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Abstract 

Many chronic diseases, such as cardiovascular disease and sleep disorders, can be diagnosed and treated 
by assessing the sleeping quality. Sleep posture recognition is an important part of determining sleep quality 
in sleep research. While most recent studies focus on the classification problem with the number of sleeping 
postures being equal to or less than ten, this study aims to achieve state-of-the-art results on 17 in-bed position 
classification. To do this, a spatial pyramid pooling module was added to the top of the EfficientNet B0 model 
and the contrastive loss and cross-entropy loss functions are combined to act as the main loss function. The 
random 10% salt and pepper noise are utilized to augment the training data. Experimental results confirm that 
the proposed approach achieves the best accuracy of 96.01% and outperforms the existing methods. 
Additionally, we also provide an estimation related to the impact of various combinations of backbone models 
and loss functions on the performance of the classifier. 

Keywords: Sleeping posture classification, pressure sensor data, deep learning. 

 

1. Introduction1 

In-bed posture recognition plays a vital role in 
sleep studies [1]. Indeed, doctors can diagnose 
esophagus problems earlier by monitoring a patient’s 
sleeping positions for a period. Many studies show that 
resting on your right side increases your chances of 
developing transitory lower esophageal sphincter 
relaxation, a significant cause of nocturnal 
gastroesophageal reflux. In the hospital environment, 
bed-ridden patients easily get bed-sore due to lying in 
the same position for a long time. To prevent pressure 
ulcers in bed-ridden patients, caregivers must 
frequently monitor and adjust the patients’ sleeping 
positions. This problem leads to the over workload 
problem for nurses and caregivers. Therefore, 
automatic in-bed posture recognition is helpful to 
detect unreasonable sleeping postures and remind 
clinical staff to change the patient’ sleeping position. 

Using pressure sensors to recognize in-bed 
sleeping positions has many advantages. Unlike the 
radiofrequency signal-based solution, this method 
does not necessitate the use of two devices, one on 
each side of the bed. Compared to RGB camera-based 
solutions, this approach does not violate patients' 
privacy. This method also does not cause discomfort 
to the patients like the wearable device-based 
solutions. The pressure sensor-based solutions are not 
affected by the low light condition. 

Related works of using pressure sensor data can 
be divided into two categories consisting of the 
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traditional method and the deep learning method. In 
the traditional method, the features of sleeping 
postures are investigated and generated by manual 
extraction techniques. In the deep learning method, the 
features of sleeping positions are learned during the 
training of the Convolution Neural Network (CNN) 
model. Due to the advantage of feature learning, recent 
solutions have widely utilized various CNN models to 
increase the accuracy of the classifier.  

Indeed, several CNN-based studies have been 
proposed, such as the works of [2-4]. In [2], the 
researchers introduced a self-supervised learning 
model which consists of an upstream self-supervised 
pre-training task and a downstream recognition task. A 
four-layer CNN model with rotated data was used in 
the upstream part to enhance the multi-dimensional 
feature representation learning, whereas a combination 
of bidirectional Long-Short Term Memory (LSTM) 
and conditional random field was applied in the 
downstream part to produce the sleeping posture 
labels. In [3], Yu et al. proposed a bunch of data 
augmentation techniques and a five-layer CNN model 
to solve the small data-size problem. Both these 
approaches provide impressive results with over 99% 
accuracy in the 3-class dataset. In the work of Costello 
et al., the authors combined a fuzzy rule inference with 
a mixture of CNN and LSTM models to achieve the 
accuracy of 98.8% in terms of 10 sleeping postures 
classification [4]. 

To solve the problem of classifying more than             
10 sleeping postures, Davoodina et al. proposed                      
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a CNN model including convolution blocks combined 
with Batch Normalization, Maxpool, and LeakyReLU 
[5]. The research showed 99.9 % and 87 % accuracy 
with 3 and 17 classes, respectively. This result was 
improved by the work of Doan et al. [6]. In [6], the raw 
pressure sensor data was normalized to the range of 
image data, and then the obtained data were smoothed 
and denoised by a preprocessing technique. To train 
the EfficientNet B0-based classifier, the authors 
applied the AM - Softmax loss function and the Adam 
optimizer with L2 regularization. Doan et al. achieved 
the best result at 95.32 % in the LOSO cross-validation 
scheme. 

Considering the problem of the high-power 
consumption of the CNN model, Dam et al. [1] 
proposed a Spiking Neural Network (SNN) model to 
classify 17 sleeping postures. In their work, a 
modification of Darknet19 model was trained, and 
then the best pre-trained model was converted to the 
SNN model with several pre-defined rules. Their 
experimental results point out that the SNN model 
provides better power consumption performance than 
CNN. However, their accuracy is lower than the work 
of Doan et al. about 4.7%. 

It can be seen from the above analysis that none 
of the studies evaluates the impact of various 
combinations of backbones and loss functions on the 
performance of sleeping posture classification. 
Additionally, the results on the 17-class dataset can be 
still improved. Therefore, we focus on achieving new 
state-of-the-art results by searching for a new 
combination of the backbone network and loss 
function. Since none of the previous studies has 
attempted this work, our approach provides three main 
research contributions. The first contribution is to 
estimate the performance of various backbone 
networks and loss functions in terms of sleeping 
position classification. The second contribution is a 
modification of EfficientNet B0 combined with 
supervised contrastive learning to achieve a state-of-
the-art result for 17 in-bed postures classification. The 
final contribution is a novel in-bed posture 
classification algorithm. 

The rest of this study is designed as follows: 
Section 2 details our proposed approach to sleeping 
posture classification; Section 3 outlines and discusses 
our experimental results; Section 4 provides a 
conclusion and a suggestion for future work in this 
field. 

2. Methodology 

2.1. Dataset 

In this work, we utilized the Pmatdata dataset [5] 
to evaluate our proposed algorithm. This dataset was 
obtained from a pressure sensor map named Vista 
Medical FSA SoftFlex which is designed by                         
2048 sensors and organized with a resolution of                     

32 x 64. The process of data acquisition was 
implemented at the sampling rate of 1Hz from                       
13 individuals (S1-S13) with various heights and 
weights in 17 lying positions. Table 1 presents the 
details of 17 classes in the Pmatdata dataset. 
Table 1. 17 classes of the Pmatdata dataset 

Class Icon Name Class Icon Name 

1 
 

Supine 10 
 

Supine Knees 
up 

2 
 

Right 11 
 

Supine Right 
Knee up 

3 
 

Left 12 
 

Supine Left 
Knee up 

4 
 

Right 30o 
Body-roll 

13 
 

Right Fetus 

5 
 

Right 60o 

Body-roll 
14 

 
Left Fetus 

6 
 

Left 30o 
Body-roll 

15 
 

Supine 30o Bed 
Inclination 

7 
 

Left 60o 

Body-roll 
16 

 
Supine 45o Bed 

Inclination 

8 
 

Supine 
star 

17 
 

Supine 60o Bed 
Inclination 

9 
 

Supine 
Hand 

Crossed 

   

 
2.2. Preprocessing Technique 

To enhance the accuracy of the proposed 
classification method, we implemented the same 
image preprocessing technique that was employed in 
the work of Doan et al. [6] before feeding the pressure 
data image into the classifier. Since the range of raw 
data is from 0 to 10000, we firstly normalized the raw 
data to the range of the 1-channel image. 
Subsequently, we slid a 3x3 kernel to transform each 
serial 3 data frame into a 3-channel image. To denoise 
the obtained 3-channel image, we applied a spatio-
temporal 3x3x3 median filter. Finally, we utilized an 
equalized histogram algorithm to enhance the contrast 
of the filtered image. Fig. 1 shows 9 samples of the 
pressure sensor system before and after applying the 
proposed image preprocessing technique. 

 

Fig. 1. Samples before and after applying the proposed 
image preprocessing technique 
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2.3. An Improved Sleeping Posture Classification 
Model 

The preprocessed pressure image was fed into a 
deep model for feature extraction and classification. 
We utilized the EfficientNet B0 as our backbone 
network for the classifier. The advantage of Spatial 
Pyramid Pooling (SPP) was proven in many studies       
[7-9]. Therefore, we added the SPP module to the top 
of the EfficientNet B0 to enhance the capability of 
feature extraction and learning. Instead of using the 
traditional Softmax loss function, a combination of the 
contrastive loss function and cross-entropy loss 
function was adopted during the training. Additionally, 
the training data was augmented by adding the random 
10% salt and pepper noise.   

2.3.1. Network architecture 

Based on the original EfficientNet B0 model, 
several modifications have been created to leverage 
accuracy. Firstly, the input size of the network model 
is set to 112 x 224, which is the same ratio as the 
preprocessed pressure image. Secondly, a convolution 
layer with 256 1x1 filters rests on top of the 
EfficientNet B0 model. After the convolution layer, a 
SPP layer is added to enhance the capability of feature 
extraction and learning of the proposed model. The 
SPP layer pools the features and generates fixed-length 
outputs, which are then fed into the next fully 
connected layer [7]. In our work, the SPP layer output 
is aggregated from outputs of four max-pooling layers 
whose filter sizes are 4x7, 2x4, 2x3 and 1x2. Table 2 
presents our SPP-EfficientNet B0-based classification 
model. 

Table 2. Details of our SPP-EfficientNet B0-based 
classification model 

Layer Resolution Channels Layers 

Conv3x3 112 x 224 32 1 

MBConv1, k3x3 56  x 112 16 1 

MBConv6, k3x3 56  x 112 24 2 

MBConv6, k5x5 28 x 56 40 2 

MBConv6, k3x3 14 x 28 80 3 

MBConv6, k5x5 7 x 14 112 3 

MBConv6, k5x5 7 x 14 192 4 

MBConv6, k3x3 3 x 7 320 1 

Conv1x1 3 x 7 1280 1 

Adaptive Average 
Pooling 3 x 7 1280 1 

Conv2D 3 x 7 256 1 

SPP 1 x 1 3584 1 

Linear 1 x 1 17 1 

 

2.3.2. Proposed loss function 

Cross-entropy loss function 

In the task of classification, we utilized the cross-
entropy loss function which is one of the most common 
categorical losses that has been used over the years. 
The cross-entropy loss is defined in this formula: 

 𝐿𝐿𝐶𝐶𝐶𝐶 =  −Σ𝑖𝑖=1𝐶𝐶 𝑡𝑡𝑖𝑖 log( 𝑒𝑒𝑠𝑠𝑖𝑖

Σ𝑗𝑗=1
C 𝑒𝑒𝑠𝑠𝑗𝑗

)               (1) 

where C represents the total number of classes, 𝑡𝑡𝑖𝑖 and  
𝑠𝑠𝑖𝑖 are the ground truth and the CN score for class 𝑖𝑖𝑡𝑡ℎ , 
respectively. 

Contrastive loss function  

Unlike the cross-entropy loss function, which is 
supposed to learn to directly predict the label, a value, 
or a set of values given by input, the objective of the 
contrastive loss function is to guide the samples from 
the same class to be mapped to the nearby features. The 
CNN model can be considered as a mapping function 
that transforms input samples to the output manifold. 
The contrastive loss function [10] is expected to help 
the model get better-embedded representations in the 
feature extraction task. In the output space, simple 
distance metrics (such as Euclidean distance) should 
replicate neighborhood relationships in the input 
space.  

Consider set 𝐼𝐼 of training samples 𝑋𝑋𝑖𝑖, for each 
𝑋𝑋𝑖𝑖 ∈ 𝐼𝐼, there is a set 𝑆𝑆𝑋𝑋𝑖𝑖  of training samples that have 
the same ground truth as 𝑋𝑋𝑖𝑖. Let 𝑋𝑋1,𝑋𝑋2  ∈ 𝐼𝐼 be a pair 
of input samples. Let 𝑌𝑌 be the binary label assigned to 
this pair, 𝑌𝑌 = 0 if 𝑋𝑋1,𝑋𝑋2 have same ground truth label 
and 𝑌𝑌 = 1 if they are deemed dissimilar. Define the 
distance 𝐷𝐷𝑤𝑤 between 𝑋𝑋1,𝑋𝑋2 as the Euclidian distance 
between the outputs of the model: 

     𝐷𝐷𝑤𝑤(𝑋𝑋1,𝑋𝑋2) = �|𝐺𝐺𝑤𝑤(𝑋𝑋1) − 𝐺𝐺𝑤𝑤(𝑋𝑋2)|�
2
           (2) 

where 𝐺𝐺𝑤𝑤 represents the CNN model which is 
parameterized by the weight W. 

The contrastive loss function is represented in 
this formula: 

          𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊) = Σ𝑖𝑖=1𝑃𝑃  𝐿𝐿(𝑊𝑊, (𝑌𝑌,𝑋𝑋1,𝑋𝑋2)𝑖𝑖)              (3) 

where P represents the number of training pairs and 
(𝑌𝑌,𝑋𝑋1,𝑋𝑋2)𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ labeled sample pair. In the 
formula, 𝐿𝐿(𝑊𝑊, (𝑌𝑌,𝑋𝑋1,𝑋𝑋2)𝑖𝑖) is the loss calculated on 
the 𝑖𝑖𝑡𝑡ℎ sample pair. The detailed definition of the loss 
on a training pair is:   

 𝐿𝐿(𝑊𝑊,𝑌𝑌,𝑋𝑋1,𝑋𝑋2) = 1
2

(1 − 𝑌𝑌) 𝐷𝐷𝑤𝑤(𝑋𝑋1,𝑋𝑋2)2 +

                                   1
2
𝑌𝑌{max(0,𝑚𝑚 −  𝐷𝐷𝑤𝑤(𝑋𝑋1,𝑋𝑋2)}2                                 

(4) 

where m > 0 is a margin. When the representation 
produced for a dissimilar pair is at a sufficient distance, 
no efforts are wasted on enlarging the distance. This 
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means that further training can focus on the more 
difficult pairs. 

A combination of cross-entropy and contrastive loss 
functions 

To take advantage of both the cross-entropy and 
contrastive loss function, we propose the mixture loss 
with the coherency of both losses defined in this 
formula: 

  𝐿𝐿𝑡𝑡𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼 × 𝐿𝐿𝐶𝐶𝐶𝐶 +  𝛽𝛽 × 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶             (5) 

where 𝛼𝛼 and 𝛽𝛽 are the coefficients of cross-entropy 
loss and contrastive loss, respectively. For each input 
sample 𝑋𝑋1, the cross-entropy loss is calculated with the 
corresponding target while 𝑋𝑋1 and another random 
sample 𝑋𝑋2 are fed to compute the contrastive loss. 

2.3.3. Training algorithm 

In the work of training the model with the loss we 
proposed, we implemented a learning architecture 
called siamese architecture [10]. This was made up of 
two copies of our SPP-EfficientNet B0 model which 
shared the same set of parameters 𝑊𝑊 in (2). The 
outputs of this architecture were fed to our proposed 
loss module to compute the combination loss. We 
determined that the input to the entire system was a 
pair of images (𝑋𝑋1,𝑋𝑋2) and a label 𝑌𝑌 of the pair. To 
warrant the balance in training pairs, we firstly took 
image 𝑋𝑋1 and label 𝑌𝑌 before randomly choosing 𝑋𝑋2 
based on 𝑌𝑌,𝑋𝑋1. To begin with, the training sample 𝑋𝑋1 
was fed into the first copy of our model in siamese 
architecture which returned the predicted logit  𝐺𝐺𝑤𝑤(𝑋𝑋1) 
for classification. The predicted logit 𝐺𝐺𝑤𝑤(𝑋𝑋1) and the 
corresponding target of 𝑋𝑋1 were used to compute the 
cross-entropy loss function. After that, we let image 𝑋𝑋2 
pass through the second copy in the system to get the 
output 𝐺𝐺𝑤𝑤(𝑋𝑋2). The contrastive loss combined the 
distance 𝐷𝐷�𝐺𝐺𝑤𝑤(𝑋𝑋1),𝐺𝐺𝑤𝑤(𝑋𝑋2)� with label 𝑌𝑌 to produce 
the scalarloss. Finally, the combination loss was 
figured out and based on that, the parameters 𝑊𝑊 were 
updated. 

 
Fig. 2. Our proposed training algorithm 

To decrease the training time, the pretrained 
EfficientNet B0 was utilized during the network 
training. We employed an Adam optimizer in the 
training phase with a learning rate of 0.005 and a step 
learning rate scheduler with a decay rate of 0.95 for 
every 10 epochs. We trained the network in 30 epochs 
with a batch size of 32. We used L2-regularization 

with a weight decay coefficient of 0.002 to avoid the 
over-fitting problem. Additionally, the random 10% 
salt and pepper noise were added to augment the 
training data. Fig. 2 presents our proposed training 
procedure. 

3. Experimental Results 

3.1. Experimental Setups 

For the training stage, our SPP-EffcientNet                
B0-based classification model was trained on a 
computer with an Intel Core E5 Xeon - 2650 V4 CPU 
@ 2.2 GHz x 12 and 64 GB RAM running on a 64-bit 
Ubuntu 18.04 operating system. Four RTX2080Ti 
GPU were utilized to accelerate the training process. 
For validating our proposed method, we trained our 
model based on two validation schemes, namely,  
k-fold and LOSO. In the k-fold cross-validation, the 
dataset was divided into k folds in which one fold was 
used for testing, and the rest were used for training in 
one validation round. The validation round was 
repeated for every fold. The k-fold accuracy was the 
average score of all validation rounds. In the LOSO 
cross-validation, in each validation round, one subject 
was kept aside for testing, and the other subjects were 
utilized for training. We repeated the training 10 times. 
After calculating the accuracy of all the testing sets, the 
LOSO accuracy was the average value of all accuracy 
scores. 

3.2. Training Results 

Four experiments were implemented in the 
training stage. The first experiment combined various 
backbone networks and loss functions to estimate the 
impact of these combinations on the classification 
performance. The second experiment was the training 
process of the proposed classification to find the best 
model. The next experiment was an ablation study of 
various combinations of SPP, EfficientNet B0 model, 
salt and pepper noise-based data augmentation and 
loss functions. The final experiment is to visualize the 
deep features of the proposed model with three loss 
functions (Cross-Entropy, Contrastive and a 
combination of Cross-Entropy and Contrastive) to 
compare their capability in terms of classification. 

3.2.1. Experiment 1 

In this experiment, various backbone models and 
loss functions were combined to train the classifier for 
the task of 17 sleeping posture classification. The 
chosen backbone networks were Resnet50, Inception 
V3, Mobilenet V2 and EfficientNet B0, while the 
chosen loss functions were Softmax (S), L-Softmax 
(L-S), A-Softmax (A-S), AM-Softmax (AM-S). 
Additionally, several other loss functions were mixed 
with the Cross-Entropy loss (CE) function: Circle loss 
(Cir), Contrastive loss (Con), Center loss (Cen), 
Triplet loss (Trip) and Triplet Center loss (Trip-Cen). 
Details of the training procedure including the 
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optimizer, learning rate, step learning rate scheduler, 
decay rate, and batch size were the same as those 
employed in the work of Doan et al. [6]. 

Table 3 represents how well the different loss 
functions can be combined with the CE loss to help to 
enhance the performance of various CNN models. In 
general, there are no considerable points in 10-fold 
cross-validation when the used models and losses are 
impressively robust. However, the mixed loss has a 
remarkable impact on the model’s classification ability 
when looking into LOSO Cross-Validation. Among 
various mixed loss functions, the combination of Con 
loss and CE loss brings outstanding outcomes in 
various models. Specifically, EfficientNet B0 and 
ResNet50 are the best, achieving 95.41% and 95.62%, 
respectively. Therefore, this experiment concludes that 
the mixture of Con loss and CE loss is the most suitable 
case for the task of pressure sensor data based on                 

17 sleeping postures classification. 

Even though this result shows that the 
combination of the CE-Con loss function and the 
Resnet50 provides higher accuracy than that of the 
nevertheless utilized the EfficientNet B0 to develop a 
new backbone model for this study due to its obvious 
advantage compared to the Resnet50. According to 
[11], the total parameters and BFlops of the 
EfficientNet B0 are lower by 4.9 times and 11 times, 
respectively, than those of the Resnet50. Additionally, 
the EfficientNet B0 model size is only 15 MB, whereas 
the Resnet50 model size is 85 MB. Therefore, 
EfficientNet B0 requires less memory usage than 
Resnet50. As a result, the EfficientNet B0 is more 
suitable than Resnet50 for implementing the in-bed 
posture classification task on edge devices such as 
Jetson Nano, TX2 or Xavier. 

 
Table 3. Average accuracy of CNN models with various loss functions on two cross-validation schemes 

Loss 
functions 

Cross-Validation Schemes 
Resnet50 InceptionNet-V3 MobileNet-V2 EfficientNet B0 

10-fold LOSO 10-fold LOSO 10-fold LOSO 10-fold LOSO 
S 99.99 93.92 99.99 91.84 99.99 94.26 99.98 93.56 
L-S 99.97 92.67 99.95 92.57 99.97 91.60 99.99 92.52 
A-S 99.99 93.73 99.96 92.20 99.99 93.43 99.97 94.34 
AM-S 99.99 93.89 99.99 93.37 99.98 94.62 99.99 95.32 
CE-Cir 100 94.59 99.94 93.92 100 94.11 99.95 93.38 
CE-Cen 99.86 91.21 99.95 94.5 99.93 93.39 99.96 95.3 
CE-Trip 99.73 94.35 99.65 93.82 100 93.09 98.89 94.84 
CE-Trip-Cen 100 92.29 99.99 94.35 99.99 93.36 99.98 93.12 
CE-Con 99.98 95.62 99.98 94.63 99.96 94.77 99.98 95.41 

Table 4. Average accuracy of the proposed method with various parameter pairs (α,β) 

Parameters 
(s, m) 

Accuracy on the LOSO validation dataset (%) 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Average 

(α = 1 , β = 1) 100 100 99.7 86.8 87.9 86.7 91.3 100 93.8 99.3 100 99.7 94 95.32 

(α = 1 , β = 0.9) 97.8 99.2 99.5 85.9 86.3 91 94.2 100 93.7 99.8 99.9 99.9 93.9 95.46 
(α = 1 , β = 0.8) 96.1 96 99.6 84.2 87.2 91.3 92.3 100 93.7 99.3 99.6 99.8 93.6 94.82 
(α = 1 , β = 0.7) 96.4 99.8 99.9 87.5 87.3 87.7 92.9 100 96 98.1 100 99.9 93 95.26 
(α = 1 , β = 0.6) 99.8 99.6 99.9 83.6 87.6 88.1 93.2 100 94.3 99.5 98.7 99.2 94.2 95.2 
(α = 1 , β = 0.5) 99.9 100 100 86.8 87.5 90.1 94.8 100 94.5 99.4 99.7 99.9 94.7 95.94 
(α = 1 , β = 0.4) 99.6 99.5 99.9 81.1 81 86.8 95.2 100 94.4 97.8 99.9 99.1 93.3 94.43 
(α = 1 , β = 0.3) 96.3 97.5 98.4 82.1 87.5 90 92.3 100 93.9 99.7 99.7 99.9 94.1 94.72 
(α = 1 , β = 0.2) 97.9 98.1 99.8 84.1 83.9 90.8 91.2 100 93.9 99.2 99.9 99.8 91.8 94.64 
(α = 1 , β = 0.1) 97.3 98.4 99.8 82.8 85 86.7 93.2 100 93.3 100 99.7 99.8 93 94.53 
(α = 0.1 , β = 1) 96.9 99.5 99.8 81.5 83.8 91.7 93.3 100 94.7 99.9 100 99.9 94.3 95.02 
(α = 0.2 , β = 1) 97.6 95.7 100 84.2 86.1 89.8 95.9 100 94.2 99.8 99.6 99.7 96 95.27 
(α = 0.3 , β = 1) 97.7 99.2 98.8 83.5 84 92.8 96.7 100 96.3 99.3 99.3 100 94.4 95.53 
(α = 0.4 , β = 1) 99.6 100 100 86.9 86.5 89.3 96.5 100 95.2 99.8 100 100 94.4 96.01 
(α = 0.5 , β = 1) 96.7 99.6 100 81.1 96.9 87 94.1 100 94.2 97.8 100 100 94.3 95.51 
(α = 0.6 , β = 1) 99.8 99.7 100 82.2 85 86.8 94.3 100 93.4 98.9 100 100 93.1 94.86 
(α = 0.7 , β = 1) 98.9 99.9 100 81 87.2 88 93.8 100 92.9 99.1 99.9 99.9 93.5 94.93 
(α = 0.8 , β = 1) 99.1 99.4 99.7 82.1 87.2 88.4 93.5 100 93.2 99.7 99.8 100 94.1 95.09 
(α = 0.9 , β = 1) 99.2 99.5 99.8 81.8 83.8 87.3 94.2 100 94 99.1 100 99.9 91.3 94.6 
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Table 5. Ablation study on combinations of EfficientNet model, data augmentation and loss function 

Training cases 
Average accuracy on 

 two cross-validation schemes 

5-fold 10-fold LOSO 

EfficientNet B0 + CE loss function 99.90 99.91 93.29 

EfficientNet B0 + Con loss function 99.88 99.89 94.51 

EfficientNet B0 + CE-Con loss function 99.92 99.89 95.41 

EfficientNet B0 + CE loss function + data augmentation 99.93 99.92 93.72 

EfficientNet B0 + Con loss function + data augmentation 99.92 99.91 94.67 

EfficientNet B0 + CE-Con loss function + data augmentation 99.95 99.97 95.74 

SPP-EfficientNet B0 + CE loss function 99.89 99.91 93.63 

SPP-EfficientNet B0 +  Con loss function 99.94 99.93 94.69 

SPP-EfficientNet B0 + CE-Con loss function 99.95 99.97 95.69 

SPP-EfficientNet B0 + CE loss function + data augmentation 99.92 99.93 93.67 

SPP-EfficientNet B0 + Con loss function + data augmentation 99.94 99.97 95.53 

SPP-EfficientNet B0 + CE-Con loss function + data 
augmentation 99.99 99.99 96.01 

 
3.2.2. Experiment 2 

To optimize the performance of the proposed 
SPP-EfficientNet B0 model, we tested various 
parameter pairs (α,β) of the CE-Con loss function and 
observed how they affected the average accuracy in 
LOSO cross-validation. The statistical outcomes of 
each case are shown in Table 4, which can be divided 
into 2 sub-tables. We keep unchanged α equal to 1 and 
range the β value from 0.1 to 1 and do the same with 
otherwise; 19 cases were implemented for this 
experiment. With various pairs of parameters, the 
downside of the model is associated with S4, S5, and 
S6, which are usually lower than 90%. In contrast, (S1, 
S2, S3, S8, S10, S11, and S12) significantly contribute 
to the results when the accuracy is around 99%. More 
importantly, the adjustment of the mentioned 
parameters increases the model’s average accuracy by 
1.6% and achieves the best model when it turns to the 
pair of 𝛼𝛼 = 0.4 and 𝛽𝛽 = 1. As a result, this pair of 
parameters is used in the proposed solution.   
3.2.3. Experiment 3 

In this experiment, we conducted an ablation 
study to verify the advantage of the proposed SPP 
block and salt-pepper noise-based data augmentation. 
The parameter was fixed for the proposed combination 
loss function. The ablation experiment results with two 
cross-validation schemes are reported in Table 5. This 
table shows the comparison results of various 
combinations of SPP, EfficientNet B0 model, data 
augmentation and loss function. It can be observed that 
the proposed approach provides the best performance 
in both 5-fold and 10-fold cross-validation. Compared 
to the traditional combination of EfficientNet B0 and 

CE loss function, the appearance of the SPP block, data 
augmentation and CE-Con loss function resulted in an 
improvement (from 93.29% to 96.01%) in the LOSO 
cross-validation scheme. These ablation experiment 
results also indicate that the proposed combination is 
better than others. The confusion matrix of the 
proposed solution is shown in Table 6. 
3.2.4. Experiment 4 

To more deeply analyze the advantage of the CE-
Con loss function compared to the CE loss function 
and Contrastive loss function, we visualized the deep 
feature of the last layer of our proposed model during 
the training procedure. Fig. 3 shows the distribution of 
learned features under three loss supervisions. In Fig. 3 
(a), the points with different colors correspond to 
features from various classes. We can see that the 
deeply learned features are separable in angle direction 
under the supervision of this loss. However, the deep 
features are not discriminative enough since they still 
contain significant intra-class variations. Accordingly, 
it is not appropriate to directly use these features for 
recognition. In Fig. 3 (b), we observe that learned 
features in the same class are clustered in a low-
variance region. As a result, Contrastive loss enhances 
the discriminative power of the learned features. It 
increases the distance between classes and in turn, 
narrows the gap between the same classes. However, 
the inter-class separability is not sufficient. Fig. 3 (c) 
shows that the combination of contrastive loss and 
cross-entropy loss performs better clustering than the 
previous methods. This method simultaneously 
achieves good intra-class compactness and inter-class 
separability. 
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Table 6. The confusion matrix of the best model 

 

 
Fig. 3. The distribution of learned features under three loss supervisions 

 
Table 7. Comparison of inference time on various 
Jetson devices 

Method 
Average inference time on  
various Jetson devices (ms) 

Nano TX2 Xavier 

Doan et al. [6], 2021 227 136 65 

Our proposed method 230.1 137.4 65.6 
 
3.3. Inference Time on Various Devices 

Table 7 reports the inference time of the proposed 
method on various devices. Although the training stage 
costs highly processing time due to the large 
computation of CE-Con loss function, the inference 
time of the proposed model still satisfies the real-time 
requirement for various pressure sensor systems. The 
processing time of our solution is only 3.1 ms, 1.4 ms 
and 0.6 ms higher than that of Doan et al. on Nano, 
TX2 and Xavier, respectively. In the inference stage, 
the CE-Con loss computation is removed; hence this 
timing difference is caused by the addition of the SPP 
module. According to Doan et al. [6], their solution 

satisfies the real-time requirement with the data 
sampling rate of 0.3 Hz, 1 Hz, 2 Hz and 4 Hz. 
Therefore, our proposed solution also passes the real-
time requirement at these data sampling frequencies.  

3.4. Comparison with Other Methods 

In this experiment, we compare the obtained 
results to related works in the same sensor mattress 
resolution. It can be observed from Table 8 that the 
CNN-based solution group not only provides better 
performance but also possesses the ability to classify 
more classes than the binary pattern matching-based 
method. In the experiments with the Pmatdata dataset, 
the research of Davoodnia et al. achieved 93.2% 
accuracy in 10-fold cross-validation and only 87% in 
LOSO validation, whereas the recent study of Doan et 
al. achieved outstanding classification with 99.9% and 
95.32%, respectively. Our proposed method is an 
improvement on Doan et al.’s research being 0.69% 
higher in LOSO validation and near-perfect in its 
performance of the 5-fold and 10-fold cross-validation 
schemes. Compared to the work of Dam et al., our 
approach provides better performance. These results 
confirm that our work achieves a state-of-the-art result 
in terms of 17 in-bed posture classification. 
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Table 8. A comparison with other methods 

Studies Database 
Algorithm 

Postures Average accuracy 

Author name, year (Subjects)  5-fold 10-fold LOSO 

Pouyan et al. [12], 2013 20 Binary pattern matching 8 - 97.1 - 

Davoodnia et al. [5], 2019 13 Multi-tasking CNN model + 
Softmax loss function 17 - 93.2 87 

Doan et al. [6], 2021 13 EfficientNet B0 model + AM-
Softmax loss function 17 99.98 99.97 95.32 

Dam et al. [1], 2021 13 Spiking Neural Network 17 99.95 99.96 90.56 

Our proposed method 13 SPP-EfficientNet B0 model 
+ Combination loss function 17 99.99 99.99 96.01 

 
4. Conclusion 

This paper presented a novel approach to 
improve the sleeping posture classification based on 
pressure sensor data. The proposed method is a 
combination of a preprocessing technique and an             
SPP-EfficientNet B0-based classifier with a combined 
cross-entropy and contrastive loss function. With 
99.9% accuracy for k-fold cross-validation and 
96.01% for LOSO cross-validation, our method 
achieves a new state-of-the-art result for the 
classification of 17 postures on the Pmatdata dataset. 
The experimental results also reveal that the utilization 
of a combination loss can enhance the accuracy of the 
classifier. In terms of future work, we focus on 
developing the Deep Spiking Neural Network to 
reduce the power consumption of the CNN model and 
maintain the high accuracy of this work’s results.  
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