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Abstract 

Air-quality monitoring is highly desired in modern life, where environmental problems have become more 
serious. Such a task requires continuous surveillance over large urban areas, which is costly both in 
infrastructure and sensor resources. Hence it gives rise to Vehicular Mobile Networks (VMNs), in which mobile 
vehicles play the role of sensor devices and constantly monitor the area. However, with extensive constraints, 
the optimization of both maximizing the coverage and minimizing the sensory costs is vastly challenging. In 
this research, we resolve the problem in terms of a learning process. Applying deep reinforcement learning, 
we outperform more than 1.65% in terms of coverage, compared to common setups while remaining 
considerably small sensory costs in terms of sensor activation rate. We conduct extensive experiments for a 
better understanding of the behavior of the deep reinforcement learning model. 
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1. Introduction 

The*ever-developing Internet of Things (IoT) has 
paved the way for many promising applications in 
environment surveillance tasks. Modern sensors are 
relatively small-sized yet highly accurate; however, 
still limited in coverage and computational resources. 
Constant activation of the sensors surely results in poor 
performance of the sensors as a consequence of both 
energy exhaustion and wasteful overlapping 
information. Moreover, broadly monitoring large urban 
areas requires an extensive amount of sensor devices 
which is costly. One solution is to apply sensor devices 
onto vehicular mobiles, creating a network of mobile 
sensors that traverse around the area. This helps 
minimize the number of sensors required. However, the 
problem of activation rate remains unresolved. 

In this work, we attempt to optimize both the 
coverage in terms of the monitored area and the sensory 
costs in terms of sensor activation rate. Let’s consider 
a road in an urban area, which is 𝑚𝑚 (meter) in length 
and 𝑛𝑛 (meter) in width. Many sensor-integrated mobile 
vehicles are constantly running along the road. We also 
consider the amount of time in which the air quality 
remains unchanged in a certain area whose radius is 
denoted as 𝜙𝜙, we denote this duration as 𝑡𝑡0. Based on 
this hypothesis, with any given point in space (𝑥𝑥0,𝑦𝑦0), 
the air quality at time 𝑡𝑡 is the same for all points located 
within the circular area (𝑥𝑥 − 𝑥𝑥0)2 + (𝑦𝑦 − 𝑦𝑦0)2 ≤ 𝜙𝜙2 
from the time 𝑡𝑡 to 𝑡𝑡 + 𝑡𝑡0. The objective is to maximize 
the coverage and sensor activation rate in consideration 
of mentioned space-time constraints. 
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Our contributions to this work are as follows: 

1) We formulate the problem into a learning 
problem, which we use deep reinforcement 
learning methods to resolve. 

2) We conduct extensive experiments to both verify 
the efficiency of the proposed method and 
navigate the effect of several parameters on the 
performance of the proposed method. 

The remaining of this article is constructed as 
follows. In section 2 we discuss several recent research 
concerning the interested field. In section 3, we give an 
overview of our proposal, which includes basic 
concepts of reinforcement learning and its applications. 
We then formulate our problem in the same manner in 
section 4 by defining essential elements for a 
reinforcement learning process. Next, we demonstrate 
the results in section 5 then the conclusion in section 6.  

2. Related Works 

In recent years, the development of the fifth 
generation of mobile communication (5G) networks  
[1] and mobile edge computing (MEC) technology [2] 
has promoted the development of intelligent vehicular 
mobile networks. However, when data traffic increases 
rapidly, the energy consumption of data processing will 
increase significantly, while computer resources and 
battery capacity are limited. Therefore, many 
researchers have embarked on the problem of 
offloading [3], scheduling [4], and resource distributing 
[5,6] in VMNs. In [7], Emara et al gave insights into 
applying different network architectures to the 
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performance of VMNs in terms of end-to-end latency. 
Dong et al [8] applied deep reinforcement learning-
based intelligent offloading scheme to resolve the 
problem of resource distribution in VMNs. Zhang et al 
[9] proposed a novel VMNs architecture based on 
SDN, in which the computational resources are 
distributed according to the Q-learning scheme to 
maximize the balance degree. Cui et al [10] proposed a 
novel offloading scheme that utilized k-nearest to select 
offloading interface and reinforcement learning to 
balance the workload throughout the network. In 
VMNs, it often occurs that multiple targets must be 
optimized simultaneously, Xu [11] proposed an 
evolutionary-strategy-based offloading scheme 
(NSGA-III) to optimize both workload distribution and 
latency. Xiao et al [12] also considered sensory limited 
energy in their work, applying deep learning to 
captured heat-zone and optimizing the latency based on 
the game theory formulation. It can be seen that the 
concerning problems in recent years are mainly latency 
and workload distribution, yet not coverage and 
continuous monitoring, which is the ultimate target for 
any sensory network. 

Inspired by the above-mentioned research, we 
propose an optimization method based on deep 
reinforcement learning that focuses on the optimization 
of coverage and sensory costs in vehicular mobile 
networks.  

3. Preliminaries 

3.1. Reinforcement Learning 

Reinforcement learning is a potential approach to 
real-time optimization problems. Compared to the 
once-famous heuristic methods, reinforcement learning 
offers much flexibility and lightweight computation. In 
combination  with cutting-edge deep learning 
techniques, deep reinforcement learning has been 
utilized to achieve unprecedented excellence in many 
fields of interest. 

In general, a reinforcement learning process 
consists of four essential elements that exact definition 
depends on the nature of the problem in which the 
learning process is applied: 

1) Agents are the source of actions. Agents make 
decisions according to their policy that optimizes 
a reward function. In many real-world scenarios, 
several agents interact with each other in either 
competition or cooperation manner. In this work, 
we maintain a single agent in our model. 

2) Environment is any other factor that affects the 
decision made by the agent. The environment can 
be expressed as a set of states, and a set of 
mapping that maps a pair of states and actions to 
the next state. This mapping is often obscure and 
probabilistically unstable and thus difficult to 
know in advance. In general, an environment 

consists of a state-space 𝑆𝑆  and a transitioning 
space 𝑃𝑃. 

3) Action is a decision made by the agent. The set of 
actions is called the action space and is denoted as 
𝐴𝐴. For each state 𝑠𝑠 ∈ 𝑆𝑆, the action space at that 
state is denoted as 𝐴𝐴(𝑠𝑠) . An action 𝑎𝑎 ∈ 𝐴𝐴(𝑠𝑠) 
made by the agent affects the environment and the 
environment shifts to a new state 𝑠𝑠′  with the 
probability of 𝑝𝑝(𝑠𝑠′, 𝑎𝑎|𝑠𝑠) ∈ 𝑃𝑃. An action is taken 
according to the policy 𝑝𝑝(𝑎𝑎𝑡𝑡) = 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡). 

4) Reward is a real scalar that shows how good the 
taken action is in a particular state. We denote 
𝑟𝑟𝑡𝑡 = 𝑅𝑅(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) as the reward of the action 𝑎𝑎𝑡𝑡 in the 
state 𝑠𝑠𝑡𝑡. The reward function 𝑅𝑅 is essential for a 
reinforcement learning process since the reward 
signal guides the optimization path of the agent. 

The ultimate target of the reinforcement learning 
process is to control the agent to make a chain of actions 
�̂�𝐴 = {𝑎𝑎𝑖𝑖}𝑖𝑖=1𝑁𝑁  that maximize the discounted total reward: 

𝐺𝐺 = �𝛾𝛾𝑡𝑡−1
𝑁𝑁

𝑡𝑡=1

𝑟𝑟𝑡𝑡 = 𝑟𝑟1 + 𝛾𝛾𝑟𝑟2 + 𝛾𝛾2𝑟𝑟3 + ⋯+ 𝛾𝛾𝑁𝑁−1𝑟𝑟𝑁𝑁 (1) 

in which, 𝑟𝑟𝑡𝑡 = 𝑅𝑅(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) is the intermediate reward at 
time 𝑡𝑡 and 𝛾𝛾 ∈ (0,1] is the discount factor shows the 
interest degree to the future rewards. The learning 
process is considered finished when the agent learns a 
policy 𝜋𝜋∗ = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝜋𝜋(𝐺𝐺).  

With such a target, most reinforcement learning 
methods can be categorized into two main approaches: 
policy-based and value-based. The policy-based 
approach parameterizes the policy by a vector 𝜃𝜃  and 
then makes an update upon this vector following the 
policy gradient theorem. Different methods can use 
different quantities as their multipliers to the gradient: 

∇θ𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝜃𝜃)  = 𝐸𝐸�𝐺𝐺𝑡𝑡∇𝜃𝜃 log�𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)�� REINFORCE 

 = 𝐸𝐸[𝑄𝑄∇𝜃𝜃 log(𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡))] Q ActorCritic 

 = 𝐸𝐸[𝐴𝐴∇𝜃𝜃 log(𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡))] Advantage 

 = 𝐸𝐸[𝛿𝛿∇𝜃𝜃 log(𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡))] TD 

On the other hand, the value-based approach  
tries to estimate the state-action value mapping 
𝑄𝑄: 𝑆𝑆 × 𝐴𝐴 → 𝑅𝑅 , denoted as 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)  that tells the 
goodness of action 𝑎𝑎𝑡𝑡  in the state 𝑠𝑠𝑡𝑡  or the value 
mapping: 𝑉𝑉: 𝑆𝑆 → 𝑅𝑅  that tells how good a state is, 
concerning the overall target. After one of these 
mappings is well estimated, we can deduce an optimal 
solution for the reinforcement learning process by 
choosing an action that maximizes these mapping: 

𝑎𝑎𝑡𝑡∗ = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥�𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎)�,∀𝑎𝑎 ∈ 𝐴𝐴(𝑠𝑠𝑡𝑡) 
or       𝑎𝑎𝑡𝑡∗ = 𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥�𝑅𝑅 + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡)�,∀𝑎𝑎 ∈ 𝐴𝐴(𝑠𝑠𝑡𝑡)    (2) 

Usually, 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) is favored when the joint space 
𝑆𝑆 × 𝐴𝐴 is relatively small or computationally possible. 
When the joint space is infinite or relatively large, it is 
advantageous to utilize 𝑉𝑉(𝑠𝑠𝑡𝑡). 
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3.2. Actor-Critic Method 

Each approach has its advantage in different 
cases. The policy-based approach is fast and flexible 
for both discrete and continuous space, the value-based 
approach is sample-efficient and stable. Actor-Critic 
methods are a new learning type that combines the 
strength of both approaches with the computational 
power of deep learning. The vanilla Actor-Critic 
architecture consists of two branches: Actor and Critic. 
The Actor takes a state as input 𝑠𝑠𝑡𝑡  and returns a 
probability over the action space 𝑝𝑝(⋅ |𝑠𝑠𝑡𝑡)  as output, 
meaning that the Actor plays the role of the policy 𝜋𝜋. 
The Critic tries to make a good estimation of the 
predicting reward for each action, with which the agent 
shifts its policy accordingly. The idea is that two 
models interact (or compete) with each other to achieve 
better performance than each separately.  

There are several extensions to the vanilla Actor-
Critic method, namely A2C and A3C and others. The 
Advantage Actor-Critic (A2C) has its Critic learn the 
Advantage values rather than the trivial Q values: 

    𝐴𝐴(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) = 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) − 𝑉𝑉(𝑠𝑠𝑡𝑡) 

  = 𝐸𝐸[𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡+1)] − 𝑉𝑉(𝑠𝑠𝑡𝑡).     (3) 

By learning the advantage values, the evaluation 
of an action is based not only on how good the action is 
but also on how much better it can be. The advantage 
of the advantage function is that it reduces the high 
variance of the policy networks and stabilizes the 
model. However, the process of learning a good Actor 
is still challenging due to the ineffective sampling of 
policy-based methods. DeepMind 2016 proposed an 
Asynchronous Advantage Actor-Critic (A3C) that 
improved this problem by introducing asynchronous 
multiple workers in multiple environments for better 
exploration of the state-action space in much less time. 
The agents are trained in parallel and update 
periodically a global network that holds shared 
parameters with its gradient: 

∇𝜃𝜃𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡 ,𝜃𝜃) = 𝐸𝐸[𝐴𝐴(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)∇𝜃𝜃 log(𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡))] 

≈ �𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑉𝑉(𝑠𝑠𝑡𝑡+1) − 𝑉𝑉𝑠𝑠𝑡𝑡�∇𝜃𝜃 log(𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡))   (4) 

In this work, we leverage A2C into our proposal. 

4. Proposal 

4.1. Actor Critic-Based Network Modeling 

Since each mobile vehicle is equipped with a 
sensor, itself can be considered as an agent with two 
decisions: activate or deactivate its sensor to monitor 
the surrounding air quality. However, in this setting, we 
embarked on the multi-agent paradigm which is rather 
computationally heavy as each vehicle is limited in 
terms of computational resources. Moreover, the 
number of vehicles can reach extremely large and thus 
makes it difficult to control the performance of the 
method.  

For this reason, we propose using a centralized 
agent that takes observations of the network as input 
and output the activation map which is independent of 
the number of mobile vehicles currently on the road. By 
adopting this design, we can extend the proposal 
without the worries about the computational resources 
of the agent. This agent can also be viewed as a server 
communicating with the mobile vehicles and choosing 
which vehicle activates its sensor. 

4.2 Actor-Critic Architecture 

We employ both convolutional layers for spatial 
adaptation and an LSTM block for temporal analysis. 
We build our body network with two convolutional 
layers activated by ReLU functions, which help 
identify and analyze several spatial properties of the 
current state such as locations and speeds. Next, we use 
a fully connected layer as a preprocessor before 
forwarding it to the LSTM block. We intentionally use 
an LSTM block to handle the temporal batch of 
observation so that many other insights can be 
exploited such as the vehicle’s trajectory and 
acceleration.  

 
Fig. 1. Actor-Critic architecture 
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The output of the LSTM block is considered a 
spatial-temporal representation of the current state, 
concerning previous states. This representation is then 
fed into two separate branches: Actor and Critic. The 
output of the Actor is an 𝑚𝑚 × 𝑛𝑛 matrix while that of the 
Critic is a scalar. It is worth noting that the Actor is 
composed of a fully connected layer with a softmax 
layer while the Critic is simply a dense layer. The full 
demonstration of the Actor-Critic architecture is 
depicted in Fig. 1. 

4.3. Defining Reinforcement Learning Elements 

4.3.1. Environment and the state space 

The environment in this problem is defined as the 
road and vehicles on the road. Therefore, the state space 
we design consists of the following components: an 
𝑚𝑚 × 𝑛𝑛  matrix 𝑙𝑙𝑡𝑡  that represents the location of the 
vehicle on the road, which can be simply understood as 
a binary picture of the road; and a 𝑚𝑚 × 𝑛𝑛 matrix 𝑐𝑐𝑡𝑡 that 
demonstrate the covered map at the current time frame. 
The observation at time 𝑡𝑡  is represented as the 
concatenation of the two matrices 𝑙𝑙𝑡𝑡  and 𝑐𝑐𝑡𝑡 . Fig. 2 
demonstrates the formation of the state. The state at 
time 𝑡𝑡 is denoted as 𝑠𝑠𝑡𝑡 and is defined as a sequence of 
several observations from time 𝑡𝑡 − 𝑧𝑧 up to 𝑡𝑡. The final 
state size is (𝑧𝑧 + 1) × 2 × 𝑚𝑚 × 𝑛𝑛.  

The reason we design our state as mentioned is 
that the problem mimics a partial observation Markov 
decision process (POMDP). This means, that one 
observation at any given time is insufficient to make the 

optimal decision. For example, an observation of the 
current road does not tell the velocity of their vehicles 
or directions, which is critical to decide which vehicle 
should activate its sensor. Therefore, one practical 
solution is to combine the current observation with 
several previous observations and process them by an 
LSTM block.  

4.3.2. Action space 

Every second, a vehicle must decide whether to 
activate its sensor or not. From the point of view of the 
agent, an action is to decide which area of the road 
needs monitoring.  

To realize this intuition, we represent an action  
of the agent as a probabilistic map of the road,  
sized 𝑚𝑚 × 𝑛𝑛 , is denoted as 𝑎𝑎𝑡𝑡 = �𝑝𝑝𝑖𝑖𝑖𝑖�𝑚𝑚×𝑛𝑛

 in which 
𝑝𝑝𝑖𝑖𝑖𝑖 ∈ [0,1] is the probability of the location (𝑖𝑖, 𝑗𝑗) that 
needs monitoring. Each vehicle on the road then self-
decides to activate the sensor or not according to the 
deduced binary map 𝑏𝑏𝑡𝑡 = �𝑏𝑏𝑖𝑖𝑖𝑖�: 

𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝑝𝑝𝑖𝑖𝑖𝑖� =  �
1, 𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 𝜀𝜀
0, 𝑝𝑝𝑖𝑖𝑖𝑖 < 𝜀𝜀,                      (5) 

where 𝜀𝜀 ∈ [0,1] is the threshold.  

Then we have a binary matrix 𝑏𝑏𝑡𝑡 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 where 
1 represents the location that needs monitoring and 0 
otherwise. The vehicle at a location whose 𝑏𝑏𝑖𝑖𝑖𝑖 = 1 
would activate its sensor. 

 

 
Fig. 2. The formation of the state 
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4.3.3. Reward 

The reward signal acts as guidance for 
optimization in the reinforcement learning process. 
Thus, the design of the reward function is essential for 
the process to achieve high performance. A good 
reward function should reflect entirely the objectives 
that need maximizing. 

In this problem, the objectives are to minimize 
the activation rate of the sensors while maximizing the 
coverage. Thus, we design our reward function based 
on those two elements. In detail, the reward function is 
defined as: 

𝑟𝑟(𝑎𝑎𝑡𝑡) =
1

1 + 𝑞𝑞+
(𝛼𝛼𝑅𝑅1 − (1 − 𝛼𝛼)𝑅𝑅2)            (6) 

where: 

1) 𝑅𝑅1 = 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 = ∑(𝑐𝑐𝑡𝑡+1 − 𝑐𝑐𝑡𝑡)  is the 
coverage area after taking the action 𝑎𝑎𝑡𝑡,  

2) 𝑅𝑅2 = (2𝜙𝜙 + 1)2𝑜𝑜+ − 𝜓𝜓  is the overlapped area 
caused by performing 𝑎𝑎𝑡𝑡.  

The notation of 𝑜𝑜+  and 𝑞𝑞+  represent the total 
vehicle on the road and the number of vehicles that 
activate their sensor according to the action 𝑎𝑎𝑡𝑡 . 𝜙𝜙 
denotes the sensory radius and 𝜓𝜓  the previous 
coverage before taking 𝑎𝑎𝑡𝑡 . The rationale behind this 
design is to minimize the number of vehicles 
participating in activating the sensors each round while 
maximizing the coverage area, at the same time 
minimizing the overlapping area. The quantities 𝑅𝑅1 
and 𝑅𝑅2  hang in balance by a constant 𝛼𝛼 , which is 
chosen followed by the description in Table 1. 

 
Table 1. Configuration 

Definition Notation Value 

Road length 𝑚𝑚 250 𝑚𝑚 

Road width 𝑛𝑛 42 𝑚𝑚 

Air-quality unchanged 
duration 𝑡𝑡0 360 𝑠𝑠 

Observation buffer capacity 𝑧𝑧 3 

Sensory radius 𝜙𝜙 20 𝑚𝑚 

Reward trade-off factor 𝛼𝛼 0.65 

 
5. Evaluation 

5.1. Methodology 

In this section, we show the experimental results 
and discussion about the influence of different 
parameters and factors on the performance of our 

proposal. In detail, we first compare our proposal to 
several setups to verify the learning potential of the 
algorithm. Next, we conduct extensive experiments 
tuning the parameters of both network configuration 
and the Actor-Critic model to study their influence.  

With the objective of optimizing coverage and 
activation rate, we are to investigate these two metrics 
as follows: 

1) Coverage is represented as coverage degree and 
is defined as the ratio of the covered area over the 
total area (the road). This quantity is computed in 
a spatial-temporal manner as introduced in 
section 1 and described in section 4.2.1. 

2) The activation rate is represented as the 
probability of activating the sensor at every 
action.  

The experiments are conducted in a simulator 
written in Python running on a multi-processing multi-
GPU machine, the deep reinforcement learning is 
implemented with the help of Pytorch. The seed is set 
constant among experiments so that the results are 
trustworthy. 

5.2. Training Strategy   

The proposal deep reinforcement learning 
method is trained online as follows: during the 
simulation, the agent continuously takes actions and 
receives corresponding rewards, as well as bulking the 
experience buffer with transitioning tuples. When the 
buffer is sufficiently large, the training process occurs: 
The transitioning tuples (experiences) are taken in 
consecutive batches so that our LSTM correctly learns 
the pattern of POMDP environmental properties such 
as velocity and movement direction. The actor and 
critic are updated accordingly. It is worth noticing that 
the trained experience is not discarded but restored for 
future rehearsals. However, we set a limit for the 
experience buffer, at which the buffer discards the 
oldest experience recordings. With this, we assure that 
the updating process does not cause overtime delays 
when updating. 

5.3. Experimental Results 

In the first experiment, we study the efficiency of 
the proposal. We keep the number of vehicles, the 
arrival interval, and other environmental factors 
constant while varying the sensory radius of 
(3,4,6) meters. We compare our performance to that 
of the trivial setups: keep the activation rate constant 
at (40,50,70,100) %. The results are shown in Fig. 3. 
In detail, when the sensory radius is set to 3, our 
proposal converges to the solution that activates the 
sensors at the rate of 46.76%  and has a coverage 
degree of 51% and an overlap of 3.8%. This result is 
45.6%, 67.1%, and 0.9% when the sensory radius is 
set to 4 and 42.9%, 86.96% , and 2.8%  when the 
radius is set to 6, respectively. Our proposal has 
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decreased the activation rate throughout the 
experiment which is reasonable as a higher sensory 
radius requires less sensory activation due to the 
expansion of the monitoring area. Other trivial settings 
have competitive results in terms of coverage degree 
but much worse in overlap and activation rate. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. Effect of Sensory Radius. a. Sensory radius is 
set to 3; b. Sensory radius is set to 4; c. Sensory radius 
is set to 6. 
 

Next, we study the influence of inner factors on 
the performance of the proposal. Firstly, we increase 
the observation buffer capacity 𝑧𝑧  from 1  to 6  and 
observe the change in behavior of the agent. Recall that 
the more consecutive observations used in the process 
of making a decision, the more accurate the decision 
becomes. However, increasing 𝑧𝑧  leads to more 
computational requirements at the LSTM block. The 
result in Fig. 4a demonstrates the effect of this 
parameter. We can see that increasing 𝑧𝑧 leads to both 
higher coverage degree and higher activation rate: 
0.703% (± 0.176%) on average for coverage degree 
and 0.52% (±0.207%)  for activation rate. The 
overlap degree remains unchanged at 2.1%. 

 The second factor we would like to look at is the 
action interval of the agent, which is the amount of 
time between two consecutive actions. The lower this 
interval the more precise the decision of the agent since 
the change in the environment is relatively small. It can 
be seen in Fig. 4b that increasing the action interval 
leads to worse performance: higher activation rate yet 
lower coverage degree. In detail, when this interval is 
set to 1 second, the coverage degree is 84.3% and the 
activation rate is 50.83% whereas these numbers are 
38.39% and 56.29% when the interval is 4 seconds. 

The third parameter we study is the learning rate 
of the agent, which is also the learning rate of the 
Actor-Critic model. We vary this parameter from 
0.05 × 10−3 to 0.5 × 10−3 and the results are shown 
in Fig. 4c. The results show that, with a higher learning 
rate, the model becomes more competent with the 
decrease of both coverage and activation rate, but the 
decreasing rate of coverage is less than that of the 
activation rate. In detail, the change is 0.7%  in 
coverage and 1.7%  inactivation rate. The overlap 
degree of these two setups is relatively equal. 

The final parameter we would like to look deep 
into is the hidden size of the Actor-Critic model, which 
is expressed through the number of nodes participating 
in building each hidden layer of the model. In this last 
experiment, we change this number from 32 to 256, 
which consequently increases the complexity of the 
model. Thus, the model often takes a longer time and 
more experience to attain the knowledge. It is shown 
in Fig. 4d that the hidden size of 64 benefits best for 
the performance of the Actor-Critic. In detail, when the 
hidden size is set at 64, the coverage degree is 84.3% 
and the activation rate is 50.83%. When the hidden 
size reaches 128 then the activation rate increases up 
to 52% while the coverage is roughly unchanged. At 
the size of 256 then the activation rate is 50.4% and 
the coverage degree is 83.7% . The reason for this 
degradation is the lack of data when performing 
updates upon the Actor branch. 
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(a) The number of frames used in a state (b) The amount of time between two consecutive action 

  
(c) The learning rate of Actor-Critic  (d) The number of nodes in hidden layers of Actor-Critic 

Fig. 4. Effect of inner parameters. 
 
6. Conclusion and Future works 

In this paper, we apply the deep reinforcement 
learning method to cope with the problem of coverage 
and sensor energy optimization in Vehicular Mobile 
Networks. The result shows the great potential for 
Deep Reinforcement Learning in terms of stability and 
adaptivity.  

In the future, we are expanding and improving 
the method so that it can be applied to various 
scenarios where critical constraints of both sensors and 
the environment exist. We also consider the 
computational resource of the sensor as well as the 
vehicle for the multi-agent reinforcement learning 
paradigm in future works. 
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