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Abstract 

This paper proposes a Takagi-Sugeno (TS) fuzzy approach for 2-dimensional of freedom overhead crane. 
Since this system is underactuated with nonlinear mathematical dynamic model, the requirement of achieving 
accurate positioning while eliminating oscillation is a challenging issue. The nonlinear sector decomposition is 
taken into implementation which uses the nonlinear terms in the dynamic model as scheduling variables to 
transform the initial system to TS representation. However, the number of TS fuzzy rules is exponential in the 
number of nonlinear elements in the system, leading to the increase of computational expense. Therefore, the 
reduced complexity method is introduced to minimize the scheduling variables in TS system. In addition, the 
uncertain system’s components are also taken into consideration to enhance the robust property of the system 
when working in practical environment. The controller is constructed based on parallel distributed 
compensation (PDC) approach while the linear matrix inequalities (LMIs) technique is employed to analyse 
the system’s stability. The effectiveness of the proposed method is demonstrated through numeral simulations. 

Keywords: Overhead crane, Takagi-Sugeno fuzzy system, parallel distributed compensation, linear matrix 
inequalities. 

 

1. Introduction1 

Overhead crane is considered as one of the most 
crucial hoisting apparatuses in automotive industry. 
This equipment is normally used to lift and transport 
heavy cargoes in construction sites, harbours, 
manufacturing companies, etc. However, most of them 
are still manipulated manually, which make it difficult 
to acquire high accuracy in control due to the 
dependence of human when working in persistent 
time. Besides, overhead crane is a typical 
underactuated system with nonlinear components due 
to the oscillation of payload in transporting process. 
The requirement of achieving precise position control 
of trolley while supressing payload swing to guarantee 
the effectiveness and safety at workplace is pressing 
problem. Therefore, the existence of an effective 
automatic controller for overhead crane system is put 
in high demand.  

Regarding control methods for overhead crane, 
input shaping is a widely used with open-loop 
technique [1, 2]. The primary idea behind is that it 
constructs the control input according to the system’s 
natural frequency such that the payload’s vibration is 
reduced. The advantages of this approach are the 
robust property to frequency modelling errors and the 
straightforward implementation on real-time system. 
However, they are normally associated with slow 
response and require extra measurement devices. In 
term of closed loop approaches, traditional methods 
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including sliding mode control, backstepping, etc., are 
studied intensively [3-5]. In [3] a robust controller with 
the core is sliding mode technique is introduced which 
ensure the accuracy of trolley position and the 
elimination of swing and skew angles in finite time. 
Besides, the robustness towards parametric 
uncertainties and initial conditions are also improved. 
Zhang et al present an adaptive sliding mode control 
accompanied with a proportional derivative controller 
for 2D overhead crane [4]. While former guarantees 
the system’s stability, the uncertainties and external 
noises are compensated by the latter, therefore, 
system’s performance is enhanced. In [5], the 
distributed model of 2D overhead crane using 
Hamilton’s principle is introduced , which employs 
backstepping controller to drive the system to desired 
path. On the other hand, advanced control methods are 
also taken into considerations. Model predictive 
control methods [6] are utilized to effectively handle 
the input and output constraints of the system. 
However, computational complexity issue makes these 
controllers challenging to be embedded in hardware 
system. Neural network-based approaches [7] are 
proposed to approximate system parameters and 
external disturbances. Data-driven based control 
method [8], reinforcement learning [9] are used data 
from closed-loop experiments and optimal methods to 
construct dynamics model and adaptive parameters.  
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In recent years, Takagi-Sugeno (TS) fuzzy 
control methods have been applied extensively in 
different control objectives. TS approach presents the 
system by a convex combination of local linear 
models, which facilitates the controller design and 
stability analysis. Normally, the nonlinear sector 
decomposition is taken into implementation to 
transform the initial system model to TS 
representation. The parallel distributed compensation 
(PDC) scheme combined with linear matrix 
inequalities (LMIs) technique is then utilized in order 
to construct global controller and ensure system’s 
stability. In [10] a TS fuzzy controller is studied to 
guarantee the H-infinity performance for tracking 
problem of a 2 DOF manipulators. Akka et al [11] 
express the kinematic model of mobile robot in TS 
form, then PDC with each local controller being linear 
quadratic regular (LQR) combined with fuzzy 
controller is constructed to make the robot track the 
desired trajectories while avoiding obstacles. In [12], 
the TS fuzzy is integrated with nonlinear MPC 
controller for speed control of electrical vehicle system 
with time-delay effect, where the MPC is applied to 
handle the system constraints and guarantee the 
stability under TS fuzzy representation.  

Nevertheless, the main disadvantage of TS fuzzy 
technique is the explosion of fuzzy rules because of the 
huge number of nonlinear elements existing in 
system’s model, which increase computational burden. 
Therefore, the TS fuzzy approach is normally chosen 
for simple systems with few degrees of freedom. In 
this work, we propose a reduced complexity TS fuzzy 
system for 2D overhead crane system, which can 
effectively decrease the number of fuzzy rules while 
maintaining tracking performance. Besides, some 
parametric uncertainties are also considered to 
enhance the robust property of the system when being 
applied in real system.  

The rest of the paper is organized as follows: 
Section 2 construct the mathematical dynamic 
equation of 2D overhead crane. Next, Section 3 
illustrates the TS fuzzy system and the method to 
diminish the number of fuzzy rules. Section 4 provides 
the control design procedure and analysis the system’s 
stability. The simulation results with different 
scenarios are illustrated in Section 5. Section 6 
presents some conclusion remarks. 

2. System Modelling 

The overhead crane model consists of three 
primary elements: a trolley, a payload, and a cable. In 
this work, we assume that the cable length is 
unchanged during transporting process. The control 
targets of this system are driving the trolley to 
reference position and simultaneously supressing the 
oscillation of payload generated by the acceleration or 
deceleration of trolley. Fig. 1 shows the structure of  
2-DOF overhead crane. 

 
Fig. 1.  2-DOF overhead crane 

The dynamic model of two-dimensional 
overhead crane with constant rope length is described 
as: 

 ( ) 2cos sinM m x ml ml x Fθ θ θ θ µ+ + − + = 

   (1) 

        2 cos sin 0ml mlx mglθ θ θ+ + =

  (2) 

where x  is trolley’s translational position,θ is 
oscillation angle of payload, F indicates translation 
force acting on trolley. l  is rope’s length, M  and m  
are trolley’s mass and payload’s mass respectively, g  
is gravitation acceleration. 

Define the state variables as J
T
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3. Fuzzy System 

3.1. TS Fuzzy Representation 

For constructing TS fuzzy system, the sector 
nonlinearity method is normally employed in order to 
acquire accurate fuzzy description of nonlinear system 
in state space formulation. 

Because of the physical limitations, the states 
vector J is bounded in the compact set JW defined as: 

{ }J J J J J4 1
min max|×= ∈ ≤ ≤W R . 

Let , 1,i i nς =  be the scheduling variables, which 
indicate the independent nonlinear term in matrices 
Μ and N . Since JJ∈W , the scheduling variables are 

also bounded, [ ]min max, , 1,i i i i nς ς ς∈ =  and can be 
equivalently represented as: 

( ) ( )min min max maxi i i i iς τ ς ς τ ς ς= +  
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and satisfy: 
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The TS fuzzy system is represented as: 
kR : IF 1ς  is 1

kΛ and … and nς  is k
nΛ   THEN   

J J , 1, 2,...,k k k h= + =M N F  

where h and n are the number of fuzzy rules and input 
variables respectively. Hence, the original dynamic 
model can be described as follows: 

 ( )( )J J
1

h

i i i
i
τ

=

+∑ ς M N F=  (6) 

where  ( )iτ ς is the membership function of the thi  
rules which is calculated as the product of the 
weighting functions corresponding to the fuzzy set in 
the rule: 

 ( ) ( )
1

, 1,
n

i ij j
j

j nτ τ ς
=

= =∏ς  (7) 

with 

( ) ( ) ( ){ }min max,ij j j jτ ς τ ς τ ς∈ . 

The matrices ,i iM N are formulated by replacing 
the components corresponding to the weighting 
functions applied in thi fuzzy rule into matrices M Ν,  

However, the noticeable disadvantage of this 
approach is that the number of fuzzy rules is 
exponential in the number of nonlinearities. In 
practice, it could become intractable issues because of 
computation burden or algorithm limitations. 
Therefore, the number of rules should be considered 
carefully when design TS fuzzy system. 

Regarding overhead crane model in (4), there are 
4 nonlinear terms including  

1 2
3

1 ,
sinM m x

ς =
+

 

2 3cos ,xς =  

3
3

3

sin
,

x
x

ς =  

4 4 3sinx xς =  

which requires 42 16=  fuzzy rules in total according 
to TS fuzzy model theory. Therefore, the 
approximation approach introduced in the next 
subsection is employed to minimize the quantity of 
fuzzy rules. 

3.2.  Approximation Mechanism 

To minimize the complexity of the fuzzy system, 
the reduced complexity approach is used. Specifically, 
some nonlinear term in the matrices M Ν, are now 
considered as uncertain components instead of 
ingredients of scheduling variables. Here, 

4 4 3sinx xς = is regarded as the uncertainty. Hence, the 
number of nonlinear terms used for scheduling 
variables is reduced to three, leading to the number of 
fuzzy rules decrease by a half to 32 8= . Specifically, 
the scheduling variable 4ς  is rewritten as follows:  
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 ( ) ( )4 4 4m rt tς ς λ ς= +  (8) 

with 1λ ≤  and 
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Besides, since the value of trolley mass and cable 
length are varied in practical use, they are also 
unknown elements. Hence, the system model with 
uncertainties is represented as follows: 
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where ,k k k k k k= + ∆ + ∆M M M Ν Ν Ν=   . The system 
uncertainties are of the forms: 
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with  

 mi ≤Ω I and ni ≤Ω I  (11) 

The membership functions for TS system are 
illustrated in Fig. 2.  which are presented as “big”, 
“small” and can be calculated as in (5). 

 
Fig.  2. Membership functions 

And the scheduling variables includes: 
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where the value of 1max 1min 2max 2min 3max 3min, , , , ,ς ς ς ς ς ς
are determined in Section 5. 
4. Control Design 

To construct controller and analyse stability 
condition for TS systems (9), the LMIs approach is 
employed. 

Lemma 1 (Young’s relation [13]): Given constant 
matrices X and matrices Y of appropriate dimensions 
for 0σ > , the following inequality holds: 

 1T T T Tσ
σ

+ ≤ +X Y Y X X X Y Y  

Theorem 1: If there exist a positive definite matrix  
Ξ , matrices C , 1,...,i i h= , and scalars 0mλ > and 

0nλ > satisfying inequalities 
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with 

C CT T T
ij i i j i j i= − + −M X N X M NΖ  

the TS fuzzy system (9) with parallel distributed 
compensation (PDC) controller of following form: 
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h
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with 1 1C ,i i
− −= =K X Ξ X , is global asymptotic stable.  

Proof: 

Consider the Lyapunov function: 
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Its derivative is: 
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Substitute controller (15) into (17) yields: 
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Hence, 0V < if and only if: 
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Let 1 1C ,i i
− −= =K X Ξ X , (19) is rewritten as: 
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From (10) and Lemma 1, we have: 
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Therefore, (20) can be further written as: 
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Using Schur complement yields: 
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with  

 C CT T T
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The proof is completed. 

Remark 1: The system response’s speed is related to 
the largest Lyapunov exponent, called decay rate. 
Hence, the decay rate 0α >  is added to (12) and (13) 
to obtain property 2V Vα≤ − . Then, the matrices Ξ , 
C , 1,i i h= , and decay rate α are acquired by solving 
the LMIs issue: 

maximize
h

α
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Remark 2: Once the stability condition is transformed 
into the LMI condition, the efficient convex 
optimization algorithms can be employed to solve the 
problem precisely. There exist many efficient 
numerical optimizers to solve the LMI problem such 
as LMILAB, SeDuMi, SDPT3, VSDP, or LMIRank, 
which are also available in many toolboxs such as 
Matlab® LMI toolbox, Sedumi, or Yalmip.  

5. Simulation results 

This section carries out some simulation tests to 
express the validity of designed controller. The 
parameters of system’s model are opted as follows: 
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=

=
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  (25) 

The system works under some limitations: 
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From the boundary conditions of state variables 
and the system parameters, the limitations of 
scheduling variables are acquired as follows: 
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The control gains are obtained by solving the 
LMI conditions (25). In this paper, the SeDuMi solver 
within the Yalmip toolbox is used, resulting in the 
control gains as follows: 
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[0.4263 1.04282 -5.8133 -1.0263];
= 1.0e+2

 [0.4268 1.0442 -5.8323 -1.0253];

×

×

×

K

K

K  

  

There reference position for trolley is set to 
0.5dx m= in first 15 second, then it changes to 
1dx m= in next 15 second before plummeting to 

0.3m at the end of simulation period. 

 
Fig.  3. Trolley position (m) 

To illustrate the validity of the proposed method, 
two cases of study are implemented as follows: 

Case study I  

The PID-PI controller is implemented to make 
the comparison with the proposed method, in which 
the outer-loop PID controller is responsible for driving 
the trolley to the desired position while the inner-loop 
PI controller stabilizes the trolley’s velocity and 
eliminates the payload swing. The control gains for 
PID-PI controller are obtained by experiments with 
following parameters:  

PID: 2;PK = 1.5;DK =  0.01IK = , 

PI: 9.46;PK =  0.282IK = . 

Fig.  3 and 4 illustrate the trajectories of trolley and 
payload under proposed TS controller and the PID-PI 
controller when all the parameters are exactly known. 
The red dash line denotes the setpoint while the blue 
line and purple line indicate the response of the system 
using the TS fuzzy controller and PID-PI controller 
respectively. It is apparent that the PID-PI controller 
requires higher time convergence and has overshoots 
when the setpoint changes its value. In addition, the 
payload is oscillated greatly within 0.08 rad before 
gradually decrease to zero. On the other hand, the TS 
fuzzy controller can manoeuvrer the trolley to 
reference position in less than 7 seconds while keep the 
swing angle less than 0.03 rad. Therefore, the results 
show that the proposed controller can drive the system 
to track the desired position rapidly while eliminate the 
payload swing. 

Fig. 5 shows the translation force acting on the 
trolley of both comparing methods. There are the sharp 
changes of control input when the set point changes its 
value, but this phenomenon can be alleviated by 
designing a smoother reference trajectory. 
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Fig.  4. Payload swing angle (rad) 

 
Fig.  5. Payload swing angle with variations of cable 
length 

 

 
Fig.  6 Control input 

 
Fig.  7. Trolley position with variations of payload 
mass 

 
Fig.  8. Trolley position with variations of cable 
length 

 
Fig.  9. Payload swing angle with variations of payload 
mass 

 
Case study II 

In practice, the rope’s length and payload’s mass 
are two varied parameters. Hence, to demonstrate the 
control method’s robustness in occurrence of 
ambiguous components, in this case study, two 

additional tests considering the variation of rope’s 
length and payload’s mass are taken into 
implementation. Firstly, the value of cable length is 
altered from 1m to 3m and 0.5m respectively. Fig. 6 
and Fig. 7 depict the outcome for these cases. The 
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performance of the system is still maintained 
regardless of the change of cable length. Secondly, the 
payload mass is varied to 10kg and 2kg respectively. 
According to Fig. 8 and 9, the similar pattern is 
obtained in three cases, which highlights the 
robustness of this method. 

6. Conclusion 

In this work, TS fuzzy system is introduced to 
control the 2-DOF overhead crane system. The 
explosion of fuzzy rules problem is solved by the 
approximation method. Besides, the uncertain 
elements are considered to improve the robustness of 
the system when working in practical applications. The 
controller is designed based one PDC scheme while 
LMIs technique is employed to analyse system’s 
stability. The numerical results illustrate the validity of 
this approach. 
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