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Abstract 

Container transportation plays a very important role in global supply chains where companies of different 
countries exchange goods overseas. Operational costs of transporting containers are extremely high. Hence, 
optimizing itinerary schedules brings substantial benefits to logistics companies. In this paper, we investigate 
a realistic container transportation schedule problem in which trucks, trailers, and containers are separate 
objects located at different terminals, and trucks are planned to take trailers and carry containers between 
container depots, ports, and customer warehouses. In this context, containers can be 40ft or 20ft, and a trailer 
can carry one 40ft container or one 20ft container, or two 20ft containers. Moreover, a truck can detach the 
trailer and leave both the container and trailer at the warehouse if there is no forklift available. We first propose 
a mixed-integer linear programming model for describing the problem. Then, we propose a local search 
algorithm for solving the problem. Experiments on generated data instances show the benefits of the proposed 
algorithm compared to the previously proposed algorithm in which the improvement rate of the solution quality 
is 19.62% on average. Furthermore, the application of the model leads to rapidity in generating the solution; 
this task that used to take days is decreased to just one hour. 

Keywords: vehicle routing problem; container transportation; drayage operation; local search. 

 

1. Introduction* 

Nowadays, freight transportation by containers 
has conferred substantial flexibility to logistic 
operations. Container transportation operations by 
truck between ports, shippers, customer warehouses 
and inland container terminals are usually called 
container drayage operations. Due to globalization, 
the growth in container transportation had a significant 
impact on the reduction of transportation costs and 
time. Efficient scheduling of these operations is 
extremely important for transportation companies 
since the relevant costs consume a high percentage of 
the total operational costs. 

In recent research, an inland container 
transportation problem (ICTP) was discussed by [1-6]. 
In [1], the authors studied the integrated drayage 
scheduling problem and formulated it as an 
asymmetric multiple Traveling Salesman Problem 
with Time Windows (TSPTW). In an extension of the 
problem [2], they limited the number of empty 
containers available at a depot. Besides, several 
extensions of this problem have also been studied, and 
several incomplete algorithms have been proposed for 
solving them, for example, [4, 5]. For exact solutions, 
a generalization of a capacitated truck-trailer routing 
problem with time windows was considered in [6]. A 
branch-and-price-and-cut algorithm to solve the ICTP 
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problem and a hybrid acceleration strategy for 
performance improvement are also proposed in [7]. 
They often investigated the ICTP with a single depot 
and a single terminal and assumed that trucks have 
their own trailer. However, several affiliated third-
party logistics companies lease trucks, trailers, and 
containers. Thus, objects (i.e., trailers and trucks) are 
placed in various locations and can start and terminate 
at one of the depots. In particular, the trailer can also 
be detached from the truck at each port or warehouse. 
Therefore, they must be treated as separate objects. On 
the other hand, containers are often assumed to be 
homogeneous. For example, in [1-3] the authors 
investigated the problem that a truck transports a fixed-
size container at a time to simplify the mathematical 
model and reduce the complexity of computation. 
However, in most real-life situations, several 
customers want to receive/ship freight in 20ft 
containers or 40ft containers. Thus, the problem with 
multiple containers per truck at a time needs to be 
considered. Although several other papers considered 
the container transportation problems with 
heterogeneous containers [4-8], trucks and trailers are 
not separate objects in these works. The combination 
of these real-world factors makes the truck-trailer 
scheduling problem for transporting containers more 
challenging.   

 



  
JST: Smart Systems and Devices 

Volume 32, Issue 2, May 2022, 064-073 

65 

In this paper, we consider the problem of truck-
trailer scheduling in container transportation 
(TTCRP), in which trucks, trailers, and containers are 
separate objects located at different terminals. A truck 
is scheduled to take a trailer and then carry containers. 
The truck cannot carry a container itself.  A trailer can 
carry only one 40ft container or at most two 20ft 
containers. In addition, when a container is transported 
to a customer or port, the trailer can be detached from 
the truck. The truck leaves both the trailer and the 
container (the container lies on the trailer) at that drop-
off point for serving other transportation requests. In 
our model, there are four types of container requests. 
The time window constraint is also considered (this 
specification is described by the SmartLog company, 
one of the biggest technology companies providing 
services for logistics operations). The main 
contributions of our paper are listed as follows: 

• We define a problem of truck-trailer scheduling 
in multi-size container transportation that combine the 
following features: trucks, trailers, and containers are 
separate objects located at different terminals; a truck 
is scheduled to take a trailer and then carry containers; 
a trailer can be detached from the truck at ports or 
warehouses. 

• We formulate the considered problem with a 
mixed-integer linear programming (MILP) model. We 
solve small-scale instances by using GUROBI 
Optimizer to validate our model. 

• We propose a local search algorithm for solving 
the considered problem with a strategy including 
generating initial solutions and subsequently applying 
neighborhood operators to improve the quality of 
solutions. The performance of algorithms is compared 
by conducting extensive numerical experiments to 
evaluate their applicability in real-world applications. 
The instances and experimental results are available on 
(https://github.com/sonnv188/TTCRP.git) for further 
research and comparison. 

This paper is structured as follows. Section 2 
presents the TTCRP problem formulation. Then, 
proposed algorithms for solving the problem are 
described in Section 3. Experimental settings and 
numerical results are displayed in Section 4. The last 
section concludes the proposed solution and draws 
some future works. 

2. Problem Description 

2.1. Definitions and Assumptions 

Every day, a transportation company receives 
container transportation requests. There are four types 
of containers corresponding to four types of requests: 

• Inbound full (IF): A loaded container located at a 
port needs to be transported to a customer. 

• Inbound empty (IE): An unloaded container 
located at a customer or port needs to be retained at an 
empty container depot. 

• Outbound empty (OE): A container located at an 
empty container depot needs to be transported to a port 
or customer for loading export goods.  

• Outbound full (OF): A full container located at a 
customer needs to be delivered to a port. 

There is a set of homogeneous trucks K, 
homogeneous trailers P, and empty heterogeneous 
containers Q. We denote sets of truck depots and 
terminals by DK and TK, respectively. Each truck 
departs from a depot in DK and terminates at a 
designated terminal in TK. We denote a set of trailer 
depots by DP. TP is a set of trailer terminals. DQ is a 
set of container depots. Ports and customer warehouses 
have time windows for container activities, whereas 
truck, trailer, and container depots have no time 
window. It means that all IF and OF requests have two 
time windows, while IE and OE requests have only a 
time window. If there are not any available forklifts for 
taking the container out of the trailer, both the 
containers and the trailer can be detached from the 
truck. The truck can be scheduled to take another 
trailer for other itineraries.  

 

 
Fig. 1.  An example of the TTCRP problem. 

 
Fig. 1 presents an example of this problem. There 

are four trucks and three trailers available at depots in 
this instance. A truck leaves from depot A, arrives at 
the trailer depot B to take a trailer, then reaches port C 
to pick up the loaded container and transport it to 
customer D. And then, the empty container is retained 
at depot E by this truck, and the trailer is retained at 
depot B. Finally, the truck comes back to depot A. In 
the second route, a truck takes a trailer at depot B. It 
transports to customer D to take a 20ft loaded container 
that needs delivery to port C. The truck continues to go 
to customer H to collect another 20ft loaded container 
that also needs delivery to port C. Another truck starts 
at truck depot F. It then reaches depot B to take a 
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trailer. Then, this truck arrives at container depot G to 
take an empty container and delivers this container to 
customer H. Due to no available forklifts at customer 
G, the truck leaves both the trailer and container at 
customer G and returns to depot F. 

Some notions and parameters used throughout the rest 
of the paper will be presented in Table 1. Table 2 
defines the modelling variables. 

 

Table 1. Input 

Notation Definition 

K A list of trucks {0,1,...,| | 1}K K= − . For each truck ,k K∈ d(k) and t(k) are the depot and 
termination of truck 𝑘𝑘 respectively. { ( )} , { ( )} .k kK KDK d k TK t k∈ ∈= =  

P A list of trailers {0,1,...,| | 1}P P= − . For each trailer p P∈ , d(p) and t(p) are the depot and 
termination of trailer p respectively. { ( )} , { ( )} .p pP PDP d p PK t p∈ ∈= =  

Q A list of empty containers {0,1,...,| | 1}Q Q= − . For each container q Q∈ , d(q) is the depot of 
container q. { ( )} .q QDQ d q ∈=  

T A list of returned container depots {0,1,...,| | 1} .T T Q= − ⊆  

IF Set of IF requests, for each r IF∈ , p(r) and w(r) are points of port (pickup point) and customer 
(delivery point). 

{ ( )} , { ( )}p r IF w r IFIF p r IF w r∈ ∈= = , * {( , ) | ( ) ( )}.r r r rIF p d r IF p p r d w r= ∀ ∈ ∧ = ∧ =  

IE Set of IE requests, for each r IE∈ , w(r) is a point of customer (pickup point).  
{ ( )}w r IEIE w r ∈= , * {( , ) | ( ) }.w r r r rIE IE T p d r IE p w r d T= × = ∀ ∈ ∧ = ∧ ∈  

OF Set of OF requests, for each r OF∈ , w(r) and p(r) are points of customer (pickup point) and port 
(delivery point). 

{ ( )} , { ( )}w r OF p r OFOF w r OF p r∈ ∈= = , * {( , ) | ( ) ( )}.r r r rOF p d r OF p w r d p r= ∀ ∈ ∧ = ∧ =  

OE Set of OE requests, for each r OE∈ , w(r) is a point of customer (delivery point). 
{ ( )}w r OEOE w r ∈= , * {( , ) | ( )}.w r r r rOE DQ OE p d r OE p DQ d w r= × = ∀ ∈ ∧ ∈ ∧ =  

R Set of all customer requests R IE IF OE OF= ∪ ∪ ∪ . We denote | | .R N=  

R∗ Set of point-pairs of pickup and delivery points * * * *.R IE IF OE OF= ∪ ∪ ∪  We denote * *| |R N=  

S Set of intermediate points where each truck visits each point of S at most once. 
.p w w w p wS IF IF IE OF OF OE DP TP DQ T= ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪  

V Set of all vertices V DK S TK= ∪ ∪ . 

A Set of possible arcs {( , ) | , }.A i j i DK S j S TK= ∀ ∈ ∪ ∀ ∈ ∪  
( ) { | ( , ) }, ,i j i j A i Vδ + = ∈ ∀ ∈ ( ) { | ( , ) }, .i j j i A i Vδ − = ∈ ∀ ∈  

𝑒𝑒𝑣𝑣 , 𝑙𝑙𝑣𝑣 , 𝑠𝑠𝑣𝑣  The earliest, latest arrival time and serving duration at point .v V∈  

𝑡𝑡𝑖𝑖,𝑗𝑗 ,𝑑𝑑𝑖𝑖,𝑗𝑗 The travel time and distance from point i to point j ( , ) .i j A∀ ∈  

𝑐𝑐𝑝𝑝, 𝑐𝑐𝑡𝑡 Penalty cost of one unserved request and initial cost of using one truck. 

𝑟𝑟𝑝𝑝,𝑑𝑑 A parameter identifies request r R∈ that has the pickup point 𝑝𝑝 and the delivery point d,
*( , ) .p d R∀ ∈  

M A very big constant. 
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Table 2. Modelling variables 

Notation Definition 

,
k
i jX  A binary variable equals 1 if truck k travels on arc (i, j), or equals zero otherwise, , ( , )k K i j A∀ ∈ ∈  

b(v) A binary variable equals 1 if the trailer is unhitched from a truck at point v V∈ , equals 0 otherwise. 

m(v) A variable to identify the trailer weight of points. 

( ( )) 2 | | 1, ( ( )) (2 | | 1), ,i i im d p P i m t p P i p P= + + = − + + ∀ ∈ 0,| | 1.i P∀ = −  

( ) ( ) m v P b v= − , otherwise. 

c(v) A variable to identify the container weight and type of the container at point :v V∈  
c(v) = 2 if a 40ft container is picked up, c(v) = -2 if a 40ft container is delivered, c(v) = 1 if a 20ft 
container is picked up, c(v) = -1 if a 20ft container is delivered at point v, c(v) = 0, otherwise. 

( )oec v  A variable to identify the container weight at point v related a request in OE. 
( ) ( ) ,oe wc v c v v DQ OE= ∀ ∈ ∪ ( ) 0,oec v = otherwise. 

( )iec v  A variable to identify the container weight at point v related a request in IE. 
( ) ( ) ,ie wc v c v v IE T= ∀ ∈ ∪ ( ) 0,iec v = otherwise. 

TL(v) The accumulated trailer weight after leaving point 𝑣𝑣 of the itinerary visiting v, .v S∈  

CL(v) The accumulated container weight after leaving point v of the itinerary visiting v, .v S∈  

( )oeCL v  The accumulated container weight after leaving point v of the itinerary visiting v, .wv DQ OE∈ ∪  

( )ieCL v  The accumulated trailer weight after leaving point v of the itinerary visiting v, .wv IE T∈ ∪  

AT(v) The time point when a truck arrives at point .v V∈  

DT(v) The time point when a truck departs from point .v V∈  

ST(v) Start serving time at point .v V∈  

0 1,y y  Two binary variables. 

2.2. Mathematical Formulation 

In this section we formulate the considered 
problem with a MILP model. We denote the number 
of used trucks is denoted by ( ),

k
t d k j

k K j
g X

∈ ∈

= ∑∑


the 

number of unserved requests by the notation: 

w( ) w( )
w( )) w

,
( ))

w( ) ( )
w( )) (

,
( (

,
)

,
( )(

r r

r
k k
i i

r OE k K r IE k Ki i

k k
i i p

r r

r
r OF k K r IF k Ki i

r
r rp

g N
X X

X X
δ δ

δ δ

− −

− −

∈ ∈ ∈ ∈∈ ∈

∈ ∈ ∈ ∈∈ ∈

=

− −

− −

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

 

and the total travel distance by , ,
( , )

k
c i j i j

k K i j A
g d X

∈ ∈

= ∑ ∑ . 

The TTCRP problem formulation is as follows:  
min( )p r t t cF c g c g g= + +  (1) 

subject to: 

,
( )

1,k
i j

k Kj i

X i DK S
δ + ∈∈

≤ ∀ ∈ ∪∑ ∑  (2) 

, ,
( ) ( )

, ,k k
i j j i

j i j i

X X i S k K
δ δ+ −∈ ∈

= ∀ ∈ ∈∑ ∑  (3) 

,
( , )

,

| | 1, ,k
i j

i j Ak K
i j

X V
∈∈
∈

≤ − ∀ ⊂ ≠ ∅∑∑


    (4) 

( ), 1,k
d k j

j S
X k K

∈

≤ ∀ ∈∑  (5) 

, ,

, ,

( ) ( 1) ( ),

( ) (1 ) ( ),

( , )

k
i j i j

k K
k

i j i j
k K

DT i t M X AT j

DT i t M X AT j

i j A

∈

∈

+ + − ≤

+ + − ≥

∀ ∈

∑

∑     (6) 

( ) ( ),iST i s DT i i V+ = ∀ ∈  (7) 

( ) ( ),ST i AT i i V≥ ∀ ∈  (8) 
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( ) ,iST i e i V≥ ∀ ∈   (9) 

( ) ,iAT i l i V≤ ∀ ∈   (10) 

,

,

( ) ( ) ( 1) ( ),

( ) ( ) (1 ) ( ),

( , )

k
i j

k K
k
i j

k K

TL i m j M X TL j

TL i m j M X TL j

i j A

∈

∈

+ + − ≤

+ + − ≥

∀ ∈

∑

∑  (11) 

,

,

( ) ( ) ( 1) ( ),

( ) ( ) (1 ) ( ),

( , )

k
i j

k K
k
i j

k K

CL i c j M X CL j

CL i c j M X CL j

i j A

∈

∈

+ + − ≤

+ + − ≥

∀ ∈

∑

∑  (12) 

 
,

,

( ) ( ) ( 1) ( ),

( ) ( ) (1 ) ( ),

k
oe oe i j oe

k K
k

oe oe i j oe
k K

CL i c j M X CL j

CL i c j M X CL j
∈

∈

+ + − ≤

+ + − ≥

∑

∑
 ( , )i j A∀ ∈   (13) 

,

,

( ) ( ) ( 1) ( ),

( ) ( ) (1 ) ( ),

k
ie ie i j ie

k K
k

ie ie i j ie
k K

CL i c j M X CL j

CL i c j M X CL j
∈

∈

+ + − ≤

+ + − ≥

∑

∑
 

( , )i j A∀ ∈   (14) 

0 ( ) ( ) 3 ,TL i TL i MY i V≤ ∧ ≤ ∀ ∈  (15) 

0 ( ) ( ) 2,CL i CL i i V≤ ∧ ≤ ∀ ∈  (16) 

( ( )) 0, k KTL d k = ∀ ∈  (17) 

( ( )) ( ( )) 0,CL d k CL t k k K= = ∀ ∈  (18) 

( ( )) ( ( )) 0,oe oeCL d k CL t k k K= = ∀ ∈  (19) 

( ( )) ( ( )) 0,ie ieCL d k CL t k k K= = ∀ ∈  (20) 

1

0

0

0

1

1

( ( )) (1 ) 0,
( ( )) (1 ) 0,
( ( )) (1 ) 1,
( ( )) (1

y  + y  = 1
) 2 ,

TL t k M y k K
TL t k M y k K
TL t k M y MY k K
TL t k M y MY k K

+ − ≥ ∀ ∈

− − ≤ ∀ ∈

+ − ≥ + ∀ ∈
− − ≤ ∀ ∈

 (21) 

( ) ( ),CL i TL i i V≤ ∀ ∈  (22) 

, ( )
( ( ))

1,k
i w r

k Ki w r

X r R
δ − ∈∈

≤ ∀ ∈∑ ∑  (23) 

( ( )) ( ( )),AT w r AT p r r OF≤ ∀ ∈  (24) 

( ( )) ( ( )),AT p r AT w r r IF≤ ∀ ∈  (25) 

, ( ) , ( )
( ( )) ( ( ))

,

,

k k
i w r i p r

i w r i p r

X X

r OF IF k K
δ δ− −∈ ∈

=

∀ ∈ ∪ ∀ ∈

∑ ∑
 (26) 

 Constraint (2) ensures that each intermediate 
point is visited at most once. Constraint (3) presents 
flow conservation constraints. Subtours are eliminated 
by Constraint (4). Constraint (5) specifies that a truck 
starts from its depot at most once. Constraints (6)-(7) 
relate to the arrival, departure and service duration 
between two points. Time windows are set by 
Constraints (8)-(10). Constraints (11)-(12) relate to the 
accumulated trailer and container weights after leaving 
each point. The accumulated container weights related 
to OE and IE requests are computed by Constraints 
(13)-(14). Constraint (15) specifies that no more than 
one trailer visits a point. The boundary of container 
weight is set by Constraint (16). Constraints (17)-(20) 
compute the accumulated trailer and container weights 
at truck depots. Constraint (21) enforces that a trailer 
must be delivered to a customer or its termination. For 
more detail, the number of trailers at a truck depot 
equals zero. If a trailer is unhitched from a truck at the 
customer, the accumulated trailer weight at the 
termination of the truck is equal to (m(d(p)) - m(v)), or 
equal to zero otherwise. Constraint (22) states that a 
container must be carried by trailer. Constraint (23) 
guarantees that each request is served at most once. 
Constraints (24) - (25) state that the pickup point is 
visited before visiting the delivery point for each OF 
or IF request. Constraint (26) specifies that the pickup 
and delivery container points of OF and IF requests 
must be assigned to the same truck route.  

 The objective function F states that the number 
of unserved requests, the number of used trucks and 
total travel distance should be minimized. The number 
of unserved requests is firstly minimized with a large 
value of 𝑐𝑐𝑝𝑝. If 𝑐𝑐𝑡𝑡 is sufficiently large, the model will 
primarily minimize the number of used trucks. 

3. Solution Methods 

 We have experimented with the proposed MILP 
model by using the GUROBI solver. Experimental 
results show that the GUROBI solver cannot find 
optimal solutions for instances with more than six 
requests within one hour. Due to the huge 
computational complexity, the MILP model cannot be 
solved with large instances. Therefore, we aim to 
propose heuristic algorithms to handle large instances 
of the TTCRP in this section. We give some notations 
to facilitate the presentation of heuristic algorithms as 
follows. A solution to the TTCRP problem is denoted 
by 0 1 | | 1, ,..., Ks s s s −= 〈 〉  where ks  is a route of truck k 
represented by a sequence 0 1 ( ), ,...,k k k

len ks s s〈 〉  where 

0 ( ),k k
len ks DK s TK∈ ∈  are the starting and terminal 

points of the truck k, k
is S∈ ( 1, ( ) 1)i len k= −  are 

intermediate points that are visited by truck k. An 
empty solution contains routes that are initialized 
without intermediate points (i.e., ( ) 2,len k =

0,| | 1)k K∀ = − . We denote: 
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• ( ) :ir v The index of the truck route containing 
point v V∈ . ( )ir v =⊥  if point v is not in any truck 
route.  

• ( ),pr v  ( )sc v : The previous point and successor 
point of point v, respectively. If ( )ir v =⊥ ,

( ) ( ) ,pr v sc v= =⊥ .v V∀ ∈  

• ( )cl v : The number of container units attached to 
the truck after leaving point .v V∈  A 40ft container 
unit equals 2. A 20ft container unit equals 1. 

• ( ) :tl v The number of trailer units attached to the 
truck after leaving point .v V∈  Each trailer is assumed 
to be 2 container units (each time the truck arrives at a 
point for taking a trailer, the number of trailer units is 
increased by 2, each time the trailer is detached from 
the truck, the number of trailer units is decreased by 2). 

• 1 2( , , ) :kI s v v The operator that inserts point 1v
right after point 2v  of route ks , and returns a new 
route. 

3.1. Quality Function 

 One of the cores of a heuristic algorithm is a 
function that models the quality of solutions. This 
function is used to control the solution search. 
Basically, the function is the objective function F 
described above combines three components: the 
number of unserved customers rg , the number of used 
trucks tg , and the total travel distance cg  in a linear 
way with coefficients. However, according to [10], 
these objectives are very often conflicting in practice. 
Indeed, to reduce the number of unserved customers, 
some trucks are scheduled to carry too little cargo in 
real-world situations. This schedule requires more 
trucks and provides low profitability and causes 
resource imbalances. In addition, choosing 
coefficients in actual operation is difficult. In actual 
operation, rg  is often treated with the highest priority, 
and cg  is treated with the lowest priority. Hence, in 
our proposed algorithms, we form the control function 
F’(s) over a solution s as a vector of three components 
treated in a lexicographic order: given two solutions 1s
and 2.s  1 2'( ) '( )F s F s< if: 

• 1 2( ) ( )r rg s g s<  

• 1 2( ) ( )r rg s g s=  and 1 2( ) ( )t tg s g s<  

• 1 2( ) ( )r rg s g s=  and 1 2( ) ( )t tg s g s=  and 

1 2( ) ( ).c cg s g s<  

3.2. Trailer Point Insertion 

 Algorithms proposed and presented in this paper 
are based on operations of inserting points into routes 

under construction while maintaining constraint 
satisfaction. More precisely, when a container pickup 
point is inserted into the truck’s route, a trailer pickup 
point must be inserted before the container pickup 
point (if necessary). It means that the truck must pick 
up the trailer before picking up the container because 
the container must lie on the trailer attached to the 
truck. If the truck has a trailer attached with sufficient 
capacity, it can go to pick up a container without 
having to pick up other trailers. We denote the function 
of inserting trailer points into a solution s satisfying 
constraints by TrailerInsertion(s) (see Algorithm 1). 
This function uses a greedy strategy that schedules a 
truck to visit the nearest trailer depot before picking up 
a container (lines 5-6). If a trailer is attached to the 
truck and the number of container units equals 1, the 
truck can carry an extra 20ft containers. Line 7 marks 
the delivery point of the attached trailer. Lines 11-13 
require that each truck must deliver the attached trailer 
to the trailer depot if the truck does not leave the trailer 
at the last delivery point. 

Algorithm 1: 0 | | 1( ,..., )KTrailerInsertion s s s −= 〈 〉  

1 for 0k = to |K| - 1 then 

2     1 ; ;k
lv s v← ←⊥  

3     while ( )
k
len kv s≠ do 

4         if ( ) ( )tl v cl v< then 

5 
           *p ←An available trailer at the nearest 
trailer depot; 

6            *( , ( ), ( ));k ks I s d p pr v←  

7             *( );lv t p←  

8         end  
9         ( );v sc v←  

10     end 

11     if ( ) 1( ) 0k
len kb s − = then 

12        *
( ) 1( , ( ), );k k k

len ks I s t p s −←  

13     end 
14 end 

 
3.3. Neighborhoods 

 The neighborhoods we consider in our algorithm 
are based on neighborhoods proposed by [11]. This 
paper uses popular neighborhoods, including one-
request-move, two-request-move, two-opt-move,  
or-opt-move, three-opt-move, three-request-move 
cross-exchange neighborhoods. We note that for  
each local move, the pickup and delivery points of 
each request are always on the same route  
( *( ) (d ), ( , )r r r rir p ir p d R= ∀ ∈ ). Due to lack of space, 
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we do not present in detail these neighborhoods. 
Interested readers can refer to [11] for more detail 
about these neighborhood structures. 

 
3.4. Local Search Algorithm 

 The proposed local search is depicted in 
Algorithm 2. L is a list of considered neighborhoods, 
and maxStables is a given parameter. An initial 
solution is generated in a greedy constructive manner 
at line 1. Line 2 updates the best solution found so far. 
At each iteration of the local search, line 4 shuffles that 
order of the neighborhoods of L. Lines 7-11 iteratively 
explore these neighborhoods (see Algorithm 3). The 
neighborhood exploration will terminate whenever it 
discovers a first neighbor which is better than the 
current solution 𝑠𝑠 (lines 9-10). Line 12 replaces the 
current solution by a randomly selected neighbor of E. 
If the selected neighbor is better than the best solution 
found so far *s then *s  is updated (lines 13-14). 
Otherwise, the search augments the number of 
consecutive iterations nic in which no improvement is 
found by one. Due to the complexity of the problem, it 
is possible that no further improvements can be found 
after some iterations. The search will be restarted if nic 
exceeds maxStables to avoid getting stuck in local 
optima (see lines 15-20). 

Algorithm 2: LS(L, maxStables) 

1 s ←Generate an initial solution; 
2 * ; 1;s s nic← ←  
3 while stop condition is not expired do 
4     Shuffle(L); 
5     { };E ← ∅  
6     ;e ←∞  
7     foreach neighborhood iN L∈ do: 
8         ,E e〈 〉 ←Explore( , ,iN E e ); 
9         if ( )  'e F s< then 

10             break; 
11     end 
12     s ←Select(E); 
13     if *'( ) '( )F s F s< then 
14         * ; 1;s s nic← ←  
15     else 
16         nic++; 
17         if nic > maxStables then 
18             s ←Generate an initial solution; 
19             1;nic ←  
20         end 
21     end 
22 end 

 
Algorithm 3 receives a neighborhood N and a set 

E of potential solutions which have been already found 

so far (i.e., by exploring previous neighborhoods). It 
scans all solutions of the considered neighborhood N 
(line 1), completes routes by inserting trailer points 
(line 2) and returns a new set of best solutions E and 
their evaluation e (lines 3-9). 

Algorithm 3: Explore(N, E, e) 
1 for s N∈ do 
2     s ←TrailerInsertion(s); 
3     if ( )'   F s e< then 
4         { };E s←  
5         e ←F’(s); 
6     else 
7         if ( )'   F s e= then 
8             { };E E s← ∪  
9     end 

10 end 
11 return ,E e〈 〉  

 
4. Experiments 

 In this section, we conduct experiments for 
evaluating the efficiency of two proposed algorithms 
and also compare them with the best algorithm 
HAS(BPIUS) in [9] (the algorithm in [9] is the strategy 
of manual scheduling procedures that lean on 
basic greedy approaches based on the rule of thumb). 
The implementation of these algorithms is based on the 
library CBLSVR [12] that is a constraint-based local 
search library for general vehicle routing problems. 
Test instances are solved on an Intel(R) Core(TM) i7-
4790 CPU @ 3.660 GHz, CPU 16 GB RAM computer. 

4.1. Instances and Setting 
Our paper investigates a new realistic multi-size 

container transportation routing problem that has not 
been investigated in the literature to the best of our 
knowledge. Therefore, there is no available standard 
benchmark for the problem. We generate the instances 
for evaluating the efficiency of the proposed 
algorithms as follows. We collect the information of 
eight major seaports in the North of Vietnam and 40 
warehouses of big import-export companies based on 
the Google Maps service. Truck, trailer and container 
depots are equipment yards of 7 hinterland 
transportation Vietnam companies. Instances follow a 
naming convention of N-x-y where x is the number of 
requests that need to be served and 𝑦𝑦 is the index of the 
generated data set. The number of trucks is limited in 
10% and 20% of x. In our instances, trucks are 
available from 2019-06-11 18:00:00. The starting time 
for pickup or delivery at each customer warehouse is 
randomly chosen between 2019-06-12 00:00:00 and 
2019-06-14 23:59:59. The width of time windows is 7 
hours and 15 minutes for serving time of every single 
point. The travel distance from one point to another is 
measured by using the Google Maps service, and the 
average speed is around 40 km/h. The total travel time 



  
JST: Smart Systems and Devices 

Volume 32, Issue 2, May 2022, 064-073 

71 

of trucks is converted to distance by the average speed 
to compute the cost of each solution. We analyze the 
performance of our MILP model by experiments on 
the small generated instances N-4-0 and N-6-0. 

4.2. Mathematical Formulation Validation 
The first experiment is to validate and analyze the 

performance of our MILP model for the TTCRP 
problem. By selecting instances where requests can be 
served, ,( , )

3 maxp i ji j A
c N d

∈
= , and ,( , )

maxt i ji j A
c N d

∈
= , it is 

possible to compare solutions of the MILP model with 
solutions of the proposed heuristic algorithms. Table 3 
states that the results of HAS(BPIUS), LS algorithms 
and the MILP model are the same, and then, our 
formulation is validated. Moreover, these experiments 
show that our heuristic algorithms can find optimal 
solutions in small instances. GUROBI Optimizer 
cannot solve the MILP model for instances having 
more than six requests within one hour. 

4.3. Comparison between the Efficiency of 
Algorithms 

 The results of 25 instances for 20 to 200 requests 
are presented in Table 4. The best solution is found 
after 10000 iterations (maxStables = 1000) or one hour 
(stop condition) of execution and shown in boldface. 
The average values are determined after running 10 
times. The results reveal that for most instances, both 
the average number of unserved requests (avg gr ) and 
the average number of trucks needed (avg gt ) of 
solutions obtained by the LS algorithm are lower than 
the corresponding values of the solution obtained by 
HAS(BPIUS) algorithm. We note that a solution 
having fewer unserved requests is always considered 
better than a solution with more unserved requests, 
regardless of the total travel distance. The results also 
show that the proposed LS algorithm can find good 
quality solutions for large instances of this problem 
within a reasonable computational time (less than 1 
hour). The small standard deviation (std gc ) of the 
results found by the LS algorithm implies that the LS 
algorithm is more stable than the HAS algorithm. 
Besides, at instances N-70-0, N-70-2, N-70-4, N-100-
0, N-100-1, N-100-4, N-150-1 and N-150-4, the 
average cost found by the LS algorithm is worse than 
that of HAS(BPIUS) due to the number of unscheduled 
requests of the LS algorithm or the number of trucks 

needed is lower than that of HAS(BPIUS). To 
illustrate the improvement rate, we compute the 

' ' '
1 2 1( )*100 /GAP F F F= −  between values of the 

objective function 'F , where ,( , )
3 maxp i ji j A

c N d
∈

= , and 

,( , )
maxt i ji j A

c N d
∈

= . In general, using the proposed LS 

algorithm, we found that the average improvement rate 
is 19.62 (the rate is from 0 to 68.17). Although the 
improvement rate is equal to zero in some instances, 
the LS algorithm still obtains solutions better than 
HAS(BPIUS). Furthermore, the application of the 
model led to the rapidity in generating the solution; this 
task that used to take days is decreased to just one hour. 

4.4. The impact of different objective functions  
In this experiment, we implement the LS 

algorithm with the different quality functions 

• ' '
1 2( ) ( )

r rg gF s F s<  if 1 2( ) ( )r rg s g s<  

• ' '
1 2( ) ( )

t tg gF s F s<  if 1 2( ) ( )t tg s g s<  

• ' '
1 2( ) ( )

c cg gF s F s<  if 1 2( ) ( )c cg s g s<  

and compute the GAP between their values with the 
value of '

2F  at instance N-100-0 in Table 4. The results 
are illustrated by Fig. 2. In Fig. 2, we found that these 
objectives are actually conflicting. The objective 
function '

rgF that reduces the number of unserved 
requests leads to the increasing of used trucks. Besides, 
to minimize the using truck cost '

tgF , some low profit 
requests are unserved. 

 

 
Fig. 2.  The impact of the different quality functions. 

 
Table 3. Comparison between results of HAS(BPIUS), LS, and MILP model 

Ins 
MILP model HAS(BPIUS) LS 

rg  tg  cg  t(s) rg  tg  cg  t(s) rg  tg  cg  t(s) 

N-4-0 0 1 280 205 0 1 280 1.03 0 1 280 13 

N-6-0 0 1 216 2311 0 1 216 1.15 0 1 216 37 
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Table 4. Results of heuristic algorithms 

Ins 

HAS(BPIUS)[9] LS 

GAP 

c

avg
g  

c

std
g

 
t

avg
g  

r

avg
g  

avg
t

 '
1F  

c

avg
g  

c

std
g

 
t

avg
g  

r

avg
g  

avg
t

 '
2F  

N-20-0 201 33 3 0.6 56 1209801 151 4 3 0 624 756151 37.5 

N-20-1  196 46 3 1 609 1512196 187 3 3 0 974 756187 49.99 

N-20-2  144 23 3 0.5 651 1035144 123 3 3 0 551 690123 33.33 

N-20-3  154 4 2 0 1587 502154 151 8 2 0 1403 527251 0 

N-20-4  171 5 2.2 0 1519 464371 154 5 2 0 1528 422154 9.09 

N-70-0  468 52 7 7.8 1276 7904468 628 32 7.4 3.9 1354 4966628 37.17 

N-70-1  655 57 7 2.2 448 3536655 585 21 7 0 610 1820585 48.52 

N-70-2  598 31 7 5 430 5720598 782 22 7 0 366 1820782 68.17 

N-70-3  580 38 7 0.8 233 2444580 494 35 7 0 265 1820494 25.53 

N-70-4  441 28 7 11.5 443 10582941 596 43 7.1 8 553 7931096 25.06 

N-100-0  769 20 10 7.3 271 8294769 873 31 10 3.6 484 5408873 34.79 

N-100-1  750 42 10 5.8 517 7124750 792 36 10 4 561 5720792 19.71 

N-100-2  884 48 10 1.5 405 3770884 872 29 10 0 420 2600872 31.03 

N-100-3  870 47 10 0.6 654 3009870 866 43 10 0.6 871 3009866 0 

N-100-4  850 35 10 4.1 296 5798850 892 25 10 0 346 2600892 55.15 

N-150-0  1260 23 18.8 0 1774 4889260 1194 21 18.8 0 1691 4889194 0 

N-150-1  1327 11 19 0 1523 4941327 1408 14 18.2 0 1437 4837408 4.21 

N-150-2  1319 46 20 0.2 1151 5357319 1273 39 19.7 0 1163 5201273 4.37 

N-150-3  1236 43 16.6 0 1553 4317236 1213 36 16.1 0 1470 4187213 3.01 

N-150-4  1374 29 19.9 0.4 1405 5487374 1532 32 20 0 1311 5201532 5.21 

N-200-0  1547 20 23 0 1389 5981547 1487 16 23 0 1502 5981487 0 

N-200-1  1573 29 24.2 0 1511 6293573 1529 13 23 0 1521 6241529 4.96 

N-200-2  1656 19 24 0 1612 6241656 1562 21 24 0 1567 6241562 0 

N-200-3  1701 13 28.5 0 1773 7269201 1664 13 27.5 0 1878 7167164 3.51 

N-200-4  1600 32 23.3 0 1637 6059600 1541 27 23.3 0 1730 6059541 0 

5. Conclusion 

 In this paper, we considered a realistic container 
transportation problem in which trucks, trailers, and 
containers are separate objects located at different 
positions. A truck is scheduled to take a trailer and then 
carry containers. The truck cannot carry a container 
itself. A trailer can carry only one 40ft container or at 
most two 20ft containers. In addition, when a container 
is transported to a warehouse, the trailer can be 
detached from the truck depending on whether or not 

a forklift is available for taking the container out of the 
truck. We proposed a MILP model for describing and 
a local search algorithm for solving the problem. 
Experimental results showed the efficiency of the 
proposed algorithm on randomly generated instances.  

 Our future works will investigate the online 
scenario of this problem in which requests are not 
known beforehand and revealed online during the 
execution of the schedule. Moreover, we believe that 
extending the problem more flexibly and realistically 
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with a stochastic environment and restricted access 
roads will be a valuable area. 
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