴𝐴(𝑥𝑥𝑘𝑘)�, (2)

where 𝑃𝑃𝐶𝐶(.):ℝ𝑚𝑚 → 𝐶𝐶 is the metric projection from
ℝ𝑚𝑚 onto 𝐶𝐶.

Under the assumptions that 𝐴𝐴 is 𝛾𝛾-strongly
pseudomonotone and 𝐿𝐿-Lipschitz continuous on,
𝜆𝜆 ∈ (0, 2 𝛾𝛾

𝐿𝐿2
), the sequence {𝑥𝑥𝑘𝑘} generated by (2)

converges linearly to the unique solution of the
problem (1). If 𝐴𝐴 is only monotone instead of being
strongly pseudomonotone, the Gradient projection
algorithm, in general, is not convergent. In this case,
the Extragradient algorithm [1] is a typical one for
solving (1):

ISSN: 2734-9373
https://doi.org/10.51316/jst.155.ssad.2021.32.1.13
Received: July 29, 2021 ; accepted: September 10, 2021

�
𝑥𝑥0 ∈ 𝐶𝐶,

𝑦𝑦𝑘𝑘+1 = 𝑃𝑃𝐶𝐶�𝑥𝑥𝑘𝑘 − 𝜆𝜆𝐴𝐴(𝑥𝑥𝑘𝑘)�,
𝑥𝑥𝑘𝑘+1 = 𝑃𝑃𝐶𝐶�𝑥𝑥𝑘𝑘 − 𝜆𝜆𝐴𝐴(𝑦𝑦𝑘𝑘+1)�.

 (3)

Under the conditions that 𝐴𝐴 is pseudomonotone
and 𝐿𝐿-Lipschitz continuous on, 𝜆𝜆 ∈ (0, 1

𝐿𝐿
), algorithm

(3) converges to a solution of (1). This algorithm has
been investigated and developed by a lot of authors,
see [2, 3]. However, it has two drawbacks: First, it
requires to compute the projection onto 𝐶𝐶 twice in each
iteration. This increases the computational cost of the
algorithm if 𝐶𝐶 has a complicated form. Second, to
implement (3), we need to know the Lipschitz constant
𝐿𝐿 of 𝐴𝐴. In practice, this constant can be very difficult
to calculate.

In some real-world models, the feasible set 𝐶𝐶
may not be given in an explicit form. For example, in
[4, 5], Iiduka considered the power control problem
model of CDMA networks. This model leads to a
variational inequality over the fixed point set of a
nonexpansive mapping:

To find 𝑥𝑥∗ ∈ Fix(𝑇𝑇) such that

〈𝐴𝐴𝑥𝑥∗, 𝑥𝑥 − 𝑥𝑥∗〉 ≥ 0 ∀𝑥𝑥 ∈ Fix(𝑇𝑇), (4)

Denote by 𝑆𝑆𝑆𝑆𝑆𝑆(𝐴𝐴, Fix(𝑇𝑇)) the solution set of (4).
To solve this problem, the author proposed the
following Ergodic algorithm:

JST: Smart Systems and Devices

Volume 32, Issue 1, January 2022, 102-110

103

⎩
⎨

⎧ 𝑥𝑥0 ∈ 𝐶𝐶,
 𝑥𝑥𝑘𝑘+1 = 𝑇𝑇�𝑥𝑥𝑘𝑘 − 𝜆𝜆𝑘𝑘𝐴𝐴(𝑥𝑥𝑘𝑘)�,

𝑧𝑧𝑘𝑘 = ∑ 𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖
𝑘𝑘
𝑖𝑖=0
∑ 𝜆𝜆𝑖𝑖𝑘𝑘
𝑖𝑖=0

.
 (5)

Under the assumptions that 𝐴𝐴 is monotone,
∑ 𝜆𝜆𝑖𝑖 = ∞, ∑ 𝜆𝜆𝑖𝑖2 < ∞∞

𝑖𝑖=0
∞
𝑖𝑖=0 and

𝑆𝑆𝑆𝑆𝑆𝑆�𝐴𝐴, Fix(𝑇𝑇)� ⊂ Ω ≔

{𝑧𝑧 ∈ Fix(𝑇𝑇) ∶ 〈𝐴𝐴𝑦𝑦𝑘𝑘 , 𝑧𝑧 − 𝑦𝑦𝑘𝑘〉 ≤ 0 ∀𝑘𝑘 ≥ 𝑘𝑘0}, (6)

the sequence {𝑥𝑥𝑘𝑘} generated by (5) converges to a
desired solution. Compared to (3), the Ergodic
algorithm has a clear advantage: it does not require to
compute any projection onto 𝐶𝐶. However, due to
condition ∑ 𝜆𝜆𝑖𝑖2 < ∞,∞

𝑖𝑖=0 the step size of (5) decreases
very rapidly, and thus, slows down the convergence
rate of this algorithm.

Motivated by the works in [6, 7], in this paper,
we introduce two new algorithms for solving (4). Our
algorithms are designed to inherit the advantages and
overcome the disadvantages of the existing ones.
Namely, in each iteration of the new algorithms, we do
not need to compute any projection onto 𝐶𝐶. Also, the
new algorithms do not require to know the Lipschitz
constant 𝐿𝐿 of the involving mapping. Moreover, the
steps size 𝜆𝜆𝑘𝑘 in the new algorithms need not satisfy the
condition ∑ 𝜆𝜆𝑖𝑖2 < ∞∞

𝑖𝑖=0 . All these features help to
reduce the computational cost and speed up our
algorithms.

This paper is organized as follows. Section 2
presents some notations and preliminary results that
will be used in the sequel. We introduce the algorithms
and establish convergence analysis in Section 3.
Finally, some numerical experiments are reported in
Section 4.

2. Preliminaries

We present some notations and preliminary
results, which will be used in the next sections.
Interested readers can find more details in [1].

Let 𝑥𝑥 ∈ ℝ𝑚𝑚, denote

𝑃𝑃𝐶𝐶(𝑥𝑥) ≔ argmin{‖𝑧𝑧 − 𝑥𝑥‖: 𝑧𝑧 ∈ 𝐶𝐶}.

The mapping 𝑃𝑃𝐶𝐶(.) is called the projection onto 𝐶𝐶.
Since 𝐶𝐶 is closed and convex, this mapping is well
defined for every 𝑥𝑥 ∈ ℝ𝑚𝑚.

It holds that [1]:

(i) ‖𝑃𝑃𝐶𝐶(𝑥𝑥) − 𝑃𝑃𝐶𝐶(𝑦𝑦)‖ ≤ ‖𝑥𝑥 − 𝑦𝑦‖ for all
 𝑥𝑥,𝑦𝑦 ∈ ℝ𝑚𝑚;

(ii) 〈𝑦𝑦 − 𝑃𝑃𝐶𝐶(𝑥𝑥), 𝑥𝑥 − 𝑃𝑃𝐶𝐶(𝑥𝑥)〉 ≤ 0 for all 𝑥𝑥 ∈ ℝ𝑚𝑚,

 𝑦𝑦 ∈ 𝐶𝐶.

A mapping A : ℝm → ℝm is said to be [8]:

 1. pseudomonotone on ℝm if for all 𝑥𝑥, 𝑦𝑦 ∈ ℝm,
we have

〈A(y), x − y〉 ≥ 0 ⟹ 〈A(x), x − y〉 ≥ 0.

 2. γ-strongly pseudomonotone on ℝm if there
exist a constant 𝛾𝛾 ∈ (0,∞) such that for all 𝑥𝑥,𝑦𝑦 ∈ ℝm,
we have

〈A(y), x − y〉 ≥ 0 ⟹ 〈A(x), x − y〉 ≥ γ‖x − y ‖2.

 3. 𝐿𝐿-Lipschitz continuous on ℝm if there exist a
constant 𝐿𝐿 ∈ (0,∞) such that for all 𝑥𝑥, 𝑦𝑦 ∈ ℝm, we
have

‖Ax − Ay ‖ ≤ L‖x − y‖.

If 𝐿𝐿 = 1, then the mapping is called
nonexpansive.

3. Main Results

In this section, we introduce and investigate two
methods to solve variational inequalities over the fixed
point set. The following conditions need to be satisfied
in order to obtain the convergence theorems of the
proposed algorithms.

Assumption 3.1. Consider (4) under the following
assumptions:

 (A1) The mapping 𝐴𝐴 is pseudomonotone on ℝ𝑚𝑚;

 (A2) The mapping 𝐴𝐴 is Lipschitz continuous on
ℝ𝑚𝑚 (with unknown modulus);

 (A3) The mapping 𝑇𝑇 is nonexpansive;

 (A4) 𝑆𝑆𝑆𝑆𝑆𝑆�𝐴𝐴, Fix(𝑇𝑇)� ≠ ∅.

3.1. First algorithm

For solving (4), we propose the following
algorithm:

Algorithm 1.

Step 0. Choose 𝑥𝑥−1, 𝑥𝑥0,𝑦𝑦0 ∈ ℝ𝑚𝑚; 𝜌𝜌, 𝛿𝛿 ∈ (0,1);
 𝜆𝜆−1 ∈ (0,∞). Set 𝑘𝑘 = 0.

Step 1. Given 𝜆𝜆𝑘𝑘−1,𝑦𝑦𝑘𝑘 , and 𝑥𝑥𝑘𝑘.

If 𝜆𝜆𝑘𝑘−1‖𝐴𝐴(𝑥𝑥𝑘𝑘−1) − 𝐴𝐴(𝑦𝑦𝑘𝑘)‖ ≤ 𝜌𝜌‖𝑥𝑥𝑘𝑘−1 − 𝑦𝑦𝑘𝑘‖
then set 𝜆𝜆𝑘𝑘 = 𝜆𝜆𝑘𝑘−1 else set 𝜆𝜆𝑘𝑘 = 𝜆𝜆𝑘𝑘−1𝛿𝛿. Compute

𝑦𝑦𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝜆𝜆𝑘𝑘𝐴𝐴(𝑥𝑥𝑘𝑘)

 𝑧𝑧𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝜆𝜆𝑘𝑘𝐴𝐴(𝑦𝑦𝑘𝑘+1)

 𝑥𝑥𝑘𝑘+1 = 1
2

(𝑧𝑧𝑘𝑘+1 + 𝑇𝑇(𝑧𝑧𝑘𝑘+1)).

Step 2. Update 𝑘𝑘 ≔ 𝑘𝑘 + 1 and GOTO Step 1.

As we can see, in Algorithm 1, we do not need to
calculate any projection. Instead, we just compute the
value of the mapping 𝑇𝑇 once in each iteration. This
feature greatly reduces the computation cost of the
algorithm.

JST: Smart Systems and Devices

Volume 32, Issue 1, January 2022, 102-110

104

Theorem 3.2. Suppose that Assumption 3.1 holds.
Moreover, there exists a number 𝑘𝑘0 ≥ 0 such that (6)
is satisfied. Then, the sequence {𝑥𝑥𝑘𝑘} generated by
Algorithm 1 converges to a solution of (4).

Proof. We divide the proof of Theorem 3.2 into second
steps.

 Claim 1: The sequence {𝑥𝑥𝑘𝑘} is bounded.

Obviously, we have 𝜆𝜆𝑘𝑘+1 ≤ 𝜆𝜆𝑘𝑘 for all 𝑘𝑘 ≥ 0. We
will prove that there exists 𝜖𝜖 > 0 satisfying 𝜆𝜆𝑘𝑘 ≥ 𝜖𝜖 for
all 𝑘𝑘 ≥ 0. Indeed, in the opposite case, i.e.,
lim
𝑘𝑘→∞

𝜆𝜆𝑘𝑘 = 0, there exists a subsequence {𝜆𝜆𝑘𝑘𝑖𝑖} ⊂ {𝜆𝜆𝑘𝑘}
such that

𝜆𝜆𝑘𝑘𝑖𝑖−1‖𝐴𝐴(𝑥𝑥𝑘𝑘𝑖𝑖−1) − 𝐴𝐴(𝑦𝑦𝑘𝑘𝑖𝑖)‖ > 𝜌𝜌‖𝑥𝑥𝑘𝑘𝑖𝑖−1 − 𝑦𝑦𝑘𝑘𝑖𝑖‖.

Let 𝐿𝐿 be the Lipschitz modulus of 𝐴𝐴, it holds that

𝜆𝜆𝑘𝑘𝑖𝑖−1 > 𝜌𝜌 �𝑥𝑥𝑘𝑘𝑖𝑖−1 − 𝑦𝑦𝑘𝑘𝑖𝑖�
�𝐴𝐴�𝑥𝑥𝑘𝑘𝑖𝑖−1� −𝐴𝐴�𝑦𝑦𝑘𝑘𝑖𝑖� �

≥ 𝜌𝜌
𝐿𝐿
 ∀𝑖𝑖 ≥ 0.

This contradicts the assumption that
lim
𝑘𝑘→∞

𝜆𝜆𝑘𝑘 = 0. Thus, there exists a number 𝑘𝑘0 > 0
satisfying 𝜆𝜆𝑘𝑘 = 𝜆𝜆𝑘𝑘0 and

𝜆𝜆𝑘𝑘‖𝐴𝐴(𝑥𝑥𝑘𝑘) − 𝐴𝐴(𝑦𝑦𝑘𝑘+1)‖ ≤ 𝜌𝜌‖𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑘𝑘+1‖

∀𝑘𝑘 ≥ 𝑘𝑘0. (7)

Since 𝑦𝑦𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝜆𝜆𝑘𝑘𝐴𝐴(𝑥𝑥𝑘𝑘), we have

 〈𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘+1 − 𝑧𝑧〉 = 𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑥𝑥𝑘𝑘), 𝑧𝑧 − 𝑦𝑦𝑘𝑘+1〉

∀𝑧𝑧 ∈ ℝ𝑚𝑚. (8)

Analogously, from the definition of 𝑧𝑧𝑘𝑘+1, we obtain

 〈𝑧𝑧
𝑘𝑘+1 − 𝑥𝑥𝑘𝑘, 𝑧𝑧𝑘𝑘+1 − 𝑧𝑧〉 = 𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑧𝑧 − 𝑧𝑧𝑘𝑘+1〉

∀𝑧𝑧 ∈ ℝ𝑚𝑚.

(9)

Thus,

‖𝑧𝑧𝑘𝑘+1 − 𝑧𝑧‖2

= ‖𝑦𝑦𝑘𝑘+1 − 𝑧𝑧‖2 − ‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2

+2 〈𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1, 𝑧𝑧𝑘𝑘+1 − 𝑧𝑧〉

= ‖𝑥𝑥𝑘𝑘 – 𝑧𝑧‖2 − ‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2

−‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2 + 2〈𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1, 𝑧𝑧𝑘𝑘+1 − 𝑧𝑧〉

+2 〈𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘+1 − 𝑧𝑧〉

= ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧‖2 − ‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2

−‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2 + 2〈𝑧𝑧𝑘𝑘+1 − 𝑥𝑥𝑘𝑘, 𝑧𝑧𝑘𝑘+1 − 𝑧𝑧〉

+2 〈𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1〉.

 (10)

Combining (8), (9), and (10) we obtain

‖𝑧𝑧𝑘𝑘+1 − 𝑧𝑧‖2 = ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧‖2 − ‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2

−‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2 + 2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1),−𝑧𝑧𝑘𝑘+1〉

+2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑥𝑥𝑘𝑘), 𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1〉

= ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧‖2 − ‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2

−‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2 + 2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑧𝑧 − 𝑦𝑦𝑘𝑘+1〉

+2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑥𝑥𝑘𝑘) − 𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1〉.

(11)

Combining (7), and (11), for all 𝑘𝑘 ≥ 𝑘𝑘0 and 𝑧𝑧 ∈ ℝ𝑚𝑚,
we get

‖𝑧𝑧𝑘𝑘+1 − 𝑧𝑧‖2 ≤ ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧‖2 − ‖𝑥𝑥𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2

−‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2 + 2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑧𝑧
− 𝑦𝑦𝑘𝑘+1〉

+2𝜆𝜆𝑘𝑘‖𝐴𝐴(𝑥𝑥𝑘𝑘) − 𝐴𝐴(𝑦𝑦𝑘𝑘+1)‖‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖

≤ ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧‖2 − ‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2

−‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 ‖2 + 2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑧𝑧
− 𝑦𝑦𝑘𝑘+1〉

+2𝜌𝜌‖𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑘𝑘+1‖‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖

≤ ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧‖2 − (1 − 𝜌𝜌)‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2

−(1 − 𝜌𝜌)‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2

+ 2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑧𝑧 − 𝑦𝑦𝑘𝑘+1〉. (12)

On the other hand, since 𝑇𝑇 is nonexpansive, for
all 𝑡𝑡 ∈ Fix(𝑇𝑇), it holds that

‖𝑇𝑇𝑧𝑧𝑘𝑘+1 − 𝑡𝑡‖2 = ‖𝑇𝑇𝑧𝑧𝑘𝑘+1 − 𝑇𝑇𝑡𝑡‖2 ≤ ‖𝑧𝑧𝑘𝑘+1 −
𝑡𝑡‖2. (13)

From the definition of 𝑥𝑥𝑘𝑘+1, it follows that
𝑇𝑇𝑧𝑧𝑘𝑘+1 = 2𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1. Combining this and (13), we
have

‖(2𝑥𝑥𝑘𝑘+1 − 2𝑡𝑡) − (𝑧𝑧𝑘𝑘+1 − 𝑡𝑡)‖2 ≤ ‖𝑧𝑧𝑘𝑘+1 − 𝑡𝑡‖2

or equivalently,

‖𝑥𝑥𝑘𝑘+1 − 𝑡𝑡‖2 ≤ 〈𝑥𝑥𝑘𝑘+1 − 𝑡𝑡, 𝑧𝑧𝑘𝑘+1 − 𝑡𝑡〉.

Using the equality

〈𝑎𝑎, 𝑏𝑏〉 =
1
2

(‖𝑎𝑎‖2 + ‖𝑏𝑏‖2 − ‖𝑎𝑎 + 𝑏𝑏‖2),

we have

‖𝑥𝑥𝑘𝑘+1 − 𝑡𝑡‖2 ≤ 1
2

(‖𝑥𝑥𝑘𝑘+1 − 𝑡𝑡‖2+‖𝑧𝑧𝑘𝑘+1 − 𝑡𝑡‖2
−‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1‖2),

or

‖𝑥𝑥𝑘𝑘+1 − 𝑡𝑡‖2 ≤ ‖𝑧𝑧𝑘𝑘+1 − 𝑡𝑡‖2 − ‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1‖2.

 (14)

Combining (12) and (14), for all 𝑡𝑡 ∈ Fix(𝑇𝑇), we have

‖𝑥𝑥𝑘𝑘+1 − 𝑡𝑡‖2 ≤ ‖𝑥𝑥𝑘𝑘 − 𝑡𝑡‖2 − ‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1‖2

−(1 − 𝜌𝜌)‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2

+2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑡𝑡 − 𝑦𝑦𝑘𝑘+1〉

JST: Smart Systems and Devices

Volume 32, Issue 1, January 2022, 102-110

105

−(1 − 𝜌𝜌)‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2. (15)

In (15), letting 𝑡𝑡 = 𝑡𝑡∗ ∈ Ω ≔ {𝑧𝑧 ∈ Fix(𝑇𝑇) ∶
〈𝐴𝐴(𝑦𝑦𝑘𝑘), 𝑧𝑧 − 𝑦𝑦𝑘𝑘〉 ≤ 0 ∀𝑘𝑘 ≥ 𝑘𝑘1}, we have

‖𝑥𝑥𝑘𝑘+1 − 𝑡𝑡∗‖2 ≤ ‖𝑥𝑥𝑘𝑘 − 𝑡𝑡‖2 − ‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1‖2

−(1 − 𝜌𝜌)‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2

−(1 − 𝜌𝜌)‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2.

 (16)

The sequence {𝑥𝑥𝑘𝑘 − 𝑡𝑡∗} in nonincreasing, and
henceforth, being nonnegative, it is convergent.
Moreover, we have

lim
𝑘𝑘→∞

‖𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑘𝑘‖ = lim
𝑘𝑘→∞

‖𝑦𝑦𝑘𝑘 − 𝑧𝑧𝑘𝑘+1‖

 = lim
𝑘𝑘→∞

‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1‖

 = lim
 𝑘𝑘→∞

‖𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖ = 0.

 (17)

It follows that the sequence {𝑥𝑥𝑘𝑘} is bounded, and
hence so are {𝑦𝑦𝑘𝑘} and {𝑧𝑧𝑘𝑘}. There exists a subsequence
{𝑥𝑥𝑘𝑘𝑖𝑖} ⊂ {𝑥𝑥𝑘𝑘} such that 𝑥𝑥𝑘𝑘𝑖𝑖 → 𝑥𝑥𝑘𝑘.

This is end of the proof of Claim 1.

Claim 2: 𝑥𝑥∗ ∈ 𝑆𝑆𝑆𝑆𝑆𝑆�𝐴𝐴, Fix(𝑇𝑇)�.

Since 𝑇𝑇 is nonexpansive, we have

‖𝑇𝑇𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘‖

≤ ‖𝑇𝑇𝑥𝑥𝑘𝑘 − 𝑇𝑇𝑧𝑧𝑘𝑘+1‖+ ‖𝑇𝑇𝑧𝑧𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖

≤ ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧𝑘𝑘+1‖+‖2𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖

≤ ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧𝑘𝑘+1‖+‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1‖+‖𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖.
(18)

Combining (17) and (18), we get ‖𝑇𝑇𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘‖ →
0. Using 𝑥𝑥𝑘𝑘𝑖𝑖 → 𝑥𝑥∗, we obtain 𝑥𝑥∗ ∈ Fix(𝑇𝑇).

On the other hand, from (15), for all 𝑡𝑡 ∈ Fix(𝑇𝑇),
we have

 ‖𝑥𝑥𝑘𝑘+1 − 𝑡𝑡‖2 − ‖𝑥𝑥𝑘𝑘 − 𝑡𝑡‖2 ≤ 2𝜆𝜆𝑘𝑘0〈𝐴𝐴(𝑦𝑦𝑘𝑘), 𝑡𝑡 − 𝑦𝑦𝑘𝑘〉
 ∀𝑘𝑘 ≥ 𝑘𝑘0,

or

〈𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘+1, 𝑥𝑥𝑘𝑘 + 𝑥𝑥𝑘𝑘+1 − 2𝑡𝑡〉

+2𝜆𝜆𝑘𝑘0〈𝐴𝐴(𝑦𝑦𝑘𝑘), 𝑡𝑡 − 𝑦𝑦𝑘𝑘〉 ≥ 0 ∀𝑘𝑘 ≥ 𝑘𝑘0.
(19)

In (19), letting 𝑘𝑘 = 𝑘𝑘𝑖𝑖, taking limit as 𝑖𝑖 → ∞,
noting that ‖𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘+1‖2 → 0, ‖𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑘𝑘‖ → 0, {𝑥𝑥𝑘𝑘}
is bounded and 𝐴𝐴 is continuous, we obtain

〈𝐴𝐴(𝑥𝑥∗), 𝑡𝑡 − 𝑥𝑥∗〉 ≥ 0 ∀𝑡𝑡 ∈ Fix(𝑇𝑇).

Hence, 𝑥𝑥∗ ∈ 𝑆𝑆𝑆𝑆𝑆𝑆�𝐴𝐴, Fix(𝑇𝑇)�. Since the sequence
{‖𝑥𝑥𝑘𝑘 − 𝑥𝑥∗‖} is convergent and 𝑥𝑥𝑘𝑘𝑖𝑖 → 𝑥𝑥∗, we infer that
𝑥𝑥𝑘𝑘 → 𝑥𝑥∗.

This is end of the proof of Claim 2. So,
Theorem 3.2 is proven.

Remark 3.3. Condition (6) was used in many paper on
this topic [5, 6]. Obviously, it is satisfied if there exists
a number 𝑘𝑘0 ≥ 0 such that 𝑦𝑦𝑘𝑘 ∈ Fix(𝑇𝑇) for all 𝑘𝑘 ≥ 0.
In the next corollary, we consider a relaxed version of
this condition.

Corollary 3.4. Suppose that Assumptions (A1)-(A3) in
Assumption 3.1 hold. Moreover, there exists a number
𝑘𝑘0 ≥ 0 such that

𝛺𝛺 ≔ { 𝑧𝑧 ∈ Fix(𝑇𝑇) ∶ 〈𝐴𝐴𝑦𝑦𝑘𝑘 , 𝑧𝑧 − 𝑦𝑦𝑘𝑘〉 ≤ 0

∀𝑘𝑘 ≥ 𝑘𝑘0} ≠ ∅
(20)

Then, problem (4) has at least one solution and each
cluster point of {𝑥𝑥𝑘𝑘} generated by Algorithm 1 is a
solution of this problem.

Proof. The proof of this corollary is inferred directly
from Theorem 3.2 and is therefore omitted.

3.2. Second algorithm

In practice, condition (6) and the nonemptiness of
the solution set of (4) are difficult to verify. We
introduced a modified version of Algorithm 1, in
which, the nonemptiness of the solution set and
convergence of the algorithm are guaranteed by
conditions that are easier to verify.

Algorithm 2.

Step 0. Choose 𝑥𝑥0 ∈ ℝ𝑚𝑚; {𝜆𝜆𝑘𝑘} ∈ (0,∞) satisfying
lim
𝑘𝑘→∞

𝜆𝜆𝑘𝑘 = 0. Set 𝑘𝑘 = 0.

Step 1. Given 𝑥𝑥𝑘𝑘. Compute

𝑦𝑦𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝜆𝜆𝑘𝑘𝐴𝐴(𝑥𝑥𝑘𝑘)

 𝑧𝑧𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝜆𝜆𝑘𝑘𝐴𝐴(𝑦𝑦𝑘𝑘+1)

 𝑥𝑥𝑘𝑘+1 = 1
2

(𝑧𝑧𝑘𝑘+1 + 𝑇𝑇(𝑧𝑧𝑘𝑘+1)).

Step 2. Update 𝑘𝑘 ≔ 𝑘𝑘 + 1 and GOTO Step 1.

Theorem 3.5. Suppose that Assumptions (A1)-(A3) in
Assumption 3.1 hold and the sequence {𝑥𝑥𝑘𝑘} generated
by Algorithm 2 is bounded. Moreover, assume that

 ‖𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖ = 𝑆𝑆(𝜆𝜆𝑘𝑘), (21)

Then, problem (4) has at least one solution and each
cluster point of {𝑥𝑥𝑘𝑘} is a solution of this problem.

Proof. Since {𝑥𝑥𝑘𝑘} is bounded, using the definitions of

𝑦𝑦𝑘𝑘 and 𝑧𝑧𝑘𝑘, we infer that the sequences {𝑦𝑦𝑘𝑘} and {𝑧𝑧𝑘𝑘}
are also bounded. Take 𝜌𝜌 ∈ (0,1) arbitrarily. Since 𝐴𝐴
is Lipschitz continuous and 𝜆𝜆𝑘𝑘 → 0, without loss of
generality, we may assume that

𝜆𝜆𝑘𝑘‖𝐴𝐴(𝑥𝑥𝑘𝑘) − 𝐴𝐴(𝑦𝑦𝑘𝑘+1)‖ ≤ 𝜌𝜌‖𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑘𝑘+1‖ ∀𝑘𝑘 ≥ 0.

JST: Smart Systems and Devices

Volume 32, Issue 1, January 2022, 102-110

106

Applying similar arguments that led us to (15),
for all 𝑡𝑡 ∈ Fix(𝑇𝑇), we have

‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1 ‖2 + (1 − 𝜌𝜌)‖𝑧𝑧𝑘𝑘+1 + 𝑦𝑦𝑘𝑘+1‖2

+(1 − 𝜌𝜌)‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2

≤ 〈𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘+1, 𝑥𝑥𝑘𝑘 + 𝑥𝑥𝑘𝑘+1 − 2𝑡𝑡〉

+2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑡𝑡 − 𝑦𝑦𝑘𝑘+1〉.

 (22)

Since 𝜆𝜆𝑘𝑘 → 0, ‖𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖ = 𝑆𝑆(𝜆𝜆𝑘𝑘) and {𝑦𝑦𝑘𝑘} is
bounded, the right hand side term of (22) tends to zero.
Thus,

lim
𝑘𝑘→∞

‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1‖ = lim
𝑘𝑘→∞

‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖

= lim
𝑘𝑘→∞

‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖ = 0.

(23)

Let �𝑥𝑥𝑘𝑘𝑗𝑗� is a subsequence of {𝑥𝑥𝑘𝑘} satisfying
lim
𝑗𝑗→∞

𝑥𝑥𝑘𝑘𝑗𝑗 = �̅�𝑥. We will prove that �̅�𝑥 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆�𝐴𝐴, Fix(𝑇𝑇)�.

Using (23) and similar arguments that led us to (18),
we have �̅�𝑥 ∈ Fix(𝑇𝑇). From (22), we have

 〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑡𝑡 − 𝑦𝑦𝑘𝑘+1〉

≥ −
‖𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘+1‖‖𝑥𝑥𝑘𝑘 + 𝑥𝑥𝑘𝑘+1 − 2𝑡𝑡‖

2𝜆𝜆𝑘𝑘
.

 (24)

In (24), let 𝑘𝑘 = 𝑘𝑘𝑖𝑖 and take the limit as 𝑗𝑗 → ∞.
Noting that ‖𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖ = 𝑆𝑆(𝜆𝜆𝑘𝑘) and ‖𝑦𝑦𝑘𝑘+1 −
𝑥𝑥𝑘𝑘‖ → 0, we have

〈𝐴𝐴(�̅�𝑥), 𝑡𝑡 − �̅�𝑥〉 ≥ 0 ∀𝑡𝑡 ∈ Fix(𝑇𝑇).

4. Numerical Experiments

In this section, we present two numerical
examples to verify the effectiveness of the proposed
algorithms. Also, we compare our algorithms with
some existing ones. Numerical experiments were
conducted using Matlab version R2014, running on a
PC with CPU i3 4150 and 8GB Ram.

Example 1. Let 𝑇𝑇 ≔ 2𝑃𝑃𝐶𝐶 − 𝐼𝐼 where

𝐶𝐶 ≔ {𝑥𝑥 ∈ ℝ𝑚𝑚:𝐷𝐷𝑥𝑥 ≤ 𝑏𝑏, 𝑥𝑥𝑖𝑖 ≥ −1 ∀𝑖𝑖 = 1, … ,𝑚𝑚}.

𝐷𝐷 =

⎝

⎜
⎛

0 1 1
1 0 1
1 1 0

⋯
⋯
⋯

1
1
1

⋮ ⋮ ⋮ ⋮ ⋮
1 1 1 ⋯ 0⎠

⎟
⎞

, 𝑏𝑏 =

⎝

⎜
⎛

1
1
1
⋮
1⎠

⎟
⎞

.

𝐼𝐼 is the identity mapping on ℝ𝑚𝑚, 𝐴𝐴 : ℝ𝑚𝑚 → ℝ𝑚𝑚,
𝐴𝐴(𝑥𝑥) = 𝑥𝑥 for all 𝑥𝑥 ∈ ℝ𝑚𝑚. It is easily seen that
Assumption 3.1 is satisfied and 𝑥𝑥∗ = (0, 0, 0, 0, 0)⊤ is
the unique solution of (4). From the definition of 𝑦𝑦𝑘𝑘,
we get

𝑦𝑦𝑘𝑘+1 = (1 − 𝜆𝜆𝑘𝑘)𝑥𝑥𝑘𝑘.

Since 𝑥𝑥𝑘𝑘 ∈ Fix(𝑇𝑇), it implies that 𝑦𝑦𝑘𝑘 ∈ Fix(𝑇𝑇)
for all 𝑘𝑘 ≥ 1, and hence, Condition (6) holds.

We compare Algorithm 1 with the Extragradient
algorithm (EGD) and the Ergodic algorithm (ERG).

The parameters of these algorithms are chosen as
follows:

• In our algorithm, we choose 𝜌𝜌 = 𝛿𝛿 = 0.7,
𝜆𝜆−1 = 1;

• In (EGD), since 𝐿𝐿 = 1, it implies that
𝜆𝜆 ∈ (0,1). We have tested this algorithm with
𝜆𝜆 = 0.1, 0.2, … , 0.9 and found that the
algorithm seems to perform best with 𝜆𝜆 = 0.5.
We will use this value of the parameter in our
comparisons.

• In (ERG), we choose 𝜆𝜆𝑘𝑘 = 1
𝑘𝑘+1

 for all 𝑘𝑘 ≥ 0.

In all the algorithms, we use the same stopping
rule 𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒 ≤ 10−3, where 𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒 = ‖𝑥𝑥𝑘𝑘 − 𝑥𝑥∗‖ in
Algorithm 2, (EGD) and 𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒 = ‖𝑧𝑧𝑘𝑘 − 𝑥𝑥∗‖ in
(ERG), the same starting point 𝑥𝑥0, which is randomly
generated. We have tested the algorithms with
different 𝑚𝑚. The results are presented in Table 1,
Fig. 1, Fig. 2. (Dash (-) indicates that the
computational time of the algorithm is greater than 200
seconds). We can see that our algorithm shows a better
behavior in terms of computational time.

Table 1. Performance of the three algorithms in Example 4.1.

 (EGD) (ERG) Alg. 1
Times[s] Iter. Times[s] Iter. Times[s] Iter.

𝑚𝑚 = 5 0.2170 28 - - 0.1155 34
𝑚𝑚 = 50 0.4398 32 - - 0.2700 39
𝑚𝑚 = 100 1.7870 34 - - 1.0327 41
𝑚𝑚 = 200 11.4278 35 - - 6.7803 42
𝑚𝑚 = 500 163.3687 36 - - 109.3060 44

JST: Smart Systems and Devices

Volume 32, Issue 1, January 2022, 102-110

107

 Fig. 1. Performance of the three algorithms in Example 4.1, 𝑚𝑚 = 5 and 𝑚𝑚 = 50

Fig. 2. Performance of the three algorithms in Example 4.1, 𝑚𝑚 = 100 and 𝑚𝑚 = 200

Example 2. We compare Algorithm 2 with
(EGD) and (ERG) in the following problem:

𝑇𝑇 = 2𝑃𝑃𝐶𝐶 − 𝐼𝐼,

𝐶𝐶 ≔ {𝑥𝑥 ∈ ℝ𝑚𝑚: 2𝑥𝑥12 + 𝑥𝑥22 + ⋯+ 𝑥𝑥𝑚𝑚2 ≤ 1},

𝐴𝐴 : ℝm → ℝm, 𝐴𝐴(𝑥𝑥) = 𝐵𝐵𝑥𝑥,

where 𝐵𝐵 = (𝑏𝑏𝑖𝑖𝑗𝑗)𝑚𝑚×𝑛𝑛,

𝑏𝑏𝑖𝑖𝑗𝑗 = �
1 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑗𝑗 𝑆𝑆𝑒𝑒 𝑗𝑗 < 𝑖𝑖 = 𝑚𝑚 − 𝑗𝑗,
−1 𝑖𝑖𝑖𝑖 𝑖𝑖 < 𝑗𝑗 = 𝑚𝑚 − 𝑖𝑖,
0 𝑆𝑆𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒.

It is easily seen that all the convergence
conditions of the algorithms are satisfied and
𝑆𝑆𝑆𝑆𝑆𝑆�𝐴𝐴, Fix(𝑇𝑇)� = {𝑥𝑥∗ = (0, 0, … , 0)⊤}, 𝐿𝐿 = 1. We
implement the algorithms with the following
parameters:

 1. In Algorithm 2, we choose 𝜆𝜆𝑘𝑘 = 1
𝑘𝑘+1

;

 2. In (EGD), 𝜆𝜆 = 0.5;

 3. In (ERG), 𝜆𝜆𝑘𝑘 = 1
𝑘𝑘+1

 and 𝑇𝑇 = 𝑃𝑃𝐶𝐶 .

In Algorithm 2, to verify condition (21), we
investigate the sequence 𝛼𝛼𝑘𝑘 ≔

�𝑥𝑥𝑘𝑘+1−𝑥𝑥𝑘𝑘�
𝜆𝜆𝑘𝑘

. The
behavior of this sequence is presented in Fig. 3(b),
4(b), 5(b), 6(b), 7(b). From these figures, we see that
𝛼𝛼𝑘𝑘 → 0, and thus, condition (21) is satisfied. In the
three algorithms, we use the same starting point 𝑥𝑥0,
which is randomly generated and the same stopping
rule 𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒 ≤ 10−3, where 𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒 = ‖𝑥𝑥𝑘𝑘 − 𝑥𝑥∗‖ in
Algorithm 2, (EGD) and 𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒 = ‖𝑧𝑧𝑘𝑘 − 𝑥𝑥∗‖ in
(ERG). The comparisons are presented in Fig. 3(a),
4(a), 5(a), 6(a), 7(a). We can see that the new algorithm
shows a better behavior in terms of computational
time.

JST: Smart Systems and Devices
Volume 32, Issue 1, January 2022, 102-110

108

Fig. 3. Performance of the three algorithms in Example 4.2, 𝑚𝑚 = 5

Fig. 4. Performance of the three algorithms in Example 4.2, 𝑚𝑚 = 5

Fig. 5. Performance of the three algorithms in Example 4.2, 𝑚𝑚 = 100

JST: Smart Systems and Devices
Volume 32, Issue 1, January 2022, 102-110

109

Fig. 6. Performance of the three algorithms in Example 4.2, 𝑚𝑚 = 200

Fig. 7. Performance of the three algorithms in Example 4.2, 𝑚𝑚 = 500

5. Conclusion

In this paper, we have introduced two algorithms
for solving variational inequalities over the fixed point
set of a nonexpansive mapping. The new algorithms
can be considered as improved versions of some
existing ones. The main advantage of the new
algorithms is that they do not require to perform any
projection in their steps. This feature helps greatly to
reduce the computational cost of the proposed
algorithms. Moreover, our algorithm does not require
to know the Lipschitz constant of the involving
mapping. Also, we have performed some numerical
experiments to test the effectiveness of these
algorithms.

References

[1] G. M. Korpelevich, The extragradient method for
finding saddle points and other problems, Ekon. Mat.
Metody, vol. 12, pp. 207-216, 1922.

[2] T. N. Hai, A simple fork algorithm for solving
pseudomonotone non-Lipschitz variational inequalities,
Int. J. Comput. Math., vol. 98, no. 9, pp. 1807-1820,
2020.
https://doi.org/10.1080/00207160.2020.1847279

[3] T. N. Hai, Two modified extragradient algorithms for
solving variational inequalities, J. Global Optim., vol.
24, pp. 91-106, 2020.
http://doi.org/10.1007/s10898-020-00895-y

[4] H. Iiduka, A new iterative algorithm for the variational
inequality problem over the fixed point set of a firmly
nonexpansive mapping, Optimization, vol. 59, no. 6,
pp. 819-885, 2010.
https://doi.org/10.1080/02331930902884158

[5] H. Iiduka, Fixed point optimization algorithm and its
application to power control in CDMA data networks,
Math. Program., vol. 133, pp. 227-242, 2012.
https://doi.org/10.1007/s10107-010-0427-x

[6] H. Iiduka, I. Yamada, An ergodic algorithm for the
power-control games for CDMA data networks, J.
Math. Model. Algorithms, vol. 8, no. 1, pp. 1-18, 2019.
https://doi.org/10.1007/s10852-008-9099-4

[7] N. T. T. Thuy, Regularization methods and iterative
methods for variational inequality with accretive
operator, Acta Math. Vietnam., vol. 41, pp. 55-68,
2016.
https://doi.org/10.1134/S0965542512110103

[8] P. K. Anh, N. T. Vinh,, Self-adaptive gradient
projection algorithms for variational inequalities

https://doi.org/10.1080/00207160.2020.1847279

JST: Smart Systems and Devices
Volume 32, Issue 1, January 2022, 102-110

110

involving non-Lipschitz continuous operators, Numer
Algorithms, pp. 983-1001, 2019.
https://doi.org/10.1007/s11075-018-0578-z

[9] J. Y. Bello Cruz, A. N. Iusem, Convergence of direct
methods for paramonotone variational inequalities,
Comput. Optim. Appl., vol. 46, pp. 247-263, 2010.
https://doi.org/10.1007/s10589-009-9246-5

[10] N. Buong, N. S. Ha, N. T. T. Thuy, A new explicit
iteration method for a class of variational inequalities,
Numer Algorithms, vol. 18, pp. 467-481, 2016.
https://doi.org/10.1007/s11075-015-0056-9

[11] P. D. Khanh, P. T. Vuong, Modified projection method
for strongly pseudomonotone variational inequalities, J.

Global Optim., vol. 58, pp. 341-350, 2014.
https://doi.org/10.1007/s10898-013-0042-5

[12] G. M. Korpelevich, The extragradient method for
finding saddle points and other problems, Ekon. Mat.
Metody, vol. 12, pp. 207-216, 1922.

[13] N. T. T. Thuy, P. T. Hieu, J. J. Strodiot, Regularization
methods for accretive variational inequalities over the
set of common fixed points of nonexpansive
semigroups, Optimization, vol. 65, pp. 1553-1567,
2016.
https://doi.org/10.1080/02331934.2016.1166501

	Abstract
	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Numerical Experiments
	References

