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Abstract 

Dissolved gas analysis is widely used for preventative maintenance techniques and fault diagnoses of oil-
immersed power transformers. There are also various conventional methods of dissolved gas analysis for 
insulating oil in power transformers including methods of Doernenburg ratios, Rogers ratios and Duval’s 
triangle. The Bayesian techniques have been developed over many years and applied to a range of different 
fields including the problem of training in artificial neural networks. In particular, the Bayesian approach can 
solve the problem of over-fitting of artificial neural networks after being trained. The Bayesian framework can 
be also utilised to compare and rank different architectures and types of artificial neural networks. This 
research aims at deploying a detailed procedure of training artificial neural networks with the Bayesian 
inference, also known as Bayesian neural networks, to classify power transformer faults based on 
Doernenburg and Rogers gas ratios. In this research, the IEC TC 10 databases were used to form training 
and test data sets. The results obtained from the performance of trained Bayesian neural networks show that 
despite the limitation of the available dissolved gas analysis data, Bayesian neural networks with an 
appropriate number of hidden units can successfully classify power transformer faults with accuracy rates 
greater than 80%.   
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1. Introduction* 

Power transformers are electrical equipment 
widely used in power production, transmission, and 
distribution systems. Incipient power transformer 
faults usually cause electrical and thermal stresses 
(arcing, corona discharges, sparking, and overheating) 
in insulating materials. Because of these stresses, 
insulating materials can degrade or breakdown and 
several gases are released.  Therefore, the analysis of 
these dissolved gases can provide useful information 
about fault conditions and types of materials involved. 
Dissolved gas analysis (DGA) of power transformer 
insulating oil is a well-known technique in monitoring 
and diagnosing the power transformer health [1-3]. 
Conventional analysis techniques of dissolved gases 
can be performed by analysing different gas 
concentration ratios (Doernenburg ratios, Rogers 
ratios and Duval’s triangle method) [4,5].  

Artificial intelligence (AI) based methods have 
been introduced to improve the diagnosis accuracy and 
remove the inherent uncertainty in DGA. These 
methods were proposed with the use and exploration 
of artificial neural networks (ANNs) [6, 7 ], fuzzy logic 
(FL) [8,9], support vector machine (SVM) [10,11], 
decision tree (DT) [12, 13] and K-nearest neighbours 
(KNN) [14,15]. ANNs have been extensively used in 
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applications of pattern recognitions as they are 
adaptive, capable of handling highly nonlinear 
relationships, and can generalise solutions for new sets 
of data (unseen data). As the development of ANNs 
does not require any physical models, the incipient 
fault detection in power transformers using ANNs can 
be reduced to an association process of inputs (patterns 
of gas concentration) and outputs (fault types). The use 
of ANNs and DGA samples for diagnosing incipient 
faults in power transformers have been reported in 
some related studies [6,7]. However, in these studies, 
ANNs were only trained by traditional neural network 
training methods, which could only minimise a defined 
data error function without the consideration of over-
fitting and model complexity causing poor 
generalisation of ANNs trained on finite and uncertain 
data sets. 

In this research, an improved version of ANNs, 
called Bayesian neural networks (BNNs) [16-18], have 
been proposed for diagnosing faults of oil-immersed 
power transformers. The main advantage of BNNs is 
that these neural networks can handle the uncertainty 
in parameters of ANNs and can be also trained with 
limited data. In addition, the training procedure of 
BNNs does not require a validation set separated from 
the available data. As a result, the entire available data 
can be only used to form training and test sets. The 
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paper is organised as follows. Section 2 briefly 
describes conventional methods of DGA for power 
transformer fault diagnoses and the basic theory of 
BNNs including the suitable determination of 
regularisation parameters to prevent the over-fitting 
problem and the criterion to select the optimal number 
of hidden units. Results and discussions are presented 
in Section 3 based on the evaluation of the 
performance of trained BNNs used to classify power 
transformer faults. Finally, Section 4 is conclusion and 
future works for this research.  

2. Material and Method 

2.1. Conventional Methods of DGA for Power 
Transformer Insulating Oil 

The main causes of gas formation within an 
operating power transformer are electrochemical and 
thermal decomposition, and evaporation. The basic 
chemical reactions involve the breaking of carbon–
hydrogen and carbon–carbon bonds. This phenomenon 
can usually form active hydrogen atoms and 
hydrocarbon fragments that can combine with one 
another to make the following gases: hydrogen (H2), 
methane (CH4), acetylene (C2H2), ethylene (C2H4), and 
ethane (C2H6). With cellulose insulation, thermal 
decomposition or electric faults can produce methane 
(CH4), hydrogen (H2), monoxide (CO) and carbon 
dioxide (CO2). These gases are generally called ‘key 
gases’. 

After samples of transformer insulating oil are 
taken, the first step in analysing DGA results is to 
measure the concentration level (in ppm) of each key 
gas. Once key gas concentrations are greater than 
normal limits, some analysis techniques should be 
used to determine the potential faults within the 
transformer. These techniques involve calculating key 
gas ratios and comparing these ratios to suggested 
limits. The most used techniques consist of 
Doernenburg ratios and Rogers ratios methods based 
on the following gas ratios: CH4/H2, C2H2/C2H4, 
C2H2/CH4, C2H6/C2H2, and C2H4/C2H6. The suggested 
limits of Doernenburg ratios method and Rogers ratios 
method are shown in Tables 1 and 2, respectively.  

In Duval’s triangle method, the total accumulated 
amount of three key gases, methane (CH4), acetylene 
(C2H2), and ethylene (C2H4), is calculated. Next, each 
gas concentration is divided by the total accumulated 
amount of three gases to find the percentage associated 
with each gas. These values are then plotted in Duval’s 
triangle [6] as shown in Fig. 1 to derive a diagnosis. 
Sections within the triangle designate: partial 
discharge (PD), low-energy discharge (D1), high-
energy discharge (D2), thermal fault below 300 oC 
(T1), thermal fault between 300 oC and 700 oC (T2), 
thermal fault above 700 oC (T3). 

 

 

 
Fig. 1.  Duval’s triangle 

 
2.2. Bayesian Neural Networks 

2.2.1. Multi-layer perceptron neural networks 

A) Feed-forward propagation 

Multi-layer perceptron (MLP) neural networks 
are widely used in engineering applications. These 
networks take in a vector of real inputs, ix , and from 
them compute one or more values of activation of the 
output layer, ( , )ka x w . For networks with a single 
layer of hidden nodes, as shown in Fig. 2, the 
activation of the output layer is computed as follows: 

1 1 1
( ) tanh
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where, jiw  is the weight on the connection from input 
unit i  to hidden unit j ; similarly, kjw  is the weight 

on the connection from hidden unit j  to output unit k
. The jb  and kb  are the biases of the hidden and output 
units. These weights and biases are parameters of the 
MLP neural network. 

In c -class classification problems, the target 
variables are discrete class labels indicating one of   
possible classes. The softmax (generalised logistic) 
model can be used to define the conditional 
probabilities of the various classes of a network with   
output units as follows: 
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Fig. 2.  Classification MLP neural network. 

For c -classes ( 2c > ) classification problems, 
the data error function has the following form:  

1 1
ln

N c
n n

D k k
n k

E t z
= =

= −∑∑                        (3)   

where DE  is called the entropy function and N  is the 
number of sample training patterns.                                                   

B) Regularisation 

In MLP neural network training, the 
regularisation should be involved to prevent any 
weights and biases from becoming too large because 
large weights and biases can cause poor generalisation 
of the trained network for new test cases.  Therefore, a 
weight decay penalty term is usually added to the data 

error function to penalise large weights and biases to 
obtain the following function: 

( )
1

g

G

D g W
g

S w E Eξ
=

= +∑                          (4)                                                              

where ( )S w  is known as the cost function, G  is the 
number of groups of weights and biases in the network. 
The second term on the right-hand side of equation (4) 
is referred to as the weight decay term. gξ  is the 
hyperparameter for the distribution of weights and 
biases in group g . 

gWE  and gw  are the error and the 
vector of weights and biases in group g , respectively. 

C) Updating weights and biases 

The problem of neural network training has been 
formulated in terms of the minimisation of the  
cost function ( )S w , which is a function of weights 
and biases in the network. We can also group the 
network weights and biases together into a single  
W -dimensional weight vector, denoted by w , with 
components 1w … Ww . 

For MLP neural networks with a single layer of 
hidden units, the cost function   is usually a highly non-
linear function of weights and biases. Therefore, the 
cost function ( )S w  can have many minima satisfying 
the following condition: 

( ) 0S w∇ =                                (5)                                                                        

 
Table 1. Suggested limits of Doernenburg ratios method 

Suggested fault diagnosis 
4

1
2

CHR
H

=  2 2
2

2 4

C HR
C H

=  
 

2 2
3

4

C HR
CH

=  2 6
4

2 2

C H
R

C H
=  

Thermal decomposition 1.0>  0.75<   0.3<  0.4>  

Partial discharge 0.1<  -  0.3<  0.4>  

Arcing 0.1 1.0> − <  0.75>   0.3>  0.4<  
 

Table 2. Suggested limits of Rogers ratios method 

Suggested fault diagnosis 
4

1
2

CHR
H

=  2 2
2

2 4

C HR
C H

=  2 4
5

2 6

C HR
C H

=  

Unit normal 0.1 1.0> − <  0.1<  1.0<  

Low-energy density arcing-PD 0.1<  0.1<  1.0<  

Arcing-high energy discharge 0.1 1.0−  0.1 3.0−  3.0>  

Low temperature thermal 0.1 1.0> − <  0.1<  1.0 3.0−  

Thermal<700oC 1.0>  0.1<  1.0 3.0−  

Thermal>700oC 1.0>  0.1<  3.0>  
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The minimum corresponding to the smallest 
value of the cost function is called the global 
minimum, while other minima are called local minima. 
In practice, it is impossible to find closed-form 
solutions for the minima. Instead, we consider 
algorithms that involve a search through the weight 
space with a succession of steps of the form: 

1m m m mw w dα+ = +                          (6)  

where m  labels the iteration step, mw  and 1mw +  are 
the vectors of weights and biases at  the  m -th and  
( )1m + -th iteration steps, respectively. md  and mα  
are the search direction and step size at the m -th 
iteration step.  

Different adaptive neural network training 
algorithms can automatically find the suitable search 
direction md  and determine the optimal step size mα . 
The advanced adaptive neural network training 
algorithms consist of Conjugate Gradient, Scaled 
Conjugate Gradient and Quasi-Newton methods [17].                                                                

2.2.2. Bayesian training for classification mlp neural 
networks 

The Bayesian learning of MLP neural networks 
is performed by considering Gaussian probability 
distribution of weights and biases giving the best 
generalisation [16]. In particular, the weights and 
biases in the network are adjusted to their most 
probable values given the training data set- D . 
Specifically, the posterior distribution of weights and 
biases can be computed using Bayes’ rule as follows: 

( ) ( )
( )

( | , ) |
| ,

|
p D w X p w X

p w D X
p D X

=              (7)  

Given a set of candidate neural networks having 
different numbers of hidden nodes, the posterior 
probability of each network can be expressed as: 

( ) ( )
( )

( | )
| i i

i

p D X p X
p X D

p D
=                  (8)                                                          

If all the candidate neural networks can be seen 
to be equally probable before any data arrives, ( )ip X  
are identical for all neural networks. As ( )p D  does 
not depend on each neural network, the most probable 
network can be chosen corresponding to the highest 
value of ( )|p D X . Therefore, the evidence can be 
utilized to rank different architectures of neural 
networks.  

In neural network training, the hyperparameters 
are initialised to be arbitrary small values. Next, the 
cost function is minimised using an advanced 
optimisation technique. When the cost function has 
reached a local minimum, the hyperparameters can be 

re-estimated. This task requires the evaluation of the 
Hessian matrix of the cost function as follows: 

1

G

g g
g

A H Iξ
=

= +∑                             (9) 

where H  is the Hessian matrix of DE  and gI  is the 
identity matrix selecting the weights and biases in the   
g -th group. The number of ‘well-determined’ weights 

gγ  in group g  is calculated based on the old values 
of gξ  as follows: 

( )1
g g g gW tr A Iγ ξ −= −  ( )1,...,g G=   (10) 

The new value of the hyperparameter gξ  is then 
re-estimated as follows: 

2
g

g
g

WE
γ

ξ =       ( )1,...,g G=    (11) 

The hyperparameters need to be re-estimated 
several times until the cost function value tends not to 
change significantly between consecutive re-
estimation periods. After the network training is 
completed, the values of parameters gγ  and gξ  are 
then used to compute the log evidence of network iX    

having M  hidden nodes as follows [18]: 
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∑

∑
    (12) 

where gW  is the number of weights and biases in 
group g . Equation (12) is used to compare different 
neural networks having different numbers of hidden 
nodes. The best neural network will be selected with 
the highest value of the log evidence.                                                               

3. Results and Discussion 

3.1. Input and Output Patterns 

The IEC TC10 databases were used for training 
and testing BNNs [1]. For each input pattern, there is 
a corresponding output pattern describing the fault 
type for a given diagnosis criterion. Five key gasses, 
which are all combustible: hydrogen (H2), methane 
(CH4), ethylene (C2H4), ethane (C2H6), and acetylene 
(C2H2), are used in this study. The output vector 
contains codes of 0 and 1, which indicates five fault 
types as shown in Table 3. The training set was formed 
by taking 81 data samples and the test set consists of 
36 data samples as shown in Table 4. 

Most power transformers have low dissolved gas 
concentrations of a few ppm (part per million). 
However, faulty power transformers can often cause 
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thousands or tens of thousands of ppm. This problem 
usually gives a difficulty to visualise the dissolved gas 
data. Therefore, the most informative features of DGA 
data can be obtained by using the order of magnitude 
of DGA concentrations, rather than their absolute 
values. An effective way to take these changes into 
account is to rescale DGA data using the logarithmic 
transform. For an easy interpretation, the 10log  is used. 

Table 3. Fault types and corresponding output vectors. 

Fault type Output vector 

PD [ ]1 0 0 0 0 T  

D1 [ ]0 1 0 0 0 T  

D2 [ ]0 0 1 0 0 T  

T1 & T2 [ ]0 0 0 1 0 T  

T3 [ ]0 0 0 0 1 T  

 

Table 4. Datasets from the IEC TC 10 database. 

 Numbers of data samples 

Fault type Training set Test set 

PD 5 4 

D1 18 8 

D2 36 12 

T1 & T2 10 6 

T3 12 6 

Total 81 36 
 
Data normalisation: is a rescaling of the input 

data from the original range so that all values are 
within the range of 0 and 1: 

 
( )

( ) ( )
min

max min
i

i

x X
y

X X
−

=
−

                  (13) 

3.2. The Network Training Procedure 

To determine the optimal number of hidden 
nodes (number of nodes in the hidden layer) of a BNN, 
different BNNs with varied numbers of hidden nodes 
were trained and they have the following 
specifications: 

1) Four hyperparameters 1ξ , 2ξ , 3ξ , and 4ξ  to 
constrain the magnitudes of the weights on the 
connection from the input nodes to the hidden 
nodes, the biases of the hidden nodes, the weights 
on the connection from the hidden nodes to the 
output nodes, and the biased of the output nodes. 

2) The number of inputs depends on the number of 
gas ratios of a specific diagnosis method and one 
augmented input with a constant value of 1. 

3) Five outputs, each corresponding to a specific 
class of faults as shown in Table 3. For a given 
number of hidden nodes, ten neural networks 
with different initial conditions were trained.  

The training procedure was implemented as 
follows: 

1) The weights and biases in four different groups 
were initialized by random selections from zero-
mean, unit variance Gaussians and initial 
hyperparameters were chosen to be small values. 

2) The network was trained to minimise the cost 
function using the scaled conjugate gradient 
algorithm. 

3) When the network training had reached a local 
minimum, the values of the hyperparameters 
were re-estimated according to equations (10) 
and (11). 

4) Steps 2 and 3 were repeated until the cost 
function value was smaller than a pre-determined 
value or the maximum number of training 
iterations has reached. 

3.3. Power Transformer Fault Classification 

Power transformer faults can be classified by 
using DGA and BNNs. Firstly, the inputs of BNNs 
must be formed based on Doernenburg and Rogers 
ratios. 

3.3.1. Doernenburg ratios 

The input vector in this case is a vector with four 
elements as follows: 

[ ] 2 64 2 2 2 2

2 2 4 4 2 2

, , ,
T

C HCH C H C Hx
H C H CH C H

 
=  
 

 

Different classification BNNs with different 
numbers of hidden nodes were trained using the 
training set. For a given number of hidden nodes, ten 
BNNs with different randomly initial weights and 
biases were trained and the log evidence was then 
evaluated. As shown in Fig. 3, the networks with two 
hidden nodes have the highest log evidence. 
Simultaneously, Fig. 4 also shows the highest overall 
accuracy of fault classification, which is equivalent to 
the corresponding highest log evidence in Fig. 3. 

Table 5 shows the change of four hyper-
parameters and the number of well-determined 
parameters. Table 6 is the confusion matrix of the 
optimised BNN for classifying the unknown input 
vectors and the overall accuracy of fault classification 
is 83.33%. 
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Table 5. The change of four hyper-parameters and the 
number of well-determined parameters according to 
hyper-parameter re-estimation periods (Doernenburg 
ratios). 

Period 
1ξ  2ξ  3ξ  4ξ  γ  

1 0.022 0.044 0.008 0.409 18.555 

2 0.039 0.083 0.006 0.753 15.803 

3 0.061 0.134 0.005 0.865 15.451 
 
Table 6. Confusion matrix of the BNN for classifying 
unknown input vectors (Doernenburg ratios). 

  Predicted classification 

 
 
 

Actual 
classification  

Fault PD D1 D2 T1&T2 T3 
PD 2 0 0 2 0 
D1 0 5 3 0 0 
D2 0 0 12 0 0 

T1&T2 0 0 0 5 1 
T3 0 0 0 0 6 

Accuracy (%) 83.33 
 

3.3.2. Rogers ratios 

The input vector in this case is a vector with four 
elements as follows: 

[ ] 2 64 2 2 2 4

2 2 4 2 6 4

, , ,
T

C HCH C H C Hx
H C H C H CH

 
=  
 

 

Different BNN classifiers having different 
numbers of hidden nodes were trained using the 
training set. For a given number of hidden nodes, ten 
networks with different randomly initial weights and 
biases were trained and the log evidence was 
evaluated. As illustrated in Fig. 5, the networks with 
two hidden nodes can result in the highest log 
evidence. This network architecture can also give the 
highest overall accuracy of fault classification as 
shown in Fig. 6. 

Table 7 shows the change of four hyper-
parameters and the number of well-determined 
parameters. Table 8 is the confusion matrix of the 
optimised BNN for classifying the unknown input 
vectors and the overall accuracy of fault classification 
is 80.56%. 

 

 

Fig. 3. Log evidence vs number of hidden nodes 
(Doernenburg ratios). 

 
Fig. 5.  Log evidence vs number of hidden nodes 
(Rogers ratios). 

 
Fig. 4. Overall accuracy vs number of hidden nodes 
(Doernenburg ratios). 

 

Fig. 6. Overall accuracy vs number of hidden nodes 
(Rogers ratios). 
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Table 7. The change of four hyper-parameters and the 
number of well-determined parameters according to 
hyper-parameter re-estimation periods (Rogers ratios). 

Period 1ξ  2ξ  3ξ  4ξ  γ  

1 0.026 0.012 0.009 0.268 18.645 

2 0.039 0.015 0.007 0.353 16.315 

3 0.053 0.02 0.005 0.333 15.801 
 
Table. 8. Confusion matrix of the trained BNN for 
classifying unknown input vectors (Rogers ratios). 

  Predicted classification 

 
 
 

Actual 
classification  

Fault PD D1 D2 T1&T2 T3 

PD 2 0 0 2 0 

D1 0 4 4 0 0 

D2 0 0 12 0 0 

T1&
T2 0 0 0 5 1 

T3 0 0 0 0 6 

Accuracy (%) 80.56 
 
Table. 9. Accuracy comparison between suggested gas 
ratio limit and BNN based classification methods. 

Doernenburg ratios method with 
suggested gas ratio limits 

79.48 (%) 
 

Doernenburg ratios method with 
BNN 

  83.33 (%) 

Rogers ratios method with 
suggested gas ratio limits 

40.17 (%) 

Rogers ratios method with BNN 80.56 (%) 
 

Table 9 is a comparison between suggested limit 
and BNN based methods in DGA with the same 
training data set. Obviously, the BNN based methods 
can significantly dominate over the suggested limit-
based methods. 

4. Conclusion 

This paper presents the key steps in developing 
BNNs used for classifying oil-immersed power 
transformer faults using DGA. Based on the 
exploration of the Bayesian inference framework for 
MLP neural network training, the regularisation 
parameters (hyperparameters) and the appropriate 
number of hidden nodes in the network can be 
conveniently obtained. Specifically, the BNNs were 
trained on two common criteria of Doernenburg and 
Rogers gas ratios. It is shown that a BNN configuration 
based on a few nodes in the hidden layer is suitable for 
the incipient faut detection in power transformers. The 

number of hidden units mainly depends on the 
diagnosis criterion under consideration. When the 
BNNs with two hidden units were trained using the 
DGA data from the IEC TC 10 database, they can 
classify power transformer faults with overall 
accuracies greater than 80%. This research also 
performs a comparison between suggested gas ratio 
limit-based methods and BNN based methods for 
power transformer fault diagnoses. It is obvious that 
the BNN based method clearly dominates over the 
suggested gas ratio limit-based methods. The future 
work of this study is to perform a comparison between 
the BNNs and other machine learning classifiers for 
DGA of power transformers. In addition, various 
training algorithms for the BNN should be also 
investigated. 
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