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Abstract 
We consider the motion of a viscous imcompressible fluid past a rotating rigid body in three-
dimensional, where the translational and angular velocities of the body are prescribed but  
time-dependent. In a reference frame attached to the body, we have the non-autonomous Oseen-
Navier-Stokes equations in a fixed exterior domains. We prove the existence and stability of 
bounded mild solutions in time t to ONSE in three-dimensional exterior domains when the 
coefficients are time dependent. Our method is based on the 𝐿𝐿𝑝𝑝 − 𝐿𝐿𝑞𝑞-estimates of the evolution 
family �𝑈𝑈(𝑡𝑡, 𝑠𝑠)� and that of its gradient to prove boundedness of solution to linearized equations. 
After, we use fixed-point arguments to obtain the result on boundedness of solutions to non-
linearized equations when the data belong to 𝐿𝐿𝑝𝑝-space and are sufficiently small. Finally, we prove 
existence and polynomial stability of bounded solutions to ONSE with the same condition.  
Our result is useful for the study of the time-periodic mild solution to the non-autonomous Oseen-
Navier-Stokes equations in an exterior domains.  

Keywords: boundedness and stability of solutions, exterior domains, non-autonomous equations, 
Oseen-Navier-Stokes flows.  

 
1. Introduction 

The*motion of compact obstacles or rigid bodies 
in a viscous and incompressible fluid is a classical 
problem in fluid mechanics, and it is still in the focus 
of applied research. It is interesting to consider the 
flow of viscous incompressible fluids around a rotating 
obstacle, where the rotation is prescribed. The rotation 
of the obstacle causes interesting mathematical 
problems and difficulties. Moreover, this problem 
brings out various applications such as applications to 
windmill, wind energy, as well as airplane designation, 
and so on. Therefore, this problem has been attracting 
a lot of attention for the last 20 years. The stability of 
solutions to Navier-Stokes equations (NSE) can be 
traced back to Serrin (1959). He proved exponential 
stability of solutions as well as the existence of time-
periodic solutions to NSE in bounded domains. 

This direction has been extended further by 
Miyakawa and Teramoto, Kaniel and Shinbrot (1967), 
and so on. Maremonti proved the existence and 
stability of bounded solutions to NSE on the whole 
space. Kozono and Nakao defined a new notion of 
mild solutions; their existence on the whole time-line. 
Then, Taniuchi proved the asymptotic stability of such 
solutions. 

In the present paper, we consider the 3-
dimensional Navier-Stokes flow past an obstacle, 
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which is a moving rigid body with prescribed 
translational and angular velocities. Let Ω  is an 
exterior domain in ℝ3 with 𝐶𝐶1,1-boundary 𝜕𝜕Ω. 
 Complement ℝ3\Ω is identified with the obstacle 
(rigid body) immersed in a fluid, and it is assumed to 
be a compact set in 𝐵𝐵(0)with nonempty interior. After 
rewriting the problem on a fixed exterior domain 
Ω ∈ ℝ3, the system is reduced to  

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑢𝑢𝑡𝑡 + (𝑢𝑢.∇)𝑢𝑢 − Δ𝑢𝑢 + ∇𝑝𝑝 = (𝜂𝜂 + 𝜔𝜔 × 𝑥𝑥).∇𝑢𝑢

                                             −𝜔𝜔 × 𝑢𝑢 + div𝐹𝐹
           ∇.𝑢𝑢 = 0

                           𝑢𝑢|𝜕𝜕Ω = 𝜂𝜂 + 𝜔𝜔 × 𝑥𝑥
          𝑢𝑢(. ,0) = 𝑢𝑢0
𝑢𝑢 → 0 𝑎𝑎𝑠𝑠 |𝑥𝑥| → ∞

   

      (1) 

in Ω × (0,∞), where {𝑢𝑢(𝑥𝑥, 𝑡𝑡), 𝑝𝑝(𝑥𝑥, 𝑡𝑡)} with  
𝑢𝑢 = (𝑢𝑢1,𝑢𝑢2,𝑢𝑢3)𝑇𝑇 is the pair of unknowns which are 
the velocity vector field and pressure of a viscous fluid, 
respectively, while the external force  div𝐹𝐹 being a 
second-order tensor field. Meanwhile, 𝜂𝜂(0,0, 𝑎𝑎(𝑡𝑡))𝑇𝑇 
and 𝜔𝜔 = (0,0, 𝑘𝑘(𝑡𝑡))𝑇𝑇stand for the translational and 
angular velocities respectively of the obstacle. Here 
and in what follows, (. )𝑇𝑇 stands for the transpose  
of vectors or matirices. Such a time-dependent 
problem was first studied by Borchers [1] in the 
framework of weak solutions. The result has then been 
extended further by many authors, e.g., Hishida [2, 3], 
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Galdi [4, 5]. Hansel and Rhandi [6, 7] succeeded in the 
proof of generation of this evolution operator with the 
 𝐿𝐿𝑝𝑝 − 𝐿𝐿𝑞𝑞 smoothing rate. They constructed evolution 
operator in their own way since the corresponding 
semigroup is not analytic (Hishida [2]). Recently, 
Hishida [3] developed the 𝐿𝐿𝑝𝑝 − 𝐿𝐿𝑞𝑞 decay estimates of 
the evolution operator see Proposition 1.2. However, it 
is difficult to perform analysis with the standard 
Lebesgue space on account of the scale-critical 
pointwise estimates. Thus, we first construct a solution 
for the weak formulation in the framework of Lorentz 
space by the strategy due to Yamazaki [8]. We next 
identify this solution with a local solution possessing 
better regularity in a neighborhood of each time. 
Moreover, Huy [9] showed that the existence and 
stability of bounded mild periodic solutions to the NSE 
passing an obstacle which is rotating around certain 
axes .  

Our conditions on the translational and angular 
velocities are 

𝜂𝜂,𝜔𝜔 ∈ 𝐶𝐶𝜃𝜃([0,∞);  ℝ3) ∩ 𝐶𝐶1([0,∞);  ℝ3) ∩
𝐿𝐿∞(0,∞;  ℝ3) with some 𝜃𝜃 ∈ (0,1).        (2) 

Lets us introduce the following notations: 

|(𝜂𝜂,𝜔𝜔)|0 ∶= sup
𝑡𝑡≥0

(|𝜂𝜂(𝑡𝑡)| + |𝜔𝜔(𝑡𝑡)|), 

|(𝜂𝜂,𝜔𝜔)|1 ∶= sup
𝑡𝑡≥0

(|𝜂𝜂′(𝑡𝑡)| + |𝜔𝜔′(𝑡𝑡)|),  

|(𝜂𝜂,𝜔𝜔)|𝜃𝜃 ∶= sup
𝑡𝑡>𝑠𝑠≥0

|𝜂𝜂(𝑡𝑡) − 𝜂𝜂(𝑠𝑠)| + |𝜔𝜔(𝑡𝑡) − 𝜔𝜔(𝑠𝑠)|
(𝑡𝑡 − 𝑠𝑠)𝜃𝜃 . 

There is a constant 𝑚𝑚 ∈ (0,∞) such that 

|(𝜂𝜂,𝜔𝜔)|0 + |(𝜂𝜂,𝜔𝜔)|1 + |(𝜂𝜂,𝜔𝜔)|𝜃𝜃 ≤ 𝑚𝑚      (3) 

Let us begin with introducing notation. Given an 
exterior domain Ω of class 𝐶𝐶1,1 in ℝ3 , we consider the 
following spaces:  

𝐶𝐶0,𝜎𝜎
∞ (Ω) ≔ {𝑣𝑣 ∈ 𝐶𝐶0∞(Ω):𝛻𝛻. 𝑣𝑣 = 0 in Ω}, 

𝐿𝐿𝜎𝜎
𝑝𝑝 (Ω) ∶=  𝐶𝐶0,𝜎𝜎

∞ (Ω)
‖.‖𝐿𝐿𝑝𝑝    . 

we also need the notion of Lorentz space 
𝐿𝐿 𝑟𝑟,𝑞𝑞(Ω), (1 < 𝑟𝑟 < ∞, 1 ≤ 𝑞𝑞 ≤ ∞) is defined by 

𝐿𝐿 𝑟𝑟,𝑞𝑞(Ω) ≔ {𝑓𝑓: Lebesgue measurable function 
| ‖𝑓𝑓‖∗𝑟𝑟,𝑞𝑞 < ∞} 

where 

‖𝑓𝑓‖∗𝑟𝑟,𝑞𝑞 = 

⎩
⎪⎪
⎨

⎪⎪
⎧

⎝

⎛�
�𝑡𝑡𝑡𝑡({𝑥𝑥 ∈ Ω|𝑓𝑓(𝑥𝑥) > 𝑡𝑡})

1
𝑞𝑞�

𝑟𝑟

𝑑𝑑𝑡𝑡

𝑡𝑡

∞

0
⎠

⎞

1
𝑟𝑟

  1 ≤ 𝑟𝑟 < ∞

sup
𝑡𝑡>0

𝑡𝑡𝑡𝑡({𝑥𝑥 ∈ Ω|𝑓𝑓(𝑥𝑥) > 𝑡𝑡})
1
𝑞𝑞                       𝑟𝑟 = ∞

 

and 𝑡𝑡(. ) denotes the Lebesgue measure on ℝ3. The 
spaces 𝐿𝐿 𝑟𝑟,𝑞𝑞(Ω) is a quasi−normed space and it is even 
a Banach space equipped with norm ‖. ‖𝑟𝑟,𝑞𝑞  equivalent 
to ‖. ‖∗𝑟𝑟,𝑞𝑞   and note that 𝐿𝐿 𝑟𝑟,𝑟𝑟(Ω) = 𝐿𝐿 𝑟𝑟(Ω) and that for 
𝑞𝑞 = ∞ the space 𝐿𝐿𝑟𝑟,∞(Ω) is called the weak 𝐿𝐿𝑟𝑟 −space 
and is denoted by 𝐿𝐿𝑤𝑤𝑟𝑟 (Ω) ≔ 𝐿𝐿𝑟𝑟,∞(Ω). We denote 
various constants by 𝐶𝐶 and they may change from line 
to line. The constant dependent on 𝐴𝐴,𝐵𝐵, · · · is denoted 
by 𝐶𝐶(𝐴𝐴,𝐵𝐵, … ). Finally, if there is no confusion, we use 
the same symbols for denoting spaces of scalar-valued 
functions and those of vector-valued ones.  

The following weak Holder inequality is known 
(see [10, Lemma 2.1]): 

Lemma 1.1.  

Let  1 < 𝑝𝑝 ≤ ∞, 1 < 𝑞𝑞 < ∞ and 1 < 𝑟𝑟 < ∞ 
satisfy  1

𝑝𝑝
+ 1

𝑞𝑞
= 1

𝑟𝑟
. If 𝑓𝑓 ∈ 𝐿𝐿𝑤𝑤

𝑝𝑝 ,𝑔𝑔 ∈ 𝐿𝐿𝑤𝑤
𝑞𝑞  then 𝑓𝑓𝑔𝑔 ∈ 𝐿𝐿𝑤𝑤𝑟𝑟  and 

‖𝑓𝑓𝑔𝑔‖𝑟𝑟,𝑤𝑤 ≤ 𝐶𝐶‖𝑓𝑓‖𝑝𝑝,𝑤𝑤‖𝑔𝑔‖𝑞𝑞,𝑤𝑤   (4) 

where 𝐶𝐶 is a positive constant depending only on 𝑝𝑝 and 
𝑞𝑞. Note that 𝐿𝐿𝑤𝑤∞ = 𝐿𝐿∞. 

Let ℙ = ℙ𝑟𝑟 be the Helmholtz projection on 
𝐿𝐿𝑟𝑟(Ω). Then, ℙ defines a bounded projection on 
each 𝐿𝐿 𝑟𝑟,𝑞𝑞(Ω), (1 < 𝑟𝑟 < ∞, 1 ≤ 𝑞𝑞 ≤ ∞) which is also 
denoted by ℙ . We have the following notations of 
solenoidal Lorentz spaces: 

𝐿𝐿 𝜎𝜎
𝑟𝑟,𝑞𝑞(Ω) ∶= ℙ�𝐿𝐿 𝑟𝑟,𝑞𝑞(Ω)� 

Then we can see that  

𝐿𝐿 𝑟𝑟,𝑞𝑞(Ω) = 𝐿𝐿 𝜎𝜎
𝑟𝑟,𝑞𝑞(Ω) ⨁ {∇𝑝𝑝 ∈ 𝐿𝐿𝑟𝑟,𝑞𝑞:𝑝𝑝 ∈ 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙

𝑟𝑟,𝑞𝑞 (Ω�)} 

We also have 

𝐿𝐿 𝜎𝜎
𝑟𝑟,𝑞𝑞(Ω) ∶= �𝐿𝐿 𝜎𝜎

𝑟𝑟1(Ω), 𝐿𝐿 𝜎𝜎
𝑟𝑟2(Ω)�

𝜃𝜃,𝑞𝑞
  

where 

 1 < 𝑟𝑟1 < 𝑟𝑟 < 𝑟𝑟2 < ∞, 1 ≤ 𝑞𝑞 ≤ ∞, 1
𝑟𝑟

= 1−𝜃𝜃
𝑟𝑟1

+ 𝜃𝜃
𝑟𝑟2

  

and (. , . )𝜃𝜃,𝑞𝑞 denotes the real interpolation functor. 
Furthermore, if 1 ≤ 𝑞𝑞 < ∞ then 

�𝐿𝐿 𝜎𝜎
𝑟𝑟,𝑞𝑞�′ = 𝐿𝐿 𝜎𝜎

𝑟𝑟′,𝑞𝑞′ here 𝑟𝑟′ = 𝑟𝑟
𝑟𝑟−1

, 𝑞𝑞′ = 𝑞𝑞
𝑞𝑞−1

 and 𝑞𝑞′ = ∞ 
if 𝑞𝑞 = 1. 

When 𝑞𝑞 = ∞ let 𝐿𝐿 𝜎𝜎,𝑤𝑤
𝑠𝑠 (Ω) = 𝐿𝐿𝜎𝜎𝑠𝑠,∞(Ω) and write 

‖. ‖𝑠𝑠,𝑤𝑤 for the norm in 𝐿𝐿 𝜎𝜎,𝑤𝑤
𝑠𝑠 (Ω). We also need the 

following space of bounded continuous functions on 
ℝ+ ≔ (0,∞) with values in 𝐿𝐿 𝜎𝜎,𝑤𝑤

𝑠𝑠 (Ω): 

𝐶𝐶𝑏𝑏 �ℝ+, 𝐿𝐿 𝜎𝜎,𝑤𝑤
𝑠𝑠 (Ω)� ≔ �𝑣𝑣: ℝ+ →

𝐿𝐿 𝜎𝜎,𝑤𝑤
𝑠𝑠 (Ω)| 𝑣𝑣 is continuous and sup

𝑡𝑡∈ ℝ+
‖𝑣𝑣(𝑡𝑡)‖𝑠𝑠,𝑤𝑤 < ∞�  

endowed with the norm  
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‖𝑣𝑣‖∞,𝑠𝑠,𝑤𝑤 ≔ sup
𝑡𝑡∈ ℝ+

‖𝑣𝑣(𝑡𝑡)‖𝑠𝑠,𝑤𝑤. 

Next, for each 𝑡𝑡 ≥ 0 we consider the operator 
𝐿𝐿(𝑡𝑡) as follows: 

𝐷𝐷(ℒ(𝑡𝑡)) ≔ �𝑢𝑢 ∈ 𝐿𝐿 𝜎𝜎𝑟𝑟 ∩𝑊𝑊0
1,𝑟𝑟 ∩ 𝑊𝑊2,𝑟𝑟:

(𝜔𝜔(𝑡𝑡) × 𝑥𝑥).∇𝑢𝑢 ∈ 𝐿𝐿𝑟𝑟(Ω)
� 

ℒ(𝑡𝑡)𝑢𝑢 ≔ ℙ[Δ𝑢𝑢 + (𝜂𝜂 + 𝜔𝜔 × 𝑥𝑥).∇𝑢𝑢 − 𝜔𝜔 × 𝑢𝑢]  (5) 

for 𝑢𝑢 ∈ 𝐷𝐷�ℒ(𝑡𝑡)�. 

It is known that the family of operators {ℒ(𝑡𝑡)}𝑡𝑡≥0 
generates a bounded evolution family {𝑈𝑈(𝑡𝑡, 𝑠𝑠)}𝑡𝑡≥𝑠𝑠≥0 
on 𝐿𝐿 𝜎𝜎𝑟𝑟 (Ω)) for each 1 < 𝑟𝑟 < ∞ under the conditions 
(2). Then {𝑈𝑈(𝑡𝑡, 𝑠𝑠)}𝑡𝑡≥𝑠𝑠≥0 is extended to a strongly 
continuous, bounded evolution operator on 𝐿𝐿 𝜎𝜎

𝑟𝑟,𝑞𝑞(Ω). 

We recall the following 𝐿𝐿𝑟𝑟,𝑞𝑞 − 𝐿𝐿𝑝𝑝,𝑞𝑞 estimates 
taken from [4]. 

Proposition 1.2.  

Suppose that 𝜂𝜂 and 𝜔𝜔 fulfill (2) and (3) for each 
𝑚𝑚 ∈ (0,∞). 

(i) Let 1 < 𝑝𝑝 ≤ 𝑟𝑟 < ∞, 1 ≤ 𝑞𝑞 ≤ ∞, there is a 
constant 𝐶𝐶 = 𝐶𝐶(𝑚𝑚, 𝑝𝑝, 𝑞𝑞, 𝑟𝑟,𝜃𝜃,Ω) such that 

‖𝑈𝑈(𝑡𝑡, 𝑠𝑠)𝑥𝑥‖𝑟𝑟,𝑞𝑞 , ‖𝑈𝑈(𝑡𝑡, 𝑠𝑠)∗𝑥𝑥‖𝑟𝑟,𝑞𝑞

≤ 𝐶𝐶(𝑡𝑡 − 𝑠𝑠)−
3
2�
1
𝑝𝑝−

1
𝑟𝑟�‖𝑥𝑥‖𝑝𝑝,𝑞𝑞             (6) 

for all 𝑡𝑡 > 𝑠𝑠 ≥ 0. 

(ii) Let 1 < 𝑝𝑝 ≤ 𝑟𝑟 < 3, 1 ≤ 𝑞𝑞 ≤ ∞, there is a 
constant 𝐶𝐶 = 𝐶𝐶(𝑚𝑚, 𝑝𝑝, 𝑞𝑞, 𝑟𝑟,𝜃𝜃,Ω) such that 

‖∇𝑈𝑈(𝑡𝑡, 𝑠𝑠)𝑥𝑥‖𝑟𝑟,𝑞𝑞 ≤ 𝐶𝐶(𝑡𝑡 − 𝑠𝑠)−
1
2−

3
2�
1
𝑝𝑝−

1
𝑟𝑟�‖𝑥𝑥‖𝑝𝑝,𝑞𝑞            (7) 

 for all 𝑡𝑡 > 𝑠𝑠 ≥ 0. 

(iii) When 1 < 𝑝𝑝 ≤ 𝑟𝑟 ≤ 3, 1 ≤ 𝑞𝑞 ≤ ∞, there is a 
constant 𝐶𝐶 = 𝐶𝐶(𝑚𝑚, 𝑝𝑝, 𝑞𝑞, 𝑟𝑟,𝜃𝜃,Ω) such that 

‖∇𝑈𝑈(𝑡𝑡, 𝑠𝑠)∗𝑥𝑥‖𝑟𝑟,𝑞𝑞 ≤ 𝐶𝐶(𝑡𝑡 − 𝑠𝑠)−
1
2−

3
2�
1
𝑝𝑝−

1
𝑟𝑟�‖𝑥𝑥‖𝑝𝑝,𝑞𝑞          (8) 

 for all 𝑡𝑡 > 𝑠𝑠 ≥ 0. 

If in particular 1
𝑝𝑝
− 1

𝑟𝑟
= 1

3
 as well as 1 < 𝑝𝑝 ≤ 𝑟𝑟 ≤ 3, 

there is a constant 𝐶𝐶 = 𝐶𝐶(𝑚𝑚, 𝑝𝑝, 𝑟𝑟,𝜃𝜃,Ω) such that 

  ∫ ‖∇𝑈𝑈(𝑡𝑡, 𝑠𝑠)∗𝑥𝑥‖𝑟𝑟,1
𝑡𝑡
0 𝑑𝑑𝑠𝑠 ≤ 𝐶𝐶‖𝑥𝑥‖𝑝𝑝,1                              (9)  

for all 𝑡𝑡 > 𝑠𝑠 ≥ 0. 

Proof.  We use the interpolation theorem and 
𝐿𝐿𝑝𝑝 − 𝐿𝐿𝑞𝑞 decay estimates in Hishida [3] we obtain the 
estimate (6) and (7). The assertions (iii) have been 
proved in [4]. 

We fix a cut-off function 𝜙𝜙 ∈ 𝐶𝐶0∞�𝐵𝐵3𝑅𝑅0� such 
that 𝜙𝜙 = 1 on 𝐵𝐵2𝑅𝑅0 , where 𝑅𝑅0 satisfy  

ℝ3\Ω ⊂ 𝐵𝐵𝑅𝑅0 ≔ {𝑥𝑥 ∈ ℝ3; |𝑥𝑥| < 𝑅𝑅0}. 

 

We define 

   𝑏𝑏(𝑥𝑥, 𝑡𝑡) =
1
2

rot {𝜙𝜙(𝜂𝜂 × 𝑥𝑥 − |𝑥𝑥|2 𝜔𝜔 )}                  (10) 

which fulfills  

div𝑏𝑏 = 0, 𝑏𝑏|𝜕𝜕Ω = 𝜂𝜂 + 𝜔𝜔 × 𝑥𝑥, 𝑏𝑏(𝑡𝑡) ∈ 𝐶𝐶0∞�𝐵𝐵3𝑅𝑅0� 

By straightforward computations, we have 

𝜔𝜔 × 𝑏𝑏 = div(−𝐹𝐹1),  𝑏𝑏𝑡𝑡 = div(−𝐹𝐹2) for  

𝐹𝐹1 =                                                             

⎝

⎜
⎛
�𝑎𝑎(𝑡𝑡)�

2
 |𝑥𝑥|2𝜙𝜙(𝑥𝑥)
2

0 −𝑎𝑎(𝑡𝑡)𝑘𝑘(𝑡𝑡)𝑥𝑥2𝜙𝜙(𝑥𝑥)

0 �𝑎𝑎(𝑡𝑡)�
2

 |𝑥𝑥|2𝜙𝜙(𝑥𝑥)
2

𝑎𝑎(𝑡𝑡)𝑘𝑘(𝑡𝑡)𝑥𝑥1𝜙𝜙(𝑥𝑥)
0 0 0 ⎠

⎟
⎞

  

𝐹𝐹2 = 

⎝

⎜
⎛

0 𝑎𝑎′(𝑡𝑡)|𝑥𝑥|2𝜙𝜙(𝑥𝑥)
2

𝑘𝑘′(𝑡𝑡)𝑥𝑥1𝜙𝜙(𝑥𝑥)
2

−𝑎𝑎′(𝑡𝑡)|𝑥𝑥|2𝜙𝜙(𝑥𝑥)
2

0 𝑘𝑘′(𝑡𝑡)𝑥𝑥2𝜙𝜙(𝑥𝑥)
2

−𝑘𝑘′(𝑡𝑡)𝑥𝑥1𝜙𝜙(𝑥𝑥) −𝑘𝑘′(𝑡𝑡)𝑥𝑥2𝜙𝜙(𝑥𝑥) 0 ⎠

⎟
⎞

  

By setting 𝑢𝑢 ≔ 𝑧𝑧 + 𝑏𝑏 problem (1) is equivalent to 

⎩
⎪
⎨

⎪
⎧
𝑧𝑧𝑡𝑡 − Δ𝑧𝑧 − (𝜂𝜂 + 𝜔𝜔 × 𝑥𝑥).∇𝑢𝑢 + 𝜔𝜔 × 𝑧𝑧 + ∇𝑝𝑝

+(𝑧𝑧.∇)𝑧𝑧 + (𝑧𝑧.∇)𝑏𝑏 + (𝑝𝑝.∇)𝑧𝑧 + (𝑏𝑏.∇)𝑏𝑏 � = div𝐺𝐺

                                                                 ∇. 𝑧𝑧 = 0
                                                                𝑧𝑧|𝜕𝜕Ω = 0

                                                                𝑧𝑧(. ,0) = 𝑧𝑧0
                                                     𝑧𝑧 → 0 𝑎𝑎𝑠𝑠 |𝑥𝑥| → ∞

 

       (11) 

where 𝑧𝑧0(𝑥𝑥) = 𝑢𝑢0(𝑥𝑥) − 𝑏𝑏(𝑥𝑥, 0) 

and 

 𝐺𝐺 = 𝐹𝐹 + 𝐹𝐹1 + 𝐹𝐹2 + Δ𝑏𝑏+(𝜂𝜂 + 𝜔𝜔 × 𝑥𝑥)⨂∇𝑏𝑏.           (12) 

Applying Helmholtz operator ℙ to (1) we may 
rewrite the equation as a non-autonomous abstract 
Cauchy problem. 

�𝑧𝑧𝑡𝑡 + ℒ(𝑡𝑡)𝑧𝑧 = ℙdiv(𝐺𝐺 − 𝑧𝑧⨂𝑧𝑧 − 𝑧𝑧⨂𝑏𝑏 − 𝑏𝑏⨂𝑧𝑧 − 𝑏𝑏⨂𝑏𝑏)
𝑧𝑧|𝑡𝑡=0 = 𝑧𝑧0

 

       (13) 

where ℒ(𝑡𝑡) is defined as in (5). 

2. Bounded Solutions 

2.1. The Linearized Problem 

In this subsection we study the linearized non-
autonomous system associated to (13) for some initial 
value 𝑧𝑧0 ∈ 𝐿𝐿 𝜎𝜎,𝑤𝑤

3 (Ω)  . 

 �𝑧𝑧𝑡𝑡 + ℒ(𝑡𝑡)𝑧𝑧 = ℙdiv(𝐺𝐺)
𝑧𝑧|𝑡𝑡=0 = 𝑧𝑧0

                                    (14) 

We can define a mild solution of (14) as the 
function 𝑧𝑧(𝑡𝑡) fulfilling the following integral equation 
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in which the integral is understood in weak sense as 
in [11] 

𝑧𝑧(𝑡𝑡) = 𝑈𝑈(𝑡𝑡, 0)𝑧𝑧(0) + � 𝑈𝑈(𝑡𝑡, 𝜏𝜏)
𝑡𝑡

0
ℙdiv�𝐺𝐺(𝜏𝜏)�𝑑𝑑𝜏𝜏.   

     (15) 

Remark 2.1.  

Let 𝜂𝜂 and 𝜔𝜔 satisfy both (2) and (3). Let the 

external force 𝐹𝐹 ∈ 𝐶𝐶𝑏𝑏 �ℝ+, 𝐿𝐿 𝜎𝜎,𝑤𝑤

3
2 (Ω)3×3� 

Then 𝐺𝐺 belongs to 𝐶𝐶𝑏𝑏 �ℝ+, 𝐿𝐿 𝜎𝜎,𝑤𝑤

3
2 (Ω)3×3�, moreover 

           ‖𝐺𝐺‖
∞,32,𝑤𝑤

≤ ‖𝐹𝐹‖
∞,32,𝑤𝑤

+ 𝐶𝐶𝑚𝑚 + 𝐶𝐶′𝑚𝑚2.          (16) 

The following theorem contains our first result on 
the boundedness of mild solutions of the linear 
problem. 

Theorem 2.2.  

Suppose that 𝜂𝜂 and 𝜔𝜔 fulfill both (2) and (3), the 

external force 𝐹𝐹 belongs to 𝐶𝐶𝑏𝑏 �ℝ+, 𝐿𝐿 𝜎𝜎,𝑤𝑤

3
2 (Ω)3×3� and 

let 𝑧𝑧0 ∈ 𝐿𝐿 𝜎𝜎,𝑤𝑤
3 (Ω).  

Then, problem (14) has a unique mild solution  

𝑧𝑧 ∈ 𝐶𝐶𝑏𝑏�ℝ+, 𝐿𝐿 𝜎𝜎,𝑤𝑤
3 (Ω)3×3� expressed by (15) with 

𝑧𝑧(0) = 𝑧𝑧0. Moreover, we have  

             ‖𝑧𝑧‖∞,3,𝑤𝑤 ≤ 𝐶𝐶′‖𝑧𝑧0‖3,𝑤𝑤 + �̂�𝐶‖𝐺𝐺‖
∞,32,𝑤𝑤

             (17) 

where 𝐶𝐶′, �̂�𝐶 are certain positive constants independent 
of 𝑧𝑧0, 𝑧𝑧, and 𝐺𝐺. 

Proof. Firstly, for 𝑧𝑧0 ∈ 𝐿𝐿 𝜎𝜎,𝑤𝑤
3 (Ω), we prove that 

the function 𝑧𝑧 defined by (15) belong to 
𝐶𝐶𝑏𝑏�ℝ+, 𝐿𝐿 𝜎𝜎,𝑤𝑤

3 (Ω)3×3� 

Indeed, for each 𝜑𝜑 ∈ 𝐿𝐿 𝜎𝜎
3
2,1

 we estimate  

|〈𝑧𝑧(𝑡𝑡),𝜑𝜑〉|  

≤ |〈𝑈𝑈(𝑡𝑡, 0)𝑧𝑧0,𝜑𝜑〉| + �〈∫ 𝑈𝑈(𝑡𝑡, 𝜏𝜏)ℙdiv𝐺𝐺(𝜏𝜏)𝑑𝑑𝜏𝜏,𝜑𝜑𝑡𝑡
0 〉�  

≤ |〈𝑈𝑈(𝑡𝑡, 0)𝑧𝑧0,𝜑𝜑〉| + � |〈𝑈𝑈(𝑡𝑡, 𝜏𝜏)ℙdiv𝐺𝐺(𝜏𝜏),𝜑𝜑〉|𝑑𝑑𝜏𝜏
𝑡𝑡

0
 

≤ |〈𝑈𝑈(𝑡𝑡, 0)𝑧𝑧0,𝜑𝜑〉| + ∫ |〈𝐺𝐺(𝜏𝜏),∇𝑈𝑈(𝑡𝑡, 𝜏𝜏)∗𝜑𝜑〉|𝑑𝑑𝜏𝜏𝑡𝑡
0   

≤ ‖𝑈𝑈(𝑡𝑡, 0)𝑧𝑧0‖3,𝑤𝑤‖𝜑𝜑‖3
2,1

+ � ‖𝐺𝐺(𝜏𝜏)‖3
2,𝑤𝑤
‖∇𝑈𝑈(𝑡𝑡, 𝜏𝜏)∗𝜑𝜑‖3,1𝑑𝑑𝜏𝜏

𝑡𝑡

0
 

≤ 𝐶𝐶′‖𝑧𝑧0‖3,𝑤𝑤‖𝜑𝜑‖3
2,1

+ ‖𝐺𝐺‖
∞,32,𝑤𝑤

� ‖∇𝑈𝑈(𝑡𝑡, 𝜏𝜏)∗𝜑𝜑‖3,1𝑑𝑑𝜏𝜏
𝑡𝑡

0
.                          (18) 

We now use the 𝐿𝐿𝑟𝑟,𝑞𝑞 − 𝐿𝐿𝑝𝑝,𝑞𝑞 smoothing properties 
(see Prop. 1.2) yielding that                        
∫ ‖∇𝑈𝑈(𝑡𝑡, 𝑠𝑠)∗𝜑𝜑‖3,1
𝑡𝑡
0 𝑑𝑑𝑠𝑠 ≤ �̂�𝐶‖𝜑𝜑‖3

2,1. 

Plugging this inequality to (18) we obtain 

|〈𝑧𝑧(𝑡𝑡),𝜑𝜑〉| ≤ 𝐶𝐶′‖𝑧𝑧0‖3,𝑤𝑤‖𝜑𝜑‖3
2,1+�̂�𝐶‖𝐺𝐺‖∞,32,𝑤𝑤‖𝜑𝜑‖32,1 for 

all 𝑡𝑡 > 0 and all 𝜑𝜑 ∈ 𝐿𝐿 𝜎𝜎
3
2,1

. 

This implies that 

‖𝑧𝑧(𝑡𝑡)‖3,𝑤𝑤 ≤ 𝐶𝐶′‖𝑧𝑧0‖3,𝑤𝑤 + �̂�𝐶‖𝐺𝐺‖
∞,32,𝑤𝑤

 ∀ 𝑡𝑡 ≥ 0.     (19) 

Let us show the weak-continuity of 𝑧𝑧(𝑡𝑡) with 
respect to 𝑡𝑡 ∈ (0,∞) with values in 𝐿𝐿 𝜎𝜎,𝑤𝑤

3 . 
Since,𝑈𝑈(𝑡𝑡, 𝑠𝑠) is strongly continuous, we have that 
𝑈𝑈(𝑡𝑡, 0)𝑧𝑧0 is continuous w.r.t to 𝑡𝑡. Therefore, we only 
have to prove that the integral function 
∫ 𝑈𝑈(𝑡𝑡, 𝜏𝜏)𝑡𝑡
0 ℙdiv�𝐺𝐺(𝜏𝜏)�𝑑𝑑𝜏𝜏 is continuous w.r.t to 𝑡𝑡. To 

this purpose, for 𝜑𝜑 ∈ 𝐶𝐶0,𝜎𝜎
∞ (Ω) (𝐶𝐶0,𝜎𝜎

∞ (Ω)is dense in 

𝐿𝐿 𝜎𝜎
3
2,1

). It is sufficient to show that  

�〈�∫ 𝑈𝑈(𝑡𝑡, 𝜏𝜏)𝑡𝑡
0 ℙdiv�𝐺𝐺(𝜏𝜏)�𝑑𝑑𝜏𝜏 −

∫ 𝑈𝑈(𝑡𝑡, 𝜏𝜏)𝑠𝑠
0 ℙdiv�𝐺𝐺(𝜏𝜏)�𝑑𝑑𝜏𝜏� ,𝜑𝜑〉� → 0 𝑎𝑎𝑠𝑠 𝑡𝑡 → 𝑠𝑠  

We suppose  𝑡𝑡 ≥ 𝑠𝑠 ≥ 𝜏𝜏, we estimate 

�〈∫ 𝑈𝑈(𝑡𝑡, 𝜏𝜏)ℙdiv𝐺𝐺(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0 − ∫ 𝑈𝑈(𝑠𝑠, 𝜏𝜏)ℙdiv𝐺𝐺(𝜏𝜏)𝑑𝑑𝜏𝜏,𝜑𝜑𝑠𝑠

0 〉�  

 ≤ �〈∫ 𝑈𝑈(𝑡𝑡, 𝜏𝜏)ℙdiv𝐺𝐺(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
𝑠𝑠 ,𝜑𝜑〉� +

�〈∫ 𝑈𝑈(𝑡𝑡, 𝜏𝜏)ℙdiv𝐺𝐺(𝜏𝜏)𝑑𝑑𝜏𝜏𝑠𝑠
0 − ∫ 𝑈𝑈(𝑠𝑠, 𝜏𝜏)ℙdiv𝐺𝐺(𝜏𝜏)𝑑𝑑𝜏𝜏,𝜑𝜑𝑠𝑠

0 〉�  

= �〈∫ 𝑈𝑈(𝑡𝑡, 𝜏𝜏)ℙdiv𝐺𝐺(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
𝑠𝑠 ,𝜑𝜑〉� +  

�〈� (𝑈𝑈(𝑡𝑡, 𝑠𝑠) − 𝐼𝐼)𝑈𝑈(𝑠𝑠, 𝜏𝜏)ℙdiv𝐺𝐺(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑠𝑠

0
,𝜑𝜑〉� = 𝐼𝐼1 + 𝐼𝐼2 

(20) 

The first integral can be estimated as  

𝐼𝐼1 ≤ ∫ |〈𝐺𝐺(𝜏𝜏),∇𝑈𝑈(𝑡𝑡, 𝜏𝜏)∗𝜑𝜑〉|𝑑𝑑𝜏𝜏𝑡𝑡
𝑠𝑠   

≤ ∫ ‖𝐺𝐺‖3
2,𝑤𝑤‖∇𝑈𝑈(𝑡𝑡, 𝜏𝜏)∗𝜑𝜑‖3,1𝑑𝑑𝜏𝜏

𝑡𝑡
𝑠𝑠   

≤ ‖𝐺𝐺‖∞,32,𝑤𝑤 ∫ ‖∇𝑈𝑈(𝑡𝑡, 𝜏𝜏)∗𝜑𝜑‖3,1𝑑𝑑𝜏𝜏
𝑡𝑡
𝑠𝑠   

≤ 2𝐶𝐶‖𝐺𝐺‖∞,32,𝑤𝑤(𝑡𝑡 − 𝑠𝑠)
1
2‖𝜑𝜑‖3,1 → 0 as 𝑡𝑡 → 𝑠𝑠. 

Similarly, the second integral 𝐼𝐼2 can be estimated by  

𝐼𝐼2 ≤ � |〈𝐺𝐺(𝜏𝜏),∇𝑈𝑈(𝑠𝑠, 𝜏𝜏)∗(𝑈𝑈(𝑡𝑡, 𝑠𝑠)∗𝜑𝜑 − 𝜑𝜑)〉|𝑑𝑑𝜏𝜏
𝑠𝑠

0
 

� ‖𝐺𝐺‖3
2,𝑤𝑤
‖∇𝑈𝑈(𝑡𝑡, 𝜏𝜏)∗(𝑈𝑈(𝑡𝑡, 𝑠𝑠)∗𝜑𝜑 − 𝜑𝜑)‖3,1𝑑𝑑𝜏𝜏

𝑠𝑠

0
 

≤ ‖𝐺𝐺‖
∞,32,𝑤𝑤

� ‖∇𝑈𝑈(𝑡𝑡, 𝜏𝜏)∗(𝑈𝑈(𝑡𝑡, 𝑠𝑠)∗𝜑𝜑 − 𝜑𝜑)‖3,1𝑑𝑑𝜏𝜏
𝑠𝑠

0
 

≤ 𝐶𝐶‖𝐺𝐺‖∞,32,𝑤𝑤‖𝑈𝑈(𝑡𝑡, 𝑠𝑠)∗𝜑𝜑 − 𝜑𝜑‖3
2,1 → 0 as 𝑡𝑡 → 𝑠𝑠. 
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We can discuss the other case 𝑠𝑠 > 𝑡𝑡 > 𝜏𝜏 similarly  

Therefore, the function 𝑧𝑧(𝑡𝑡) is continuous w.r.t. t and 
we obtain that that  𝑧𝑧 ∈ 𝐶𝐶𝑏𝑏�ℝ+, 𝐿𝐿 𝜎𝜎,𝑤𝑤

3 (Ω)3×3�.  

2.2. The Nonlinear Problem 

In this subsection, we investigate boundedness 
mild solutions to Oseen-Navier-Stokes equations (13). 
To do this, similarly to the case of linear equation, we 
define the mild solution to (13) as a function 𝑧𝑧(𝑡𝑡) 
fulfilling the integral equation  

𝑧𝑧(𝑡𝑡) = 𝑈𝑈(𝑡𝑡, 0)𝑧𝑧(0) + ∫ 𝑈𝑈(𝑡𝑡, 𝜏𝜏)𝑡𝑡
0 ℙdiv(𝐺𝐺 − 𝑧𝑧⨂𝑧𝑧 −

𝑧𝑧⨂𝑏𝑏 − 𝑏𝑏⨂𝑧𝑧 − 𝑏𝑏⨂𝑏𝑏)𝑑𝑑𝜏𝜏.                                            (21)  

The next theorem contains our second main result 
on the boundedness of mild solutions to 
nonautonomous Oseen-Navier-Stokes flows.  

Theorem 2.3.  

Under the same conditions as in theorem 2.2. 
Then, if 𝑚𝑚, ‖𝑧𝑧0‖3,𝑤𝑤 , ‖𝐹𝐹‖∞,32,𝑤𝑤and 𝜌𝜌 are small enough, 

the problem (13) has a unique mild solution �̂�𝑧 in the 
ball 

 𝐵𝐵𝜌𝜌 ≔ {𝑣𝑣 ∈ 𝐶𝐶𝑏𝑏 �ℝ+, 𝐿𝐿 𝜎𝜎,𝑤𝑤
3 (Ω)� : ‖𝑣𝑣‖∞,3,𝑤𝑤 ≤ 𝜌𝜌}. 

Proof. We will use the fixed-point arguments. we 
define the transformation Φ  as follows:  For 𝑣𝑣 ∈ 𝐵𝐵𝜌𝜌 
we set 𝛷𝛷(𝑣𝑣) = 𝑧𝑧 where 𝑧𝑧 ∈ 𝐶𝐶𝑏𝑏 �ℝ+, 𝐿𝐿 𝜎𝜎,𝑤𝑤

3 (Ω)� is 
given by  

𝑧𝑧(𝑡𝑡) = 𝑈𝑈(𝑡𝑡, 0)𝑧𝑧(0) + ∫ 𝑈𝑈(𝑡𝑡, 𝜏𝜏)𝑡𝑡
0 ℙdiv(𝐺𝐺 − 𝑣𝑣⨂𝑣𝑣 −

𝑣𝑣⨂𝑏𝑏 − 𝑏𝑏⨂𝑣𝑣 − 𝑏𝑏⨂𝑏𝑏)𝑑𝑑𝜏𝜏.  

Next, applying (17) for 𝐺𝐺 − 𝑣𝑣⨂𝑣𝑣 − 𝑣𝑣⨂𝑏𝑏 −
𝑏𝑏⨂𝑣𝑣 − 𝑏𝑏⨂𝑏𝑏 instead of 𝐺𝐺 we obtain 

‖𝑧𝑧‖∞,3,𝑤𝑤 ≤ 𝐶𝐶′‖𝑧𝑧0‖3,𝑤𝑤 + �̂�𝐶‖𝐺𝐺 − 𝑣𝑣⨂𝑣𝑣 − 𝑣𝑣⨂𝑏𝑏 −
𝑏𝑏⨂𝑣𝑣 − 𝑏𝑏⨂𝑏𝑏‖∞,32,𝑤𝑤  

≤ 𝐶𝐶′‖𝑧𝑧0‖3,𝑤𝑤 + �̂�𝐶 �‖𝐺𝐺‖∞,32,𝑤𝑤 + ‖𝑣𝑣⨂𝑣𝑣‖∞,32,𝑤𝑤 +

‖𝑣𝑣⨂𝑏𝑏‖∞,32,𝑤𝑤 + ‖𝑏𝑏⨂𝑣𝑣‖∞,32,𝑤𝑤 + ‖𝑏𝑏⨂𝑏𝑏‖∞,32,𝑤𝑤�  

≤ 𝐶𝐶′‖𝑧𝑧0‖3,𝑤𝑤 + �̂�𝐶 �‖𝐹𝐹‖∞,32,𝑤𝑤 + 𝐶𝐶𝑚𝑚 + 𝐶𝐶′𝑚𝑚2 +

𝐶𝐶‖𝑣𝑣‖2∞,32,𝑤𝑤 + 2𝐶𝐶‖𝑣𝑣‖∞,32,𝑤𝑤‖𝑏𝑏‖∞,32,𝑤𝑤 + 𝐶𝐶‖𝑏𝑏‖2∞,32,𝑤𝑤�  

≤ 𝐶𝐶′‖𝑧𝑧0‖3,𝑤𝑤 + �̂�𝐶 �‖𝐹𝐹‖∞,32,𝑤𝑤 + 𝐶𝐶𝑚𝑚 + 𝐶𝐶′𝑚𝑚2 + 𝐶𝐶𝜌𝜌2 +

2𝐶𝐶𝑚𝑚𝜌𝜌 + 𝐶𝐶𝜌𝜌2�.                                                             (22)   

Thus, for sufficiently small 𝑚𝑚, ‖𝑧𝑧0‖3,𝑤𝑤 
, ‖𝐹𝐹‖∞,32,𝑤𝑤and 𝜌𝜌,  the transformation 𝛷𝛷 acts from 𝐵𝐵𝜌𝜌 

into itself. Moreover, the map 𝛷𝛷 can be expressed as  

𝛷𝛷(𝑣𝑣)(𝑡𝑡) = 𝑈𝑈(𝑡𝑡, 0)𝑧𝑧(0) + ∫ 𝑈𝑈(𝑡𝑡, 𝜏𝜏)𝑡𝑡
0 ℙdiv(𝐺𝐺 −

𝑣𝑣⨂𝑣𝑣 − 𝑣𝑣⨂𝑏𝑏 − 𝑏𝑏⨂𝑣𝑣 − 𝑏𝑏⨂𝑏𝑏)𝑑𝑑𝜏𝜏.                             (23)  

Therefore, for 𝑣𝑣1, 𝑣𝑣2 ∈ 𝐵𝐵𝜌𝜌 we obtain that the 
difference 𝛷𝛷(𝑣𝑣1) −𝛷𝛷(𝑣𝑣2) 

�𝛷𝛷(𝑣𝑣1) − 𝛷𝛷(𝑣𝑣2)�(𝑡𝑡) = ∫ 𝑈𝑈(𝑡𝑡, 𝜏𝜏)𝑡𝑡
0 ℙdiv(−𝑣𝑣1⨂𝑣𝑣1 +

𝑣𝑣2⨂𝑣𝑣2 − 𝑣𝑣1⨂𝑏𝑏 − 𝑏𝑏⨂𝑣𝑣1 + 𝑣𝑣2⨂𝑏𝑏 + 𝑏𝑏⨂𝑣𝑣2)𝑑𝑑𝜏𝜏. 

Applying again (22) we arrive at  

‖𝛷𝛷(𝑣𝑣1) − 𝛷𝛷(𝑣𝑣2)‖∞,3,𝑤𝑤 ≤ �̂�𝐶‖−𝑣𝑣1⨂𝑣𝑣1 + 𝑣𝑣2⨂𝑣𝑣2 −
𝑣𝑣1⨂𝑏𝑏 − 𝑏𝑏⨂𝑣𝑣1 + 𝑣𝑣2⨂𝑏𝑏 + 𝑏𝑏⨂𝑣𝑣2‖∞,32,𝑤𝑤 ≤ �̂�𝐶‖−(𝑣𝑣1 −

𝑣𝑣2)⨂𝑣𝑣1 − 𝑣𝑣2⨂(𝑣𝑣1 − 𝑣𝑣2) − (𝑣𝑣1 − 𝑣𝑣2)⨂𝑏𝑏 −
𝑏𝑏⨂(𝑣𝑣1 − 𝑣𝑣2)‖∞,32,𝑤𝑤 ≤ �̂�𝐶(2𝐶𝐶𝜌𝜌 + 2𝐶𝐶𝑚𝑚)‖𝑣𝑣1 −

𝑣𝑣2‖∞,3,𝑤𝑤.                                         (24) 

Hence, if 𝑚𝑚 and 𝜌𝜌 are sufficiently small the map 
𝛷𝛷 is a contraction. Then, there exists a unique fixed 
poin �̂�𝑧 of 𝛷𝛷. By definition of 𝛷𝛷, the function  �̂�𝑧 is the 
unique mild solution to (13) and the proof is complete. 

3. Stability Solutions 

In this section, we consider stability mild 
solutions to Oseen-Navier-Stokes equations (13). 

We then show the polynomial stability of the 
bounded solutions to (13) in the following theorem. 

Theorem 3.1.   

Under the same conditions as  
in theorem 2.2. Then, the small  solution �̂�𝑧 of (13)  
is  stable  in  the  sense  that  for  any  other  
solution 𝑢𝑢 ∈ 𝐶𝐶𝑏𝑏 �ℝ+, 𝐿𝐿 𝜎𝜎,𝑤𝑤

3 (Ω)� of (13) such that  
‖𝑢𝑢(0) − �̂�𝑧(0)‖3,𝑤𝑤,  is  small  enough, we have 

         ‖𝑢𝑢(𝑡𝑡) − �̂�𝑧(𝑡𝑡)‖𝑟𝑟,𝑤𝑤 ≤ 𝐶𝐶

𝑡𝑡�
1
2−

3
2𝑟𝑟�

 for all 𝑡𝑡 > 0       (25) 

for 𝑟𝑟 being any fixed real number in (3,∞). 

Proof. Putting 𝑣𝑣 = 𝑢𝑢 − �̂�𝑧 we obtain that 𝑣𝑣 
satisfies the equation 

𝑣𝑣(𝑡𝑡) = 𝑈𝑈(𝑡𝑡, 0)(𝑢𝑢(0) − �̂�𝑧(0))

+ � 𝑈𝑈(𝑡𝑡, 𝜏𝜏)
𝑡𝑡

0
ℙdiv�𝐻𝐻(𝑣𝑣)�𝑑𝑑𝜏𝜏     (26) 

where  

𝐻𝐻(𝑣𝑣) = −𝑣𝑣⨂(𝑣𝑣 + �̂�𝑧) − �̂�𝑧⨂𝑣𝑣 − 𝑏𝑏⨂𝑣𝑣 − 𝑣𝑣⨂𝑏𝑏.     (27) 

Fix any 𝑟𝑟 > 3, set  

𝕄𝕄 = � 𝑣𝑣 ∈ 𝐶𝐶𝑏𝑏 �ℝ+, 𝐿𝐿 𝜎𝜎,𝑤𝑤
3 (Ω)�: sup

𝑡𝑡>0
𝑡𝑡�
1
2−

3
2𝑟𝑟� ‖𝑣𝑣(𝑡𝑡)‖𝑟𝑟,𝑤𝑤

< ∞�                                              (28) 

and consider the norm  

‖𝑣𝑣‖𝕄𝕄 = ‖𝑣𝑣‖∞,3,𝑤𝑤 + sup
𝑡𝑡>0

𝑡𝑡�
1
2−

3
2𝑟𝑟� ‖𝑣𝑣(𝑡𝑡)‖𝑟𝑟,𝑤𝑤 .          (29)  

We next clarify that for sufficiently small 
𝑚𝑚, ‖𝑢𝑢(0) − �̂�𝑧(0)‖3,𝑤𝑤 and ‖�̂�𝑧‖∞,3,𝑤𝑤, Eq (13) has only 
one solution in a certain ball of 𝕄𝕄 centered at 0. 



  
JST: Smart Systems and Devices 

Volume 32, Issue 3, September 2022, 077-084  

82 

Indeed, for 𝑣𝑣 ∈ 𝕄𝕄 we consider the mapping 𝛷𝛷  
defined formally by 

𝛷𝛷(𝑣𝑣)(𝑡𝑡): = 𝑈𝑈(𝑡𝑡, 0)(𝑢𝑢(0) − �̂�𝑧(0))

+ � 𝑈𝑈(𝑡𝑡, 𝜏𝜏)
𝑡𝑡

0
ℙdiv�𝐻𝐻(𝑣𝑣)�𝑑𝑑𝜏𝜏     (30) 

Denote by ℬ𝜌𝜌 ≔ {𝑤𝑤 ∈ 𝕄𝕄: ‖𝑤𝑤‖𝕄𝕄 ≤ 𝜌𝜌 }. We then 
prove that if 𝑚𝑚, ‖𝑢𝑢(0) − �̂�𝑧(0)‖3,𝑤𝑤 and ‖�̂�𝑧‖∞,3,𝑤𝑤 are 
small enough, the transformation 𝛷𝛷 acts from ℬ𝜌𝜌 to 
itself and is a contraction. To this purpose, for 𝑣𝑣 ∈ 𝕄𝕄 
by a similar way as in the proof of theorem 2.3 we 
obtain 𝛷𝛷(𝑣𝑣) ∈ 𝐶𝐶𝑏𝑏 �ℝ+, 𝐿𝐿 𝜎𝜎,𝑤𝑤

3 (Ω)�. Next, we have  

𝑡𝑡�
1
2−

3
2𝑟𝑟�𝛷𝛷(𝑣𝑣)(𝑡𝑡) ≔ 𝑡𝑡�

1
2−

3
2𝑟𝑟�𝑈𝑈(𝑡𝑡, 0)�𝑢𝑢(0) − �̂�𝑧(0)�  

         + 𝑡𝑡�
1
2−

3
2𝑟𝑟� � 𝑈𝑈(𝑡𝑡, 𝜏𝜏)

𝑡𝑡

0
ℙdiv�𝐻𝐻(𝑣𝑣)�𝑑𝑑𝜏𝜏 

By 𝐿𝐿𝑟𝑟,∞ − 𝐿𝐿3,∞ estimates for evolution operator 
𝑈𝑈(𝑡𝑡, 0) (see (6)) we derive 

�𝑡𝑡�
1
2−

3
2𝑟𝑟�𝑈𝑈(𝑡𝑡, 0)�𝑢𝑢(0) − �̂�𝑧(0)��

𝑟𝑟,𝑤𝑤
≤ 𝐶𝐶‖𝑢𝑢(0) − �̂�𝑧(0)‖3,𝑤𝑤 . 

𝑈𝑈(𝑡𝑡, 𝑠𝑠) is bounded family   

�𝑈𝑈(𝑡𝑡, 0)�𝑢𝑢(0) − �̂�𝑧(0)��
3,𝑤𝑤

≤ 𝐶𝐶‖𝑢𝑢(0) − �̂�𝑧(0)‖3,𝑤𝑤 

Thus, 

�𝑈𝑈(𝑡𝑡, 0)�𝑢𝑢(0) − �̂�𝑧(0)��
∞,3,𝑤𝑤

  

≤ 𝐶𝐶‖𝑢𝑢(0) − �̂�𝑧(0)‖3,𝑤𝑤. So, we have 

�𝑈𝑈(𝑡𝑡, 0)�𝑢𝑢(0) − �̂�𝑧(0)��
𝕄𝕄

  

= �𝑈𝑈(𝑡𝑡, 0)�𝑢𝑢(0) − �̂�𝑧(0)��
∞,3,𝑤𝑤

+

sup𝑡𝑡�
1
2−

3
2𝑟𝑟�

𝑡𝑡>0
�𝑈𝑈(𝑡𝑡, 0)�𝑢𝑢(0) − �̂�𝑧(0)��

𝑟𝑟,𝑤𝑤
  

≤ 𝐶𝐶‖𝑢𝑢(0) − �̂�𝑧(0)‖3,𝑤𝑤                                                (31)  

We consider 

∫ 𝑈𝑈(𝑡𝑡, 𝜏𝜏)𝑡𝑡
0 ℙdiv�𝐻𝐻(𝑣𝑣)�𝑑𝑑𝜏𝜏 = ∫ 𝑈𝑈(𝑡𝑡, 𝑡𝑡 −𝑡𝑡

0
𝜉𝜉)ℙdiv(𝐻𝐻(𝑣𝑣)(𝑡𝑡 − 𝜉𝜉))𝑑𝑑𝜉𝜉, 𝑡𝑡 > 0, and estimate this 
integral. To do this, for any test function 𝜑𝜑 ∈ 𝐶𝐶0,𝜎𝜎

∞ (Ω), 
we have 

�〈∫ 𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)𝑡𝑡
0 ℙdiv�𝐻𝐻(𝑣𝑣)(𝑡𝑡 − 𝜉𝜉)�𝑑𝑑𝜉𝜉,𝜑𝜑〉�  

= �∫ 〈−𝐻𝐻(𝑣𝑣)(𝑡𝑡 − 𝜉𝜉),∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑〉𝑑𝑑𝜉𝜉𝑡𝑡
0 �  

≤ ∫ |〈−𝐻𝐻(𝑣𝑣)(𝑡𝑡 − 𝜉𝜉),∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑〉|𝑑𝑑𝜉𝜉𝑡𝑡
0   

=∫ |〈−𝐻𝐻(𝑣𝑣)(𝑡𝑡 − 𝜉𝜉),∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑〉|𝑑𝑑𝜉𝜉
𝑡𝑡
2
0  

+� |〈−𝐻𝐻(𝑣𝑣)(𝑡𝑡 − 𝜉𝜉),∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑〉|𝑑𝑑𝜉𝜉
𝑡𝑡

𝑡𝑡/2
          (32) 

Now, consider the two integrals on the last 
estimate of (32).  

 

Applying (4) we have  

‖𝑣𝑣⨂(𝑣𝑣 + �̂�𝑧)‖ 3𝑟𝑟
3+𝑟𝑟,𝑤𝑤 ≤ 𝐶𝐶‖𝑣𝑣‖𝑟𝑟,𝑤𝑤‖𝑣𝑣 + �̂�𝑧‖3,𝑤𝑤        

                                  ≤ 𝐶𝐶‖𝑣𝑣‖𝑟𝑟,𝑤𝑤�‖𝑣𝑣‖3,𝑤𝑤 + ‖�̂�𝑧‖3,𝑤𝑤� ,  

‖�̂�𝑧⨂𝑣𝑣‖ 3𝑟𝑟
3+𝑟𝑟,𝑤𝑤 ≤ 𝐶𝐶‖𝑣𝑣‖𝑟𝑟,𝑤𝑤‖�̂�𝑧‖3,𝑤𝑤 ,       

 ‖𝑣𝑣⨂𝑏𝑏‖ 3𝑟𝑟
3+𝑟𝑟,𝑤𝑤 ≤ 𝐶𝐶‖𝑣𝑣‖𝑟𝑟,𝑤𝑤‖𝑏𝑏‖3,𝑤𝑤 ≤ 𝐶𝐶𝑚𝑚‖𝑣𝑣‖𝑟𝑟,𝑤𝑤,           

‖𝑏𝑏⨂𝑣𝑣‖ 3𝑟𝑟
3+𝑟𝑟,𝑤𝑤 ≤ 𝐶𝐶‖𝑣𝑣‖𝑟𝑟,𝑤𝑤‖𝑏𝑏‖3,𝑤𝑤 ≤ 𝐶𝐶𝑚𝑚‖𝑣𝑣‖𝑟𝑟,𝑤𝑤 .  

Therefore, 

‖𝐻𝐻(𝑣𝑣)‖ 3𝑟𝑟
3+𝑟𝑟,𝑤𝑤

≤ 𝐶𝐶�‖𝑣𝑣‖3,𝑤𝑤 + ‖�̂�𝑧‖3,𝑤𝑤

+ 2𝑚𝑚�‖𝑣𝑣‖𝑟𝑟,𝑤𝑤 .                              (33) 

Then the first integral in (32) can be estimated as 

∫ |〈−𝐻𝐻(𝑣𝑣)(𝑡𝑡 − 𝜉𝜉),∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑〉|𝑑𝑑𝜉𝜉
𝑡𝑡
2
0 ≤  

∫ ‖𝐻𝐻(𝑣𝑣)(𝑡𝑡 − 𝜉𝜉)‖ 3𝑟𝑟
3+𝑟𝑟,𝑤𝑤‖∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑(𝑡𝑡)‖ 3𝑟𝑟

2𝑟𝑟−3,1𝑑𝑑𝜉𝜉
𝑡𝑡
2
0   

≤ ∫ 𝐶𝐶�‖𝑣𝑣(𝑡𝑡 − 𝜉𝜉)‖3,𝑤𝑤 + ‖�̂�𝑧(𝑡𝑡 − 𝜉𝜉)‖3,𝑤𝑤 +
𝑡𝑡
2
0

2𝑚𝑚�‖𝑣𝑣(𝑡𝑡 − 𝜉𝜉)‖𝑟𝑟,𝑤𝑤 . ‖∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑(𝑡𝑡)‖ 3𝑟𝑟
2𝑟𝑟−3,1𝑑𝑑𝜉𝜉  

≤ 𝐶𝐶�‖𝑣𝑣‖∞,3,𝑤𝑤 + ‖�̂�𝑧‖∞,3,𝑤𝑤 + 2𝑚𝑚�∫ (𝑡𝑡 − 𝜉𝜉)−
1
2+

3
2𝑟𝑟(𝑡𝑡 −

𝑡𝑡
2
0

𝜉𝜉)
1
2−

3
2𝑟𝑟‖𝑣𝑣(𝑡𝑡 − 𝜉𝜉)‖𝑟𝑟,𝑤𝑤‖∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑(𝑡𝑡)‖ 3𝑟𝑟

2𝑟𝑟−3,1𝑑𝑑𝜉𝜉  

≤ 𝐶𝐶�‖𝑣𝑣‖𝕄𝕄 + ‖�̂�𝑧‖∞,3,𝑤𝑤 + 2𝑚𝑚�‖𝑣𝑣‖𝕄𝕄 ∫ (𝑡𝑡 −
𝑡𝑡
2
0

𝜉𝜉)−
1
2+

3
2𝑟𝑟‖∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑(𝑡𝑡)‖ 3𝑟𝑟

2𝑟𝑟−3,1𝑑𝑑𝜉𝜉  

 ≤ 𝐶𝐶 �𝑡𝑡
2
�
−12+

3
2𝑟𝑟 �‖𝑣𝑣‖𝕄𝕄 + ‖�̂�𝑧‖∞,3,𝑤𝑤 +

2𝑚𝑚�‖𝑣𝑣‖𝕄𝕄 ∫ ‖∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑(𝑡𝑡)‖ 3𝑟𝑟
2𝑟𝑟−3,1𝑑𝑑𝜉𝜉

𝑡𝑡
2
0 . 

We use estimate (9) to obtain  

∫ ‖∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑(𝑡𝑡)‖ 3𝑟𝑟
2𝑟𝑟−3,1𝑑𝑑𝜉𝜉

𝑡𝑡
2
0 ≤ 𝐶𝐶‖𝜑𝜑(𝑡𝑡)‖ 𝑟𝑟

𝑟𝑟−1,1.,  

Thus, 

∫ |〈−𝐻𝐻(𝑣𝑣)(𝑡𝑡 − 𝜉𝜉),∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑〉|𝑑𝑑𝜉𝜉
𝑡𝑡
2
0   

≤ 𝐶𝐶 �
𝑡𝑡
2
�
−12+

3
2𝑟𝑟
�‖𝑣𝑣‖𝕄𝕄 + ‖�̂�𝑧‖∞,3,𝑤𝑤

+ 2𝑚𝑚�‖𝑣𝑣‖𝕄𝕄‖𝜑𝜑(𝑡𝑡)‖ 𝑟𝑟
𝑟𝑟−1,1                                           (34) 

Similarly (33) we have  

‖𝐻𝐻(𝑣𝑣)(𝑡𝑡 − 𝜉𝜉)‖3
2,𝑤𝑤 ≤ 𝐶𝐶�‖𝑣𝑣(𝑡𝑡 − 𝜉𝜉)‖3,𝑤𝑤 + ‖�̂�𝑧(𝑡𝑡 −

𝜉𝜉)‖3,𝑤𝑤 + 2𝑚𝑚�‖𝑣𝑣(𝑡𝑡 − 𝜉𝜉)‖3,𝑤𝑤                                      (35)  
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Then the second integral in (32) can be calculated 

as 

∫ |〈−𝐻𝐻(𝑣𝑣)(𝑡𝑡 − 𝜉𝜉),∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑〉|𝑑𝑑𝜉𝜉𝑡𝑡
𝑡𝑡/2 ≤

∫ ‖𝐻𝐻(𝑣𝑣)(𝑡𝑡 − 𝜉𝜉)‖3
2,𝑤𝑤‖∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑(𝑡𝑡)‖3,1𝑑𝑑𝜉𝜉

𝑡𝑡
𝑡𝑡
2

  

≤ 𝐶𝐶 ∫ �‖𝑣𝑣(𝑡𝑡 − 𝜉𝜉)‖3,𝑤𝑤 + ‖�̂�𝑧(𝑡𝑡 − 𝜉𝜉)‖3,𝑤𝑤 +𝑡𝑡
𝑡𝑡
2

2𝑚𝑚�‖𝑣𝑣(𝑡𝑡 − 𝜉𝜉)‖3,𝑤𝑤‖∇𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)∗𝜑𝜑(𝑡𝑡)‖3,1𝑑𝑑𝜉𝜉  

≤ 𝐶𝐶�‖𝑣𝑣‖𝕄𝕄 + ‖�̂�𝑧‖∞,3,𝑤𝑤 +

2𝑚𝑚�‖𝑣𝑣‖𝕄𝕄 ∫ 𝜉𝜉−
3
2+

3
2𝑟𝑟

𝑡𝑡
𝑡𝑡
2

‖𝜑𝜑(𝑡𝑡)‖ 𝑟𝑟
𝑟𝑟−1,1𝑑𝑑𝜉𝜉  

≤ 𝐶𝐶(𝑡𝑡)−
1
2+

3
2𝑟𝑟�‖𝑣𝑣‖𝕄𝕄 + ‖�̂�𝑧‖∞,3,𝑤𝑤

+ 2𝑚𝑚�‖𝑣𝑣‖𝕄𝕄‖𝜑𝜑‖ 𝑟𝑟
𝑟𝑟−1,1.               (36) 

Lastly, (32), (33), and (34) altogether yield 

�〈∫ 𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)𝑡𝑡
0 ℙdiv�𝐻𝐻(𝑣𝑣)(𝑡𝑡 − 𝜉𝜉)�𝑑𝑑𝜉𝜉,𝜑𝜑〉� ≤

�̃�𝐶(𝑡𝑡)−
1
2+

3
2𝑟𝑟�‖𝑣𝑣‖𝕄𝕄 + ‖�̂�𝑧‖∞,3,𝑤𝑤 + 2𝑚𝑚�‖𝑣𝑣‖𝕄𝕄‖𝜑𝜑‖ 𝑟𝑟

𝑟𝑟−1,1.  

             (37) 

For all 𝜑𝜑 ∈ 𝐶𝐶0,𝜎𝜎
∞ (Ω). Therefore, 

(𝑡𝑡)
1
2−

3
2𝑟𝑟 �� 𝑈𝑈(𝑡𝑡, 𝑡𝑡 − 𝜉𝜉)

𝑡𝑡

0
ℙdiv�𝐻𝐻(𝑣𝑣)(𝑡𝑡 − 𝜉𝜉)�𝑑𝑑𝜉𝜉�

𝑟𝑟,𝑤𝑤
 

≤ �̃�𝐶�‖𝑣𝑣‖𝕄𝕄 + ‖�̂�𝑧‖∞,3,𝑤𝑤 + 2𝑚𝑚�‖𝑣𝑣‖𝕄𝕄                      (38) 

For all 𝑡𝑡 > 0 yielding that  

‖𝛷𝛷(𝑣𝑣)‖𝕄𝕄 = �𝑈𝑈(𝑡𝑡, 0)�𝑢𝑢(0) − �̂�𝑧(0)�

+ � 𝑈𝑈(𝑡𝑡, 𝜏𝜏)
𝑡𝑡

0
ℙdiv�𝐻𝐻(𝑣𝑣)�𝑑𝑑𝜏𝜏�

𝕄𝕄
 

≤ �𝑈𝑈(𝑡𝑡, 0)�𝑢𝑢(0) − �̂�𝑧(0)��
𝕄𝕄

+ �� 𝑈𝑈(𝑡𝑡, 𝜏𝜏)
𝑡𝑡

0
ℙdiv�𝐻𝐻(𝑣𝑣)�𝑑𝑑𝜏𝜏�

𝕄𝕄
 

≤ 𝐶𝐶‖𝑢𝑢(0) − �̂�𝑧(0)‖3,𝑤𝑤 + �̃�𝐶�‖𝑣𝑣‖𝕄𝕄 + ‖�̂�𝑧‖∞,3,𝑤𝑤 +
2𝑚𝑚�‖𝑣𝑣‖𝕄𝕄.                                                                     (39)  

In a same way as above, we arrive at  

‖𝛷𝛷(𝑣𝑣1) − 𝛷𝛷(𝑣𝑣1)‖𝕄𝕄 ≤ 𝐶𝐶�‖𝑣𝑣1‖𝕄𝕄 + ‖𝑣𝑣2‖𝕄𝕄 +
2‖�̂�𝑧‖∞,3,𝑤𝑤 + 2𝑚𝑚�‖𝑣𝑣1 − 𝑣𝑣2‖𝕄𝕄.                                  

for 𝑣𝑣1, 𝑣𝑣2 ∈ 𝕄𝕄. 

Hence, for sufficiently small ‖𝑢𝑢(0) − �̂�𝑧(0)‖3,𝑤𝑤 ,  
‖�̂�𝑧‖∞,3,𝑤𝑤,𝑚𝑚 and 𝜌𝜌, the mapping 𝛷𝛷 maps from ℬ𝜌𝜌 into 
ℬ𝜌𝜌, and it is a contraction. So, 𝛷𝛷 has a unique fixed 
point. Therefore, the function 𝑣𝑣 = 𝑢𝑢 − �̂�𝑧, being the 
fixed-point of this mapping, belongs to 𝕄𝕄. Thus, we 
obtain (25), and hence the stability of �̂�𝑧 follows. 

 

 
4. Conclusion 

This paper we study Navier- Stokes flow in the 
exterior of a moving and rotating obstacle. Particular 
emphasis is placed on the fact that the motion of the 
obstacle is non-autonomous, i.e. the translational and 
angular velocities depend on time. Then a change of 
variables yields a new modified non-autonomous 
Navier-Stokes systems of Oseen type if the velocity at 
infinity is nonzero - with nontrivial perturbation terms.  

 Our techniques use known  𝐿𝐿𝑝𝑝 − 𝐿𝐿𝑞𝑞 estimates of 
the evolution family and its gradient for the linear parts 
and fixed-point arguments. We prove boundedness 
and polynomial stability of mild solutions when the 
initial data belong to 𝐿𝐿𝜎𝜎

𝑝𝑝  and are sufficiently small. 
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