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Abstract 
The variational inequality problem has many important applications in the fields of signal processing, image 
processing, optimal control, and many others. In this paper, we discuss several extragradient-like algorithms 
for solving variational inequalities over the fixed point set of a nonexpansive mapping. The considered 
methods are based on some existing ones. Our algorithms use dynamic step-sizes, chosen based on 
information of previous steps and under the assumptions that the involving mapping is pseudomonotone and 
Lipschitz continuous, the sequence generated by our algorithms converges to the desired solution. Compared 
with the original extragradient algorithm, the new ones have an advantage: they do not require to compute 
any projection onto the feasible set. This feature helps to reduce the computational cost of our methods. 
Moreover, to implement the new algorithms, we do not need to know the Lipschitz constant of the involving 
mapping. Also, we present some numerical experiments to verify the efficiency of the new algorithms. 
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1. Introduction 

Let*𝐶𝐶 be a nonempty, closed and convex set in 
Euclidean space ℝ𝑚𝑚, 𝐴𝐴 : 𝐶𝐶 → 𝐶𝐶 be a mapping. The 
variational inequality problem of  𝐴𝐴 on 𝐶𝐶 is: 

To find 𝑥𝑥∗ ∈ 𝐶𝐶 such that 

〈𝐴𝐴𝑥𝑥∗, 𝑥𝑥 − 𝑥𝑥∗〉 ≥ 0 ∀𝑥𝑥 ∈ 𝐶𝐶.             (1)         

This problem is an important tool in economics, 
operations research, and mathematical physics. It 
includes many problems of nonlinear analysis in a 
unified form, such as optimization, fixed point 
problems, Nash equilibrium problems, saddle point 
problems. A lot of algorithms for solving this problem 
have been proposed. Among them, the Gradient 
projection algorithm is the simplest one: 

�
𝑥𝑥0 ∈ 𝐶𝐶,

𝑥𝑥𝑘𝑘+1 = 𝑃𝑃𝐶𝐶�𝑥𝑥𝑘𝑘 − 𝜆𝜆𝐴𝐴(𝑥𝑥𝑘𝑘)�,  (2) 

where 𝑃𝑃𝐶𝐶(. ):ℝ𝑚𝑚 → 𝐶𝐶 is the metric projection from 
ℝ𝑚𝑚 onto 𝐶𝐶. 

Under the assumptions that 𝐴𝐴 is 𝛾𝛾-strongly 
pseudomonotone and 𝐿𝐿-Lipschitz continuous on,  
𝜆𝜆 ∈ (0, 2 𝛾𝛾

𝐿𝐿2
), the sequence {𝑥𝑥𝑘𝑘} generated by (2) 

converges linearly to the unique solution of the 
problem (1). If 𝐴𝐴 is only monotone instead of being 
strongly pseudomonotone, the Gradient projection 
algorithm, in general, is not convergent. In this case, 
the Extragradient algorithm [1] is a typical one for 
solving (1): 
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�
𝑥𝑥0 ∈ 𝐶𝐶,

𝑦𝑦𝑘𝑘+1 = 𝑃𝑃𝐶𝐶�𝑥𝑥𝑘𝑘 − 𝜆𝜆𝐴𝐴(𝑥𝑥𝑘𝑘)�,
𝑥𝑥𝑘𝑘+1 = 𝑃𝑃𝐶𝐶�𝑥𝑥𝑘𝑘 − 𝜆𝜆𝐴𝐴(𝑦𝑦𝑘𝑘+1)�.

                        (3) 

Under the conditions that 𝐴𝐴 is   pseudomonotone 
and 𝐿𝐿-Lipschitz continuous on, 𝜆𝜆 ∈ (0, 1

𝐿𝐿
), algorithm 

(3) converges to a solution of (1). This algorithm has 
been investigated and developed by a lot of authors, 
see [2, 3]. However, it has two drawbacks: First, it 
requires to compute the projection onto 𝐶𝐶 twice in each 
iteration. This increases the computational cost of the 
algorithm if 𝐶𝐶 has a complicated form. Second, to 
implement (3), we need to know the Lipschitz constant 
𝐿𝐿 of  𝐴𝐴. In practice, this constant can be very difficult 
to calculate. 

In some real-world models, the feasible set 𝐶𝐶  
may not be given in an explicit form. For example, in 
[4, 5], Iiduka considered the power control problem 
model of CDMA networks. This model leads to a 
variational inequality over the fixed point set of a 
nonexpansive mapping:  

To find 𝑥𝑥∗ ∈ Fix(𝑇𝑇) such that 

〈𝐴𝐴𝑥𝑥∗, 𝑥𝑥 − 𝑥𝑥∗〉 ≥ 0  ∀𝑥𝑥 ∈ Fix(𝑇𝑇),            (4) 

Denote by 𝑆𝑆𝑆𝑆𝑆𝑆(𝐴𝐴, Fix(𝑇𝑇)) the solution set of (4). 
To solve this problem, the author proposed the 
following Ergodic algorithm: 
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⎩
⎨

⎧ 𝑥𝑥0 ∈ 𝐶𝐶,
       𝑥𝑥𝑘𝑘+1 = 𝑇𝑇�𝑥𝑥𝑘𝑘 − 𝜆𝜆𝑘𝑘𝐴𝐴(𝑥𝑥𝑘𝑘)�,

𝑧𝑧𝑘𝑘 = ∑ 𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖
𝑘𝑘
𝑖𝑖=0
∑ 𝜆𝜆𝑖𝑖𝑘𝑘
𝑖𝑖=0

.
                     (5)              

Under the assumptions that 𝐴𝐴 is monotone, 
∑ 𝜆𝜆𝑖𝑖 =  ∞, ∑ 𝜆𝜆𝑖𝑖2 <  ∞∞

𝑖𝑖=0
∞
𝑖𝑖=0  and 

𝑆𝑆𝑆𝑆𝑆𝑆�𝐴𝐴, Fix(𝑇𝑇)� ⊂  Ω ≔  

{𝑧𝑧 ∈  Fix(𝑇𝑇) ∶ 〈𝐴𝐴𝑦𝑦𝑘𝑘 , 𝑧𝑧 − 𝑦𝑦𝑘𝑘〉  ≤ 0   ∀𝑘𝑘 ≥ 𝑘𝑘0},    (6) 

the sequence {𝑥𝑥𝑘𝑘} generated by (5) converges to a 
desired solution. Compared to (3), the Ergodic 
algorithm has a clear advantage: it does not require to 
compute any projection onto 𝐶𝐶. However, due to 
condition ∑ 𝜆𝜆𝑖𝑖2 <  ∞,∞

𝑖𝑖=0  the step size of (5) decreases 
very rapidly, and thus, slows down the convergence 
rate of this algorithm. 

Motivated by the works in [6, 7], in this paper, 
we introduce two new algorithms for solving (4). Our 
algorithms are designed to inherit the advantages and 
overcome the disadvantages of the existing ones. 
Namely, in each iteration of the new algorithms, we do 
not need to compute any projection onto 𝐶𝐶. Also, the 
new algorithms do not require to know the Lipschitz 
constant 𝐿𝐿 of the involving mapping. Moreover, the 
steps size 𝜆𝜆𝑘𝑘 in the new algorithms need not satisfy the 
condition ∑ 𝜆𝜆𝑖𝑖2 <  ∞∞

𝑖𝑖=0 . All these features help to 
reduce the computational cost and speed up our 
algorithms. 

This paper is organized as follows. Section 2 
presents some notations and preliminary results that 
will be used in the sequel. We introduce the algorithms 
and establish convergence analysis in Section 3. 
Finally, some numerical experiments are reported in 
Section 4. 

2. Preliminaries 

We present some notations and preliminary 
results, which will be used in the next sections. 
Interested readers can find more details in [1]. 

Let 𝑥𝑥 ∈ ℝ𝑚𝑚, denote  

𝑃𝑃𝐶𝐶(𝑥𝑥) ≔ argmin{‖𝑧𝑧 −  𝑥𝑥‖: 𝑧𝑧 ∈ 𝐶𝐶}. 

The mapping 𝑃𝑃𝐶𝐶(. )  is called the projection onto 𝐶𝐶. 
Since 𝐶𝐶 is closed and convex, this mapping is well 
defined for every 𝑥𝑥 ∈ ℝ𝑚𝑚. 

It holds that [1]:  

(i) ‖𝑃𝑃𝐶𝐶(𝑥𝑥) − 𝑃𝑃𝐶𝐶(𝑦𝑦)‖ ≤ ‖𝑥𝑥 − 𝑦𝑦‖  for all 
 𝑥𝑥,𝑦𝑦 ∈ ℝ𝑚𝑚; 

(ii) 〈𝑦𝑦 − 𝑃𝑃𝐶𝐶(𝑥𝑥), 𝑥𝑥 − 𝑃𝑃𝐶𝐶(𝑥𝑥)〉 ≤ 0  for all 𝑥𝑥 ∈ ℝ𝑚𝑚, 

 𝑦𝑦 ∈ 𝐶𝐶. 

A mapping A : ℝm → ℝm  is said to be [8]: 

 1. pseudomonotone on ℝm if for all 𝑥𝑥, 𝑦𝑦 ∈ ℝm, 
we have 

〈A(y), x − y〉 ≥ 0 ⟹ 〈A(x), x − y〉 ≥ 0. 

 2. γ-strongly pseudomonotone on ℝm if there 
exist a constant 𝛾𝛾 ∈ (0,∞) such that for all 𝑥𝑥,𝑦𝑦 ∈ ℝm, 
we have 

〈A(y), x − y〉 ≥ 0 ⟹  〈A(x), x − y〉 ≥ γ‖x − y ‖2. 

 3. 𝐿𝐿-Lipschitz continuous on ℝm if there exist a 
constant 𝐿𝐿 ∈ (0,∞) such that for all 𝑥𝑥, 𝑦𝑦 ∈ ℝm, we 
have 

‖Ax − Ay ‖ ≤  L‖x − y‖. 

If 𝐿𝐿 = 1, then the mapping is called 
nonexpansive. 

3. Main Results 

In this section, we introduce and investigate two 
methods to solve variational inequalities over the fixed 
point set. The following conditions need to be satisfied 
in order to obtain the convergence theorems of the 
proposed algorithms. 

Assumption 3.1. Consider (4) under the following 
assumptions: 

 (A1) The mapping 𝐴𝐴 is pseudomonotone on ℝ𝑚𝑚; 

 (A2) The mapping 𝐴𝐴 is Lipschitz continuous on 
ℝ𝑚𝑚 (with unknown modulus); 

 (A3) The mapping 𝑇𝑇 is nonexpansive; 

 (A4) 𝑆𝑆𝑆𝑆𝑆𝑆�𝐴𝐴, Fix(𝑇𝑇)� ≠ ∅. 

3.1. First algorithm  

For solving (4), we propose the following 
algorithm: 

Algorithm 1. 

Step 0. Choose 𝑥𝑥−1, 𝑥𝑥0,𝑦𝑦0 ∈ ℝ𝑚𝑚; 𝜌𝜌, 𝛿𝛿 ∈ (0,1); 
 𝜆𝜆−1 ∈ (0,∞). Set 𝑘𝑘 = 0. 

Step 1. Given 𝜆𝜆𝑘𝑘−1,𝑦𝑦𝑘𝑘 , and 𝑥𝑥𝑘𝑘. 

If  𝜆𝜆𝑘𝑘−1‖𝐴𝐴(𝑥𝑥𝑘𝑘−1) − 𝐴𝐴(𝑦𝑦𝑘𝑘)‖ ≤ 𝜌𝜌‖𝑥𝑥𝑘𝑘−1 − 𝑦𝑦𝑘𝑘‖ 
then set 𝜆𝜆𝑘𝑘 = 𝜆𝜆𝑘𝑘−1 else set 𝜆𝜆𝑘𝑘 = 𝜆𝜆𝑘𝑘−1𝛿𝛿. Compute 

𝑦𝑦𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝜆𝜆𝑘𝑘𝐴𝐴(𝑥𝑥𝑘𝑘) 

                          𝑧𝑧𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝜆𝜆𝑘𝑘𝐴𝐴(𝑦𝑦𝑘𝑘+1) 

        𝑥𝑥𝑘𝑘+1 = 1
2

(𝑧𝑧𝑘𝑘+1 + 𝑇𝑇(𝑧𝑧𝑘𝑘+1)). 

Step 2. Update 𝑘𝑘 ≔ 𝑘𝑘 + 1 and GOTO Step 1.       

As we can see, in Algorithm 1, we do not need to 
calculate any projection. Instead, we just compute the 
value of the mapping 𝑇𝑇 once in each iteration. This 
feature greatly reduces the computation cost of the 
algorithm. 
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Theorem 3.2. Suppose that Assumption 3.1 holds. 
Moreover, there exists a number 𝑘𝑘0 ≥ 0 such that (6) 
is satisfied. Then, the sequence {𝑥𝑥𝑘𝑘} generated by 
Algorithm 1 converges to a solution of (4). 

Proof. We divide the proof of Theorem 3.2 into second 
steps. 

 Claim 1: The sequence {𝑥𝑥𝑘𝑘} is bounded. 

Obviously, we have 𝜆𝜆𝑘𝑘+1 ≤ 𝜆𝜆𝑘𝑘 for all 𝑘𝑘 ≥ 0. We 
will prove that there exists 𝜖𝜖 > 0 satisfying 𝜆𝜆𝑘𝑘 ≥  𝜖𝜖 for 
all 𝑘𝑘 ≥ 0.  Indeed,  in the opposite case, i.e.,  
lim
𝑘𝑘→∞

𝜆𝜆𝑘𝑘 = 0, there exists a subsequence {𝜆𝜆𝑘𝑘𝑖𝑖} ⊂ {𝜆𝜆𝑘𝑘}  
such that 

𝜆𝜆𝑘𝑘𝑖𝑖−1‖𝐴𝐴(𝑥𝑥𝑘𝑘𝑖𝑖−1) − 𝐴𝐴(𝑦𝑦𝑘𝑘𝑖𝑖)‖ >  𝜌𝜌‖𝑥𝑥𝑘𝑘𝑖𝑖−1 −  𝑦𝑦𝑘𝑘𝑖𝑖‖. 

Let 𝐿𝐿 be the Lipschitz modulus of 𝐴𝐴, it holds that 

𝜆𝜆𝑘𝑘𝑖𝑖−1 > 𝜌𝜌 �𝑥𝑥𝑘𝑘𝑖𝑖−1 − 𝑦𝑦𝑘𝑘𝑖𝑖�
�𝐴𝐴�𝑥𝑥𝑘𝑘𝑖𝑖−1� −𝐴𝐴�𝑦𝑦𝑘𝑘𝑖𝑖� �

≥ 𝜌𝜌
𝐿𝐿
  ∀𝑖𝑖 ≥ 0. 

This contradicts the assumption that 
lim
𝑘𝑘→∞

𝜆𝜆𝑘𝑘 = 0. Thus, there exists a number 𝑘𝑘0 > 0 
satisfying 𝜆𝜆𝑘𝑘 = 𝜆𝜆𝑘𝑘0  and 

𝜆𝜆𝑘𝑘‖𝐴𝐴(𝑥𝑥𝑘𝑘) − 𝐴𝐴(𝑦𝑦𝑘𝑘+1)‖ ≤  𝜌𝜌‖𝑥𝑥𝑘𝑘 −  𝑦𝑦𝑘𝑘+1‖ 

∀𝑘𝑘 ≥ 𝑘𝑘0.      (7) 

Since 𝑦𝑦𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝜆𝜆𝑘𝑘𝐴𝐴(𝑥𝑥𝑘𝑘), we have 

 〈𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘+1 − 𝑧𝑧〉 = 𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑥𝑥𝑘𝑘), 𝑧𝑧 − 𝑦𝑦𝑘𝑘+1〉 

∀𝑧𝑧 ∈ ℝ𝑚𝑚.             (8) 

Analogously, from the definition of 𝑧𝑧𝑘𝑘+1, we obtain 

       〈𝑧𝑧
𝑘𝑘+1 − 𝑥𝑥𝑘𝑘, 𝑧𝑧𝑘𝑘+1 − 𝑧𝑧〉 = 𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑧𝑧 − 𝑧𝑧𝑘𝑘+1〉 

∀𝑧𝑧 ∈ ℝ𝑚𝑚.
 

(9) 

Thus, 

‖𝑧𝑧𝑘𝑘+1 − 𝑧𝑧‖2 

=  ‖𝑦𝑦𝑘𝑘+1 − 𝑧𝑧‖2 − ‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2 

+2 〈𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1, 𝑧𝑧𝑘𝑘+1 − 𝑧𝑧〉 

= ‖𝑥𝑥𝑘𝑘 – 𝑧𝑧‖2 − ‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2 

−‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2 + 2〈𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1, 𝑧𝑧𝑘𝑘+1 − 𝑧𝑧〉 

+2 〈𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘+1 − 𝑧𝑧〉 

= ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧‖2 − ‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2 

−‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2 + 2〈𝑧𝑧𝑘𝑘+1 − 𝑥𝑥𝑘𝑘, 𝑧𝑧𝑘𝑘+1 − 𝑧𝑧〉 

+2 〈𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1〉. 

        (10) 

Combining (8), (9), and (10) we obtain 

‖𝑧𝑧𝑘𝑘+1 − 𝑧𝑧‖2 = ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧‖2 − ‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2 

−‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2 + 2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1),−𝑧𝑧𝑘𝑘+1〉 

+2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑥𝑥𝑘𝑘), 𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1〉 

= ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧‖2 − ‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2 

−‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2 + 2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑧𝑧 − 𝑦𝑦𝑘𝑘+1〉 

+2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑥𝑥𝑘𝑘) − 𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1〉. 

(11) 

Combining (7), and (11), for all 𝑘𝑘 ≥ 𝑘𝑘0 and  𝑧𝑧 ∈ ℝ𝑚𝑚, 
we get 

‖𝑧𝑧𝑘𝑘+1 − 𝑧𝑧‖2 ≤ ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧‖2 − ‖𝑥𝑥𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2 

−‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2 + 2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑧𝑧
− 𝑦𝑦𝑘𝑘+1〉 

+2𝜆𝜆𝑘𝑘‖𝐴𝐴(𝑥𝑥𝑘𝑘) − 𝐴𝐴(𝑦𝑦𝑘𝑘+1)‖‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖ 

≤ ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧‖2 − ‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2 

−‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 ‖2 + 2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑧𝑧
− 𝑦𝑦𝑘𝑘+1〉 

+2𝜌𝜌‖𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑘𝑘+1‖‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖ 

≤ ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧‖2 − (1 − 𝜌𝜌)‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2 

−(1 − 𝜌𝜌)‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2 

+ 2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑧𝑧 − 𝑦𝑦𝑘𝑘+1〉.          (12)  

On the other hand, since 𝑇𝑇 is nonexpansive, for 
all  𝑡𝑡 ∈ Fix(𝑇𝑇), it holds that 

‖𝑇𝑇𝑧𝑧𝑘𝑘+1 − 𝑡𝑡‖2 = ‖𝑇𝑇𝑧𝑧𝑘𝑘+1 − 𝑇𝑇𝑡𝑡‖2 ≤ ‖𝑧𝑧𝑘𝑘+1 −
𝑡𝑡‖2.       (13) 

From the definition of 𝑥𝑥𝑘𝑘+1, it follows that  
𝑇𝑇𝑧𝑧𝑘𝑘+1 = 2𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1. Combining this and (13), we 
have 

‖(2𝑥𝑥𝑘𝑘+1 − 2𝑡𝑡) − (𝑧𝑧𝑘𝑘+1 − 𝑡𝑡)‖2 ≤ ‖𝑧𝑧𝑘𝑘+1 − 𝑡𝑡‖2 

or equivalently, 

‖𝑥𝑥𝑘𝑘+1 − 𝑡𝑡‖2 ≤ 〈𝑥𝑥𝑘𝑘+1 − 𝑡𝑡, 𝑧𝑧𝑘𝑘+1 − 𝑡𝑡〉. 

Using the equality  

〈𝑎𝑎, 𝑏𝑏〉 =
1
2

(‖𝑎𝑎‖2 + ‖𝑏𝑏‖2 − ‖𝑎𝑎 + 𝑏𝑏‖2), 

we have  

‖𝑥𝑥𝑘𝑘+1 − 𝑡𝑡‖2 ≤ 1
2

(‖𝑥𝑥𝑘𝑘+1 − 𝑡𝑡‖2+‖𝑧𝑧𝑘𝑘+1 − 𝑡𝑡‖2 
−‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1‖2), 

or 

‖𝑥𝑥𝑘𝑘+1 − 𝑡𝑡‖2 ≤ ‖𝑧𝑧𝑘𝑘+1 − 𝑡𝑡‖2 − ‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1‖2.     

               (14) 

Combining (12) and (14), for all 𝑡𝑡 ∈ Fix(𝑇𝑇), we have 

‖𝑥𝑥𝑘𝑘+1 − 𝑡𝑡‖2 ≤ ‖𝑥𝑥𝑘𝑘 − 𝑡𝑡‖2 − ‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1‖2 

−(1 − 𝜌𝜌)‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2 

+2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑡𝑡 − 𝑦𝑦𝑘𝑘+1〉 
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−(1 − 𝜌𝜌)‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2.      (15)      

In (15), letting 𝑡𝑡 = 𝑡𝑡∗ ∈ Ω ≔ {𝑧𝑧 ∈  Fix(𝑇𝑇) ∶
〈𝐴𝐴(𝑦𝑦𝑘𝑘), 𝑧𝑧 − 𝑦𝑦𝑘𝑘〉  ≤ 0   ∀𝑘𝑘 ≥ 𝑘𝑘1}, we have 

‖𝑥𝑥𝑘𝑘+1 − 𝑡𝑡∗‖2 ≤ ‖𝑥𝑥𝑘𝑘 − 𝑡𝑡‖2 − ‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1‖2 

−(1 − 𝜌𝜌)‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖2 

−(1 − 𝜌𝜌)‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖2.            

                        (16) 

The sequence {𝑥𝑥𝑘𝑘 − 𝑡𝑡∗} in nonincreasing, and 
henceforth, being nonnegative, it is convergent. 
Moreover, we have 

lim
𝑘𝑘→∞

‖𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑘𝑘‖  = lim
𝑘𝑘→∞

‖𝑦𝑦𝑘𝑘 − 𝑧𝑧𝑘𝑘+1‖ 

       = lim
𝑘𝑘→∞

‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1‖ 

 = lim
     𝑘𝑘→∞

‖𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖  =  0.   

                                         (17) 

It follows that the sequence {𝑥𝑥𝑘𝑘}  is bounded, and 
hence so are {𝑦𝑦𝑘𝑘} and {𝑧𝑧𝑘𝑘}. There exists a subsequence 
{𝑥𝑥𝑘𝑘𝑖𝑖} ⊂ {𝑥𝑥𝑘𝑘}  such that 𝑥𝑥𝑘𝑘𝑖𝑖 → 𝑥𝑥𝑘𝑘. 

This is end of the proof of Claim 1. 

Claim 2:  𝑥𝑥∗ ∈ 𝑆𝑆𝑆𝑆𝑆𝑆�𝐴𝐴, Fix(𝑇𝑇)�. 

Since 𝑇𝑇 is nonexpansive, we have 

‖𝑇𝑇𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘‖ 

≤ ‖𝑇𝑇𝑥𝑥𝑘𝑘 − 𝑇𝑇𝑧𝑧𝑘𝑘+1‖+ ‖𝑇𝑇𝑧𝑧𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖ 

≤ ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧𝑘𝑘+1‖+‖2𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖ 

≤ ‖𝑥𝑥𝑘𝑘 − 𝑧𝑧𝑘𝑘+1‖+‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1‖+‖𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖. 
(18) 

Combining (17) and (18), we get ‖𝑇𝑇𝑥𝑥𝑘𝑘  − 𝑥𝑥𝑘𝑘‖ →
0. Using 𝑥𝑥𝑘𝑘𝑖𝑖 → 𝑥𝑥∗, we obtain  𝑥𝑥∗ ∈  Fix(𝑇𝑇). 

On the other hand, from (15), for all 𝑡𝑡 ∈ Fix(𝑇𝑇), 
we have  

 ‖𝑥𝑥𝑘𝑘+1 − 𝑡𝑡‖2 − ‖𝑥𝑥𝑘𝑘 − 𝑡𝑡‖2 ≤ 2𝜆𝜆𝑘𝑘0〈𝐴𝐴(𝑦𝑦𝑘𝑘), 𝑡𝑡 − 𝑦𝑦𝑘𝑘〉  
 ∀𝑘𝑘 ≥ 𝑘𝑘0, 

or 

〈𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘+1, 𝑥𝑥𝑘𝑘 + 𝑥𝑥𝑘𝑘+1 − 2𝑡𝑡〉 

+2𝜆𝜆𝑘𝑘0〈𝐴𝐴(𝑦𝑦𝑘𝑘), 𝑡𝑡 − 𝑦𝑦𝑘𝑘〉 ≥ 0   ∀𝑘𝑘 ≥ 𝑘𝑘0.                
(19) 

In (19), letting 𝑘𝑘 = 𝑘𝑘𝑖𝑖, taking limit as  𝑖𝑖 → ∞, 
noting that ‖𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘+1‖2 → 0, ‖𝑥𝑥𝑘𝑘 − 𝑦𝑦𝑘𝑘‖ → 0, {𝑥𝑥𝑘𝑘}  
is bounded and 𝐴𝐴 is continuous, we obtain  

〈𝐴𝐴(𝑥𝑥∗), 𝑡𝑡 − 𝑥𝑥∗〉  ≥ 0    ∀𝑡𝑡 ∈ Fix(𝑇𝑇). 

Hence, 𝑥𝑥∗ ∈ 𝑆𝑆𝑆𝑆𝑆𝑆�𝐴𝐴, Fix(𝑇𝑇)�. Since the sequence 
{‖𝑥𝑥𝑘𝑘 − 𝑥𝑥∗‖} is convergent and 𝑥𝑥𝑘𝑘𝑖𝑖 → 𝑥𝑥∗, we infer that 
𝑥𝑥𝑘𝑘 → 𝑥𝑥∗. 

This is end of the proof of Claim 2. So, 
Theorem 3.2 is proven. 

Remark 3.3. Condition (6) was used in many paper on 
this topic [5, 6]. Obviously, it  is satisfied if there exists 
a number 𝑘𝑘0 ≥ 0 such that 𝑦𝑦𝑘𝑘 ∈ Fix(𝑇𝑇) for all 𝑘𝑘 ≥ 0. 
In the next corollary, we consider a relaxed version of 
this condition. 

Corollary 3.4. Suppose that Assumptions (A1)-(A3) in 
Assumption 3.1 hold. Moreover, there exists a number 
𝑘𝑘0 ≥ 0 such that 

𝛺𝛺 ≔ { 𝑧𝑧 ∈  Fix(𝑇𝑇) ∶ 〈𝐴𝐴𝑦𝑦𝑘𝑘 , 𝑧𝑧 − 𝑦𝑦𝑘𝑘〉  ≤ 0 

∀𝑘𝑘 ≥ 𝑘𝑘0}   ≠ ∅                            
(20) 

Then, problem (4) has at least one solution and each 
cluster point of {𝑥𝑥𝑘𝑘} generated by Algorithm 1 is a 
solution of this problem. 

Proof. The proof of this corollary is inferred directly 
from Theorem 3.2 and is therefore omitted. 

3.2. Second algorithm  

In practice, condition (6) and the nonemptiness of 
the solution set of (4) are difficult to verify. We 
introduced a modified version of Algorithm 1, in 
which, the nonemptiness of the solution set and 
convergence of the algorithm are guaranteed by 
conditions that are easier to verify. 

Algorithm 2. 

Step 0. Choose 𝑥𝑥0 ∈ ℝ𝑚𝑚; {𝜆𝜆𝑘𝑘} ∈ (0,∞) satisfying 
lim
𝑘𝑘→∞

𝜆𝜆𝑘𝑘 = 0. Set 𝑘𝑘 = 0. 

Step 1. Given 𝑥𝑥𝑘𝑘. Compute 

𝑦𝑦𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝜆𝜆𝑘𝑘𝐴𝐴(𝑥𝑥𝑘𝑘) 

    𝑧𝑧𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝜆𝜆𝑘𝑘𝐴𝐴(𝑦𝑦𝑘𝑘+1) 

         𝑥𝑥𝑘𝑘+1 = 1
2

(𝑧𝑧𝑘𝑘+1 + 𝑇𝑇(𝑧𝑧𝑘𝑘+1)). 

Step 2. Update 𝑘𝑘 ≔ 𝑘𝑘 + 1 and GOTO Step 1.       

Theorem 3.5. Suppose that Assumptions (A1)-(A3) in 
Assumption 3.1 hold and the sequence {𝑥𝑥𝑘𝑘} generated 
by Algorithm 2 is bounded. Moreover, assume that 

  ‖𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖ = 𝑆𝑆(𝜆𝜆𝑘𝑘),                                   (21)            

Then, problem (4) has at least one solution and each 
cluster point of {𝑥𝑥𝑘𝑘}  is a solution of this problem. 

Proof. Since {𝑥𝑥𝑘𝑘} is bounded, using the definitions of  

𝑦𝑦𝑘𝑘 and 𝑧𝑧𝑘𝑘, we infer that the sequences {𝑦𝑦𝑘𝑘} and {𝑧𝑧𝑘𝑘} 
are also bounded. Take 𝜌𝜌 ∈ (0,1) arbitrarily. Since 𝐴𝐴 
is Lipschitz continuous and 𝜆𝜆𝑘𝑘 → 0, without loss of 
generality, we may assume that 

𝜆𝜆𝑘𝑘‖𝐴𝐴(𝑥𝑥𝑘𝑘) − 𝐴𝐴(𝑦𝑦𝑘𝑘+1)‖ ≤  𝜌𝜌‖𝑥𝑥𝑘𝑘 −  𝑦𝑦𝑘𝑘+1‖  ∀𝑘𝑘 ≥ 0. 



 
JST: Smart Systems and Devices 

Volume 32, Issue 1, January 2022, 102-110 

106 

Applying similar arguments that led us to (15), 
for all 𝑡𝑡 ∈ Fix(𝑇𝑇), we have 

‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1 ‖2 + (1 − 𝜌𝜌)‖𝑧𝑧𝑘𝑘+1 + 𝑦𝑦𝑘𝑘+1‖2 

+(1 − 𝜌𝜌)‖𝑦𝑦𝑘𝑘+1  − 𝑥𝑥𝑘𝑘‖2 

≤ 〈𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘+1, 𝑥𝑥𝑘𝑘 + 𝑥𝑥𝑘𝑘+1 − 2𝑡𝑡〉 

+2𝜆𝜆𝑘𝑘〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑡𝑡 − 𝑦𝑦𝑘𝑘+1〉.     

                              (22) 

Since 𝜆𝜆𝑘𝑘 → 0, ‖𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖ = 𝑆𝑆(𝜆𝜆𝑘𝑘) and {𝑦𝑦𝑘𝑘} is 
bounded, the right hand side term of (22) tends to zero. 
Thus, 

lim
𝑘𝑘→∞

‖𝑥𝑥𝑘𝑘+1 − 𝑧𝑧𝑘𝑘+1‖ = lim
𝑘𝑘→∞

‖𝑧𝑧𝑘𝑘+1 − 𝑦𝑦𝑘𝑘+1‖ 

= lim
𝑘𝑘→∞

‖𝑦𝑦𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖ = 0.                                     

(23)      

Let �𝑥𝑥𝑘𝑘𝑗𝑗�  is a subsequence of {𝑥𝑥𝑘𝑘} satisfying  
lim
𝑗𝑗→∞

𝑥𝑥𝑘𝑘𝑗𝑗 = �̅�𝑥. We will prove that �̅�𝑥 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆�𝐴𝐴, Fix(𝑇𝑇)�. 

Using (23) and similar arguments that led us to (18), 
we have  �̅�𝑥 ∈  Fix(𝑇𝑇). From (22), we have 

  〈𝐴𝐴(𝑦𝑦𝑘𝑘+1), 𝑡𝑡 − 𝑦𝑦𝑘𝑘+1〉    

≥ −
‖𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘+1‖‖𝑥𝑥𝑘𝑘 + 𝑥𝑥𝑘𝑘+1 − 2𝑡𝑡‖

2𝜆𝜆𝑘𝑘
. 

        (24) 

In (24), let 𝑘𝑘 = 𝑘𝑘𝑖𝑖 and take the limit as 𝑗𝑗 → ∞. 
Noting that ‖𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘‖ = 𝑆𝑆(𝜆𝜆𝑘𝑘) and ‖𝑦𝑦𝑘𝑘+1 −
𝑥𝑥𝑘𝑘‖ → 0, we have 

〈𝐴𝐴(�̅�𝑥), 𝑡𝑡 − �̅�𝑥〉 ≥ 0 ∀𝑡𝑡 ∈ Fix(𝑇𝑇). 

4. Numerical Experiments 

In this section, we present two numerical 
examples to verify the effectiveness of the proposed 
algorithms. Also, we compare our algorithms with 
some existing ones. Numerical experiments were 
conducted using Matlab version R2014, running on a 
PC with CPU i3 4150 and 8GB Ram. 

Example 1. Let 𝑇𝑇 ≔ 2𝑃𝑃𝐶𝐶 − 𝐼𝐼 where 

𝐶𝐶 ≔ {𝑥𝑥 ∈ ℝ𝑚𝑚:𝐷𝐷𝑥𝑥 ≤ 𝑏𝑏, 𝑥𝑥𝑖𝑖 ≥ −1 ∀𝑖𝑖 = 1, … ,𝑚𝑚}. 

𝐷𝐷 =

⎝

⎜
⎛

0 1 1
1 0 1
1 1 0

⋯
⋯
⋯

1
1
1

⋮  ⋮  ⋮ ⋮ ⋮
1 1 1 ⋯ 0⎠

⎟
⎞

, 𝑏𝑏 =

⎝

⎜
⎛

1
1
1
⋮
1⎠

⎟
⎞

. 

𝐼𝐼 is the identity mapping on ℝ𝑚𝑚,  𝐴𝐴 : ℝ𝑚𝑚 → ℝ𝑚𝑚, 
𝐴𝐴(𝑥𝑥) = 𝑥𝑥 for all 𝑥𝑥 ∈ ℝ𝑚𝑚. It is easily seen that 
Assumption 3.1 is satisfied and 𝑥𝑥∗ = (0, 0, 0, 0, 0)⊤ is 
the unique solution of (4). From the definition of 𝑦𝑦𝑘𝑘, 
we get  

𝑦𝑦𝑘𝑘+1 = (1 − 𝜆𝜆𝑘𝑘)𝑥𝑥𝑘𝑘. 

Since 𝑥𝑥𝑘𝑘 ∈ Fix(𝑇𝑇), it implies that  𝑦𝑦𝑘𝑘 ∈ Fix(𝑇𝑇) 
for all 𝑘𝑘 ≥ 1, and hence, Condition (6) holds.  

We compare Algorithm 1 with the Extragradient 
algorithm (EGD) and the Ergodic algorithm (ERG).  

The parameters of these algorithms are chosen as 
follows: 

• In our algorithm, we choose 𝜌𝜌 = 𝛿𝛿 = 0.7,
𝜆𝜆−1 = 1; 

• In (EGD), since 𝐿𝐿 = 1, it implies that  
𝜆𝜆 ∈ (0,1). We have tested this algorithm with 
𝜆𝜆 = 0.1, 0.2, … , 0.9  and found that the 
algorithm seems to perform best with 𝜆𝜆 = 0.5. 
We will use this value of the parameter in our 
comparisons. 

• In (ERG), we  choose  𝜆𝜆𝑘𝑘 = 1
𝑘𝑘+1

 for all 𝑘𝑘 ≥ 0. 

In all the algorithms, we use the same stopping 
rule 𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒 ≤ 10−3, where 𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒 = ‖𝑥𝑥𝑘𝑘 − 𝑥𝑥∗‖ in 
Algorithm 2, (EGD)  and  𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒 = ‖𝑧𝑧𝑘𝑘 − 𝑥𝑥∗‖ in 
(ERG), the same starting point 𝑥𝑥0, which is randomly 
generated. We have tested the algorithms with 
different 𝑚𝑚. The results are presented in Table 1, 
Fig. 1, Fig. 2. (Dash (-) indicates that the 
computational time of the algorithm is greater than 200 
seconds). We can see that our algorithm shows a better 
behavior in terms of computational time. 

 
Table 1. Performance of the three algorithms in Example 4.1. 

 (EGD)  (ERG)  Alg. 1 
Times[s] Iter. Times[s] Iter. Times[s] Iter.  

𝑚𝑚 = 5 0.2170 28  - -  0.1155 34  
𝑚𝑚 = 50 0.4398 32  - -  0.2700 39  
𝑚𝑚 = 100 1.7870 34  - -  1.0327 41  
𝑚𝑚 = 200 11.4278 35  - -  6.7803 42  
𝑚𝑚 = 500 163.3687 36  - -  109.3060 44  
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 Fig. 1. Performance of the three algorithms in Example 4.1, 𝑚𝑚 = 5 and 𝑚𝑚 = 50 

 

 
Fig. 2. Performance of the three algorithms in Example 4.1, 𝑚𝑚 = 100 and 𝑚𝑚 = 200 

 

Example 2.  We compare Algorithm 2 with 
(EGD) and (ERG) in the following problem: 

𝑇𝑇 = 2𝑃𝑃𝐶𝐶 − 𝐼𝐼, 

𝐶𝐶 ≔ {𝑥𝑥 ∈ ℝ𝑚𝑚: 2𝑥𝑥12 + 𝑥𝑥22 + ⋯+ 𝑥𝑥𝑚𝑚2 ≤ 1}, 

𝐴𝐴 : ℝm → ℝm, 𝐴𝐴(𝑥𝑥) = 𝐵𝐵𝑥𝑥,  

where 𝐵𝐵 = (𝑏𝑏𝑖𝑖𝑗𝑗)𝑚𝑚×𝑛𝑛, 

𝑏𝑏𝑖𝑖𝑗𝑗 = �
1     𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑗𝑗 𝑆𝑆𝑒𝑒 𝑗𝑗 < 𝑖𝑖 = 𝑚𝑚 − 𝑗𝑗,
−1               𝑖𝑖𝑖𝑖 𝑖𝑖 < 𝑗𝑗 = 𝑚𝑚 − 𝑖𝑖,
0                              𝑆𝑆𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒.

 

It is easily seen that all the convergence 
conditions of the algorithms are satisfied and 
𝑆𝑆𝑆𝑆𝑆𝑆�𝐴𝐴, Fix(𝑇𝑇)� =  {𝑥𝑥∗ = (0, 0, … , 0)⊤}, 𝐿𝐿 = 1. We 
implement the algorithms with the following 
parameters: 

 1. In Algorithm 2, we choose 𝜆𝜆𝑘𝑘 = 1
𝑘𝑘+1

; 

 2. In (EGD), 𝜆𝜆 = 0.5; 

 3. In (ERG), 𝜆𝜆𝑘𝑘 = 1
𝑘𝑘+1

  and 𝑇𝑇 =  𝑃𝑃𝐶𝐶 . 

In Algorithm 2, to verify condition (21), we 
investigate the sequence 𝛼𝛼𝑘𝑘 ≔

�𝑥𝑥𝑘𝑘+1−𝑥𝑥𝑘𝑘�
𝜆𝜆𝑘𝑘

.  The 
behavior of this sequence is presented in Fig. 3(b), 
4(b), 5(b), 6(b), 7(b). From these figures, we see that 
𝛼𝛼𝑘𝑘 → 0, and thus, condition (21) is satisfied. In the 
three algorithms, we use the same starting point 𝑥𝑥0, 
which is randomly generated and the same stopping 
rule 𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒 ≤ 10−3, where 𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒 = ‖𝑥𝑥𝑘𝑘 − 𝑥𝑥∗‖ in 
Algorithm 2, (EGD) and 𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒 = ‖𝑧𝑧𝑘𝑘 − 𝑥𝑥∗‖ in 
(ERG). The comparisons are presented in Fig. 3(a), 
4(a), 5(a), 6(a), 7(a). We can see that the new algorithm 
shows a better behavior in terms of computational 
time. 
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Fig. 3. Performance of the three algorithms in Example 4.2, 𝑚𝑚 = 5 

 

 
Fig. 4. Performance of the three algorithms in Example 4.2, 𝑚𝑚 = 5 

 

 
Fig. 5. Performance of the three algorithms in Example 4.2, 𝑚𝑚 = 100 
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Fig. 6. Performance of the three algorithms in Example 4.2, 𝑚𝑚 = 200 

 

 
Fig. 7. Performance of the three algorithms in Example 4.2, 𝑚𝑚 = 500 

 
5. Conclusion 

In this paper, we have introduced two algorithms 
for solving variational inequalities over the fixed point 
set of a nonexpansive mapping.  The new algorithms 
can be considered as improved versions of some 
existing ones. The main advantage of the new 
algorithms is that they do not require to perform any 
projection in their steps. This feature helps greatly to 
reduce the computational cost of the proposed 
algorithms. Moreover, our algorithm does not require 
to know the Lipschitz constant of the involving 
mapping. Also, we have performed some numerical 
experiments to test the effectiveness of these 
algorithms. 
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