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Abstract 

This article proposes four sufficient conditions to determine the convergence learning parameters in iterative 
learning control of linear batch processes. These conditions are established in frequency domain with transfer 
functions of elementary linear learning functions of P-, D-, PD- and PID-Type, instead of their state space 
models as usual. Hence, they can overcome all conservative difficulties occurred by using conditions created 
in time domain. To obtain these conditions in frequency domain, first an overall sufficient condition belonging 
to input-output mapping is created, and then realized it particularly in frequency domain for four different linear 
learning functions by using their transfer function. The obtained conditions in frequency domain are expressed 
in algebraic inequality of matrix norm, so they are very convenient in use. To illustrate the applicable ability of 
proposed conditions in various practical applications some numerical simulations had been carried out in the 
paper. Obtained simulation results authenticate the advantage of these conditions. 
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1. Introduction1 

Main task in control engineering is to force the 
output response of a controlled process to follow 
asymptotically a desired reference, or at least as close 
as possible to it. To work out this task, especially for 
repetitively working processes (batch processes), the 
iterative learning control (ILC) seems as an effective 
control technique, not only that ILC provides 
excellently an output tracking performance as required 
[1] but also it accomplished the close-loop control 
system being highly robust with unwanted 
disturbances [2-4]. Furthermore, with ILC the 
controller design does not need to have any 
mathematical model of processes as by applying 
conventional control methods. Hence, ILC belongs to 
intelligent control concept [3,5,6]. 

The [1] proposed idea of ILC to control batch 
processes, which operates repeatedly in a fixed time 
period  T  such as industrial robots or batch reactions 
in chemical processes, is that the tracking errors in 
outputs during each working period will be recorded 
for computing an appropriate modification to the input 
signal that will be applied to the process during next 
working period. In ILC concept all these operations 
belonging working period are often called a trial and 
these input refinements are carried out continuously, 
from trials to trials until the desired output tracking 
performance is reached. 

If we denote each wording period (or trial) of 
process with the index 0,1,  k = …  and the time instant 
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among this trial with 0 Tτ≤ ≤ , then during the 
control an arbitrary controlled time 0 t≤ < ∞  will be 
expressed as t kT τ= + . Accordingly, both vectors of 
inputs, outputs ( ),  ( )u t y t  of a MIMO process are 
described as below, respectively 

 ( ) ( )ku t u τ=  and ( ) ( )
k

y t y τ= . (1) 

With these notations the input refinements for 
next trial 1k +  are illustrated mathematically by  

 ( )1( ) ( ) ( ),k k kl
u u f eτ τ ς+ = +   (2) 

with a set of appropriate parameters  , or 

 ( )1 1 21( ) ( ) ( ), ( ),kk lk ku eu f eτ τ ς ς−+ = +   (3) 

where 1 20 , , Tς ς ς≤ ≤  and ( ) ( ) ( )k k
e r yτ τ τ= −  is the 

vector of output tracking errors recorded during whole 
current trial k . The reference ( )r t  is given and 
obviously it must be periodic with the same period T  
as controlled batch processes. The terms ( )( ),kl

f e ς   

in (2) and ( )1 1 2( ), ( ),k kl
f e eς ς−   in (3) are often 

called parameters dependent first order and second 
order learning functions (or the update laws), 
respectively. 

Essential research in the field of ILC focuses on 
how to determine effectively an appropriate learning 
function ( )( ),kl

f e ς   or ( )1 1 2( ), ( ),k kl
f e eς ς−   and 

their corresponding set of parameters  , which 
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guarantees the asymptotical convergence of output 
tracking error ( ) 0ke τ →  for all 0 Tτ≤ ≤ . Almost 
results obtained there in [2-12] are time discontinuous. 
It means that the inputs ( )ku τ  are updated just in 

sN T T=  steps during a trial with siTτ = , 
0,1,   , 1i N= … − ,  where the time update period 

0 1sT<   for system inputs is chosen arbitrarily 
small. Based on this time discrete update mode, both 
update laws (2) and (3) above are rewritten 
correspondingly in 

 
( )
( )2

1

1 1 1

( ) ( ) ( ),

( ) ( ) ( ), ( ),
k k

k k

kl

k kl

u

i

eu

u u

i i f j

i f e j e j+ −

+ = +

= +




 (4) 

where 1 20 , , 1j j j N≤ ≤ − . 

In [2-10] the essential results of determination of 
convergent learning parameters   are presented, 
which are related mainly to the basic first order, time 
discrete linear learning functions of (4) as below 

1) P-Type: ( )( ), ( )k kl
f e j Ke i= , K= . (5) 

2) D-Type: ( )( ), ( 1)k kl
f e j Ke i= + , K= . (6) 

3) PD-Type: ( ) 1 2( ), ( ) ( 1)k k kl
f e j K e i K e i= + + , 

   ( )1 2,K K=  (7) 
4) PID-Type:K 

 ( ) 1 2 3( ), ( 1) ( ) ( 1)= − + + +k k k kl
f e j K e i K e i K e i  

 1 2 3( , , )= K K K  (8) 
Although in ILC control concept for designing 

output feedback controller it is not required strictly to 
have a mathematical model of processes, but for 
determining effectively learning parameters   as well 
as for convergence analysis of it a model is obliged 
[2,3,7-9]. The consistent model is used for 
convergence analysis is the time discrete state-space 
model 

 
( 1) ( ) ( )
( ) ( )

k k k

kk

x i Ax i Bu i
y i C x i

+ = +
 =

 (9) 

For example, [2,3,5,10,11] show that by using D-Type 
learning function the parameter K  there should satisfy 

 1I CB− < . (10) 

The condition (10) is just sufficient. It means that 
a convergent parameter   may exist to ensure the 
requirement ( ) 0ke τ → , but it does not satify the 
aforementioned condition [12]. Moreover, in the case 
of CB = 0  (zeros matrix), none of   could be found 
from (10). 

Furthermore, in spite that the method presented in 
[12] is model-free, it was established only for P-Type. 

Additionally, since all elements of ( )iK=  there are 
positive, it cannot be applied for proccesses, where the 
partial derivation of their input-output mapping 
changes the sign. 

To overcome all these circumstances, the article 
will propose a few further conditions for determining 
convergence parameters   of elementary linear 
learning functions (5)-(8) above without using time 
discrete state space model (9) of linear processes. 
Precisely, these conditions are established based on 
transfer functions of process for both cases continuous 
time and discrete time. With these conditions the 
convergent parameters   could be still found, even in 
the  situation of CB = 0 . 

The rest of this article is organized as follows. In 
Section 2 all theoretical substances related to transfer 
function based methods to determine convergent 
parameters   for linear learning functions are 
presented. Numerical simulations and discussions are 
shown in Section 3 to authenticate the performance of 
proposed approaches. Final Section provides 
conclusions and future works. 

2. Main results 

2.1. Overall Sufficient Condition 

Consider a batch process described by input-
output mapping as follows 

 ( )( ) ( ) ( )k kk p
u y f uτ τ τ=  (11) 

with linear property 

 

( )
( ) ( )

1 2

1 2

( ) ( )

                    ( ) ( )

k kp

k kp p

f A u A v

A f u A f v

τ τ

τ τ

+ =

+ . (12) 

Then the application of first order update law 
given in (2) for this linear process yields 

 

( )

( )( )
( ) ( )( )
( ) ( )

11
( ) ( )

( ) ( ),

( ) ( ),

( ) ( ),

kk p

kp l

k kp p l

k kp

k

p l

y f u

f f e

f u f f e

f

u

u f f e

τ τ

τ ς

τ ς

τ ς

++
=

= +

= +

= + 







 

Hence 

( ) ( )

( )

( )

( )

1 1
( ) ( ) ( )

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ),

, ( )

k k

k kp p l

kk p l

k kp l

e kp l

e r y

r f u f f e

r y f f e

e f f e

f f e

τ τ τ

τ τ ς

τ τ ς

τ ς

τ

+ +
= −

= − −

= − −

= −

≤ − ⋅1







 







  

where e1  represents the identity mapping. 
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 The last inequality shows that if the learning 
parameters   are chosen for satisfying the following 
sufficient condition 

 ( )( ) , 1e p l
f f− <1     (13) 

then we will obtain 

 1( ) ( ) ,  k ke e kτ τ+ < ∀  

or the sequence of tracking errors will be decreased 
monotonously. Furthermore, by using the notion 

 ( )
( )

sup ( ) ( ),e p le
f f e

ς
α ς= −1    

it is attained 0 1α< <  and therefore 

 1 0( ) ( )k
ke eτ α τ+ <  

which deduces the asymptotical convergence of 

 lim ( ) 0kk
e τ

→∞
= . 

The overall condition (13) is generally valid for 
non-linear update laws (4) and linear processes. But 
below it will be realized particularity in frequency 
domain for linear time continuous update laws by 
using their transfer function. 

2.2. Realization for P-Type Learning Function 

In following, we will apply the overall condition 
(13) presented above determining the parameter K  of 
time continuous P-Type learning function 

 ( )( ), ( )k kl
f e Keτ τ=  (14) 

to output tracking control a time continuous batch 
process described by the transfer function 

 0 1
1

0 1 1

  
( )

  

n
n

p n n
n

b b s b s
G s

a a s a s s−
−

+ + +
=

+ + + +




. (15) 

In frequency domain the aforementioned P-Type 
learning function (14) is decribed by transfer function 
as below 

 ( )lG s K= . (16) 

The substitution of both (15) and (16) in the overall 
sufficient condition (13) yields 

 1 ( ) ( ) 1p lG s G s− <  

or 

 
( )0 1

1
0 1 1

1 1
  

  

n
n

n n
n

K b b s b s

a a s a s s−
−

+
−

+ +

+ + + +
<





. 

which is equivalent with 

 
( )

( )
0 0 1 1

0 1

,   , ,1

                 ,   , ,1
n n n P

n P

a Kb a Kb Kb

a a

ϑ

ϑ
− −

−

− − − ⋅

< ⋅





 

where 

 ( )1, ,   ,
Tn

P s sϑ =  . (17) 

Therefore, we come to the following deduction: If the 
learning parameter K  satisfies 

 

( )
( )

0 0 1 1

0 1

,   , ,1

                 ,   , ,1
n n n

n

a Kb a Kb Kb

a a
− −

−

− − −

<



  (18) 

then the P-Type update law (14) will provide for 
closed-loop systems the asymptotic convergence to 
zero of output tracking error. 

Finally, it is easily to see that the obtained 
sufficient condition (18) above still holds for time 
discrete linear processes described by following 
transfer function 

 0 1
1

0 1 1

  
( )

  

n
n

p n n
n

b b z b z
G z

a a z a z z−
−

+ + +
=

+ + +




. (19) 

2.3. Realization for D-Type Learning Function 

Time continuous learning function of D-Type 

 ( )( ), ( )k kl
f e Keτ τ=   (20) 

has following transfer function 

 ( )lG s Ks= . (21) 

Therefore, similarly as having done before with P-
Type learning function (14), by applying the update 
law (20) to control the time continuous batch process 
(15) the overall sufficient condition (13) becomes 

 
( )0 1

1
0 1 1

1 1
  

  

n
n

n n
n

Ks b b s b s

a a s a s s−
−

+ + +

+ +
−

+ +
<





, 

which implies 
(

}

1
0 1 1 0 1

1
0 1 1  

  

     

n n
n

n n n
n n

a a s a s s Ks b b s

b s a a s a s s

−
−

−
−

+ + + + − + +

+ + < + + + +



  . 

Rewrite this inequality as matrix product 

 
(

) ( )
0 1 0 1 2 1

0 1

, ,   , ,1 ,

             ,   , ,1,0
n n n

n D n D

a a Kb a Kb Kb

Kb a aϑ ϑ
− − −

−

− − −

− <





 

where ( )11, ,   , ,
Tn n

D s s sϑ +=  , then based on 
property of norm of matrix product it is obtained 
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0
0

1 0

1
1 2

1

1
1

0

D Dn
n n

n

n

a
a

a Kb

a
a Kb

Kb
Kb

ϑ ϑ−
− −

−

 
  −   
  
 ⋅ < ⋅ 

−   
  −      − 





, 

which is equivalent with 

     

( )
( )

0 1 0 1 2 1

0 1

, ,   , ,1 ,

                 ,   , ,1,0 .
n n n n

n

a a Kb a Kb Kb Kb

a a
− − −

−

− − − −

<



  (22) 

Hence we obtain: If the learning parameter K  of D-
Type learning function (20) is chosen for satisfying the 
condition (22), then the output tracking errors ( )ke τ  
of closed-loop system will converge to zero for all τ . 
Evidently, this deduction holds also for time discrete 
processes described by (19). 

2.4. Realization for PD-Type Learning Function 

If the PD-Type learning function 

 ( ) 1 2( ), ( ) ( )k k kl
f e K e K eτ τ τ= +   (23) 

is applied to tracking control the time continuous 
process (15), then with transfer function of (23) 

 1 2( )lG s K K s= +  
the sufficient condition (13) becomes 

( )(

}

1
0 1 1 1 2 0

1
1 0 1 1

  

     

n n
n

n n n
n n

a a s a s s K K s b

b s b s a a s a s s

−
−

−
−

+ + + + − + +

+ + + + + +<



 

 

what equivalent with 

(

) ( )

0 1 0 1 1 1 2 0

1 1 1 2 2 1 2 1

2 0 1

, ,   ,

          ,1 ,

                ,   , ,1,0
n n n n n

n PD n PD

a K b a K b K b

a K b K b K b K b

K b a aϑ ϑ
− − − −

−

− − −

− − − −

− <





 

where ( )11, ,   , ,
Tn n

PD D s s sϑ ϑ += =  . Hence, we 
have 

 

0 1 0
0

1 1 1 2 0

1
1 1 1 2 2

1 2 1

2

1
1

0

n
n n n

n n

n

a K b
a

a K b K b

a
a K b K b

K b K b
K b

−
− − −

−

− 
  − −   
  
 < 

− −   
  − −      − 





. (24) 

Consequently, it conducts to: 

If the set of learning parameters 1 2( , )K K=  of 
applied PD-Type learning function (23) satisfies the 
condition (24), then the output tracking errors ( )ke τ  
of closed-loop system converges asymptotically to 
zero. 

Obviously the condition (24) also holds for time 
discrete linear processes described in frequency 
domain by transfer function (19). 

2.5. Realization for PID-Type Learning Function 

The transfer function of time continuous PID-
Type learning function 

 
( )

1 2 3
0

( ),

   ( ) ( ) ( )

kl

k k k

f e

K e d K e K e
τ

τ

ζ ς τ τ

=

= + +∫ 



 (25) 

is as follows 

 
2

1 2 3( )l
K K s K s

G s
s

+ +
= . 

Accordingly, the overall sufficient condition (13) will 
be expressed as 

( )( )
( )

2
1 2

1
0 1 1

3 0 11 1
  

  

n
n

n n
n

b b s b s

s a a

K K s K s

s a s s−
−

+ + +
−

+ +

+ + + +
<





 

or 
( ) (

)( ) (

)
3

1
0 1 1

2
0 1 0 1

1
1

1 2  

  

                                           

 

  

 

n n
n

n
n

n n
n

s a a s a s s

b b s b s a a sK

K K s

s

s

s

a s

−
−

−
−

+ + + + −

+ + + + +

+

+ +

+

+

<





 , 

what is equivalent with 

(

)
( )

1 0 0 1 1 2 0 1 1 2 2 1 3 0

1 1 1 2 2 3 3 1

2 1 3 2

0 1

, , ,

       , ,1

           

                                  0,0, ,   , ,1

n n n n n

n n PID

n PID

K b a K b K b a K b K b K b

a K b K b K b K b

K b K b

a a

ϑ

ϑ

− − − −

− −

−

− − − − − −

− − − − −

− −

<





 

where ( )1 21, ,   , ,
Tn n

PID s s sϑ + +=  . Therefore 

   

1 0

0 1 1 2 0 0

1 1 2 1 3 2 1

2 3 1

3

0

1 1
0

n n n n n

n n

n

K b
a K b K b a

a K b K b K b a
K b K b

K b

− − − −

−

−   
   − −   
   

<   
− − −   

   − −
     −   

 

. (26) 

Finally, if the set 1 2 3( , , )K K K=  of PID-Type 
update law (25) meets the sufficient condition given in 
(26) then the iterative learning controller will cause 
the output of closed-loop system asymptotically to 
desired reference ( )r t . This deduction holds also for 
time discrete processes described by (19). 

2.6. Usage Opportunity with State-Space Model  

As mentioned before, linear processes described 
primarily in time domain 
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 x Ax Bu= + , y C x=  (27) 
where 0CB =  it is impossible to determine learning 
parameters by using condition related with this time 
domain model, such 1 1CB− <  presented in [3]. 

In this circumstance we can use the proposed 
conditions (18),(22),(24) or (26) in frequency domain 
for this purpose. To do that, first we convert the model 
(27) in frequency domain with 

 1( ) ( )pG s C sI A B−= −  

and then determine the learning parameter set   by 
using coefficients ,i ja b  of ( )pG s  accordingly to (18)
if applied update law is P-Type, or (22) when applied 
update law is D-Type, or (24) for the application of 
PD- update law, or (26) by applying PID- update law. 

2.7. Application to MIMO Processes  

Consider a MIMO linear, time invariant batch 
process with n  inputs and m  output. In frequency 
domain this process is described by a transfer matrix 

( )p sG  of dimension m n×  as below:  

 
11 1

1

( ) ( )
( )

( ) ( )

n

p

m mn

G s G s
s

G s G s

 
 =  
 
 



  



G . 

Denote the transfer matrix of applied linear 
learning functions ( )( ),kl

f e ς   with ( , )l s G , then 
this matrix is of dimension n m× . For the scenario that 
this chosen learning function makes the matrices 
product ( ) ( , )p ls s G G  becomes diagonal, then the set 
  of learning parameters would be determined in 
manner that all diagonal entries of it satisfy sufficient 
conditions (18), (22), (24) or (26). 

2.8. Integrating Proposed Conditions in ILC Control 
Algorithm  

In order to facilitate the integration of proposed 
sufficient conditions in an intelligent controller created 
with ILC concept the following control algorithm is 
established. In this algorithm it is assumed that the 
repetitive time T , if controlled process is continuous 
time, or repetitive steps N , if the process is discrete 
time, are known. 

Each while-loop in aforementioned algorithm 
represents a trial. In addition, the set   of learning 
parameters may be determined by solving compatibly 
an optimization problem with constraints, instead of 
choosing it directly via inequalities (18),(22),(24) or 
(26). Such a problem could be as below 
 ( )* arg min ( )R L= −


   subject to ( )R L>  . 

where ,  ( )R L   are right and left site of (18),(22), (24) 
and (26), respectively. 

Algorithm: ILC control algorithm with learning 
parameters determined with proposed condition 

1 Approximate a transfer function with 
coefficients ,i ja b  for controlled process. 
Choose 0 1sT<   if the process is continuous 
time, then calculate sN T T= . Choose an 
interesting update law within four existing P-, 
D-, PD- and PID-Type. 
Determine the set   of learning  parameters 
from ,i ja b  based on proposed conditions via 
(18) if chosen update law is P-Type, or (22) for 
D-Type update law, or (24) if update law is 
PD-Type, or (26) for chosen update law PID-
Type. 
Set ( ) ( ),  ( ) 0,  0,1,   , 1u i r i e i i N= = = − . 

2 while continue the control do 
3 for 0,1,   , 1i N= −  do 
4 Send ( )u i  to process for a while of sT . 

Measure the output ( )y i . 
Calculate ( ) ( ) ( )e i r i y i= − . 
Determine 

( ) ( ) ( )u i u i Ke i= +  for P-Type or 
( ) ( ) ( 1)u i u i Ke i= + +  for D-Type or 

1 2( ) ( ) ( ) ( 1)u i u i K e i K e i= + + +  for PD-Type 
or 

1 2 3( ) ( ) ( 1) ( ) ( 1)u i u i K e i K e i K e i= + − + + +  
if PID-Type learning function is applied. 

5 end for 
6 end while 

 
3. Numerical Examples 

To verify the application ability of proposed 
sufficient conditions established in frequency domain, 
in following some examples will be executed per 
numerical simulations. 

3.1. Simulation 1: Control with P-Type Learning 
Function for Continuous Time Process 

Consider a time continuous, linear time invariant 
process in frequency domain as below:  

 2

1( )
6 5p

sG s
s s
+

=
+ +

. (28) 

This transfer function has following model parameters 
 0 16,  5a a= =  and 0 1 21,  0b b b= = = . 

For using the P-Type learning function to control  
the process (28) the learning parameter 5K =  for this 
P-Type update law is chosen. This learning parameter 
satisfies the condition (18), because 

 ( ) ( )0 0 1 1 2 ,  , 1 1 , 0 , 1

1.4142

a b K a b K b K− − − =

=
 

and 
 ( ) ( )0 1 ,  , 1 6 , 5 , 1 7.8740a a = = . 
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Fig. 1. Output tracking results after 2 trials. 

 
Fig. 2. Output tracking results after 5 trials. 

 
Fig. 3. Output tracking results after 3 trials. 

 

 
Fig. 4. Output tracking results after 10 trials. 

 
Suppose the process is repetitive with 100T s= , 

then with sufficiently small 0.1sT s=  we obtain with 
the desired reference 

 ( ) ( )( ) 0.6sin 0.2sin 4r t t T t Tπ π= −  

the simulation results as exhibited in Fig. 1 and 
Fig. 2. In the simulation, the model (28) is just used to 
declare the process dynamic and it was carried out 
through its equivalent state space model. 

As seen there, just after 5 trials the system output 
had reached perfectly reference ( )r t  as expected. 
Hence, the simulation results had proved the rightness 
of the proposed sufficient condition given in (18). 

Note that for process (28) the learning parameter 
5K =  cannot be determined with time domain 

condition (10). 

3.2. Simulation 2: Control with D-Type Learning 
Function for Discrete Time Process 

The simulation hereafter is carried out for time 
discrete system described by 

 2

0.5( )
0.1 0.7p

zG z
z z
+

=
+ +

 (29) 

by applying D-Type update law. 

 

For the D-Type update law (20) we choose the 
learning parameter 0.5K = , because it satisfies the 
established condition (22), with 

 ( ) ( )0 1, ,1,0 0.1 , 0.7 , 1 , 0 1.2247a a = = . 
and 
( ) ( )0 1 0 1 2, ,1 , 0.1 , 0.45 , 0.5 , 0

0.6801

a a b K b K b K− − − =

=
 

Furthermore, we can see that this learning 
parameter 0.5K =  cannot be determined by using 
time domain condition given in (10). 

Both Fig. 3 and Fig. 4 illustrated output tracking 
performance of closed-loop system after 3 and 10 
trials, respectively. In the simulation are assigned 

 100N =  

for the number of control steps during a working 
period of process, and 

 6( ) 0.4sin 0.1sini ir i
N N
π π

= + , 

with 0,1,   , 1i N= −  for the references. 

Moreover, to implement the process dynamic, the 
system transfer function (29) had been converted 
correspondingly in time domain with its difference 
equation as below: 
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( ) 0.7 ( 1) 0.1 ( 2)

                       ( 1) 0.5 ( 2)
k k k

k k

y i y i y i
u i u i

+ − + − =
= − + − . 

Again, these obtained simulation results had 
confirmed deeply the applicable ability of established 
condition (22) for determining a convergent learning 
parameter K . With the learning parameter, which is 
chosen accordingly to(22), the system output tends 
rush to the desired reference ( )r t . Particularity, the 
system output is coincided with its reference just after 
10 trials, which was demonstrated in Fig. 4. 

3.3. Simulation 3: Control with PD-Type Learning 
Function for Continuous Time Process 

Consider a third order linear time invariant and 
time continuous process described primarily by 

 
x Ax Bu
y C x
= +

 =



 (30) 

where 

 ( )
0 1 0 0
0 0 1 ,  0 ,  1 ,  1 ,  0
24 26 9 1

A B C
   
   = = =   
   − − −   

 

Since there 0CB =  a convergent learning parameter 
set   cannot be determined by using a conventional 
condition in time domain, such as by using the 
condition 1 1CBK− < . In this situation we will apply 
the proposed conditions in frequency domain for 
determining learning parameters set  . 

For determining learning parameters set   with 
proposed conditions in frequency domain, first the 
process (30) will be rewritten equivalently in 
frequency domain with the transfer function 

 1
2 3

1( ) ( )
24 26 9p

sG s C sI A B
s s s

− +
= − =

+ + +
 (31) 

 then we use it for determining   

In comparison with (15) the coefficients of this 
transfer function are respectively as below 

and 
0 1 2

0 1 2 3

24,  26,  9
1,  1,  0

a a a
b b b b

= = =

= = = =  

In following the iterative learning controller with 
PD-Type learning function (23) is applied to tracking 
control for a time continuous process (30) to a desired 
reference ( )r t . To do that, the equivalent transfer 
function (31) will be used for determining learning 
parameters set 1 2( , )K K= . 

It can be seen that the chosen set of 

 1 212,  7K K= =  

satisfies sufficiently the requirement of condition 
(24) in frequency domain, with 

 
Fig. 5. Output tracking results after 2 trials. 

 

 
Fig. 6. Output tracking results after 5 trials. 
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and 
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Fig. 5 and Fig. 6 exhibit simulation results with 
chosen learning parameters 1 2( , )K K=  above and 

 

100 ,  0.1
3( ) 0.3sin 0.2sin

sT s T
t tr t

T T
π π

= =

= + . 

These obtained simulation results confirmed 
once more the application ability of proposed 
condition for the circumstance 0CB = , that the 
sufficient condition (24), which was established in 
frequency domain, had provided convergence learning 
parameter set 1 2( , )K K=  for closed-loop system as 

Time [s]

0 20 40 60 80 100

Re
fe

re
nc

e 
an

d 
Sy

st
em

 O
ut

pu
t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 reference

output

error

Time [s]

0 20 40 60 80 100

Re
fe

re
nc

e 
an

d 
 S

ys
te

m
 O

ut
pu

t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
reference

output

error



  
JST: Smart Systems and Devices 

 Volume 32, Issue 2, May 2022, 022-030 

29 

expected. Particularly, just after 5 trials both system 
output and the reference are almost overlapped to each 
other with ( ) 0ke τ ≈  for all repetitive time interval 
0 Tτ≤ ≤ . 

3.4. Simulation 4: Control with PID-Type Learning 
Function for Discrete Time Process 

We consider the output tracking control problem 
for time discrete linear process described primarily in 
time domain 

 

( )

0 1 0
( 1) ( ) ( )

0.2 0.5 1
( ) 0.3 ,  1 ( )

k k k

kk

z i z i u i

y i z i

    
+ = +    − −   

 =

 (32) 

which is repetitive with 100N = , so that the process 
output converges asymptotically to desired reference 

( )r t  in trapezoid format as below 

 
1                  if   20 80

( ) 20             if   20
(100 )    if   80

i
r i i i

r i i

≤ ≤
= ≤
 − ≤

 (33) 

for all indexes 

 0,1,   , 1i N= − . 

In following we will solve this control problem 
by using ILC concept with PID-Type update law. To 
determine the learning parameter set 1 2 3, ,K K K  for 
applied PID learning function (25) accordingly to the 
sufficient condition (26) we convert equivalently first 
the state-space model above in frequency domain  

 1
2

0.3( ) ( )
0.2 0.5p

zG z C zI A B
z z

− +
= − =

+ +
 

and obtain 

 0 1

0 1 2

0.3,  1,
0.2,  0.5,  0.

a a
b b b

= =

= = =
 

Based on these coefficients and according to the 
condition (26) we choose 

 1 20.1,  0.15K K= =  and 3 0.2K = , 

because they satisfy the requirement of (26) with 

(
)

( )

1 0 0 1 1 2 0

1 2 1 3 0 3 2

 ,  ,

        ,  1

               0.045 ,  0.04 ,  0.14 ,  1 1.0115

K b a K b K b

a K b K b K b

− − −

− − − =

= − − =

 

and 

 ( ) ( )0 10 ,  ,  , 1 0 , 0.3 , 1 , 1 1.4457a a = = . 

Fig. 7 and Fig. 8 demonstrated simulation results 
after 3 and 10 trials, respectively. These obtained 

simulation results authenticated once more the 
expected applicability of established condition  (26), 
that with learning parameters being chosen 
accordingly to this condition, the system output 
converges really to desired reference just after 10 
trials, with a small average tracking error as given 
below: 

10 ( ),  1, 0.0612e i i N= ≈ . 

 

 
Fig. 7. Output tracking results after 3 trials. 

  

 
Fig. 8. Output tracking results after 10 trials. 

 

4. Conclusion 

Several sufficient conditions in frequency domain 
for determining convergence learning parameters in 
ILC concept had been presented in the paper. With 
these conditions many convergence parameters can be 
found out, what may be impossible with existing 
conditions created in time domain. This affirmation 
had been authenticated also theoretically and per 
simulation in the article. 

Furthermore, these given frequency conditions 
had been realized in detail for four elemental linear 
update laws, including P-, D-, PD-, PID- Type, so that 
they become convenient in application. Few numerical 
simulations having carried out with m.files in 
MatLab had confirmed the rightness of this assertion.    
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