

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 009-016

9

Toward the Concurrent Transportation Protocol

for High Traffic Volume in 4G/5G Networks

Nguyen Tai Hung1*, Doan Phi Hung2
1Hanoi University of Science and Technology, Ha Noi, Vietnam

2Switching Technology Research Center, Viettel High Technology Industries Corp, Ha Noi, Vietnam
*Corresponding author email: hung.nguyentai@hust.edu.vn

Abstract

The Transmission Control Protocol (TCP) was intentionally designed for the sake of service reliability but with
the cost of application performance on which TCP clients need to use multiple connections to achieve
concurrency and to reduce latency. And more importantly, it was designed mostly for the fixed networks and
to transport traffic of non-real-time applications and thus not suitable for the mobile networks with higher packet
error rate and real-time traffic. For example, TCP is a connection-oriented protocol, so it has to guarantee
delivery of information, in order to maintain that connection. The recipient has to acknowledge the data that
was sent and that creates overhead. It means that it's going to take more packets transferred, and thus higher
delay. To address this weakness of TCP, and on this paper, we proposed a new application-level protocol
that makes use of TCP as transportation, named as CoTCP (Concurrent request-response over TCP). The
new proposed protocol allows sending and receiving multiple messages concurrently on one connection. We
also evaluated and tested the performance of CoTCP in various application scenarios on the specific hardware
platform. Numerical results show that CoTCP can lead to higher concurrency and lower latency.

Keywords: 4G/5G networks, CoTCP, TCP, concurrency, latency, high performance, high traffic.

1. Introduction1

The mobile networks have gone through five
generations from the first generation of analog
technology to second generation of digital technology
to 3rd, 4th and 5th generation of using IP technology. The
transform in to IP-based network brings a lot of benefits
to both network operators and service users in terms of
multi-services, higher capacity, better (service)
experience, etc. but it also comeses at a cost of
performance degradation. That said, there are huge
efforts from both academic and industrial sectors to
bring in solutions to guarantee the carrier-grade
performance and quality for the services of mobile
users. One of the direction is to optimize the transport
protocols and mechanisms in order to meet up with the
real time traffic such as voice and video in 4th and 5th
generation mobile networks. This paper is about to
propose a new customized TCP-based protocol to
accommodate this requirement in 4G/5G networks. But
first let’s have some basic understanding of the 4th and
5th generation networks.

4G network or the Long Term Evolution (LTE)
Network called Evolved Packed System (EPS) is an
end-to-end (E2E) all IP network; EPS is divided into
two parts: radio access network (E-UTRAN) and core
network (EPC). An E2E all IP network means that all
traffic flows - from a UE all the way to a Packet Data
Network (PDN), which connects to a service entity -

ISSN: 2734-9373
https://doi.org/10.51316/jst.163.ssad.2023.33.1.2
Received: October 7, 2022; accepted: November 24, 2022

are transferred based on IP protocol within EPS. EPC
system includes Mobility Management Entity (MME),
Serving Gateway (SGW) and PDN Gateway (PGW),
more details are on [1, 2].

In EPC, MME is a logical entity responsible for
authentication, session management and mobility
management for the subscribers. It also connects E-
UTRANS (eNodeBs) to EPC using the S1AP interface,
which makes use of SCTP at the transport layer.

Fig. 1. S1: E-UTRAN-MME Interface

Requirements of the interface between MME and

EUTRAN are as follows:

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 009-016

10

- Single IP Service: MME have only one IP
service for S1-MME Interface which is used to listen
the connection from E-UTRAN.

- Number of connections: up to thousands of
connections; in Viettel networks, one MME can
manage over 17,000 SCTP connections with
EUTRAN, each of EnodeB in EUTRAN can support
3000~5000 user subscribers.

- Ensuring High Availability

- Minimizing the impact when switching
connections (crash system or support for maintenance).

After the 4G, 5G systems [3, 4] support
interworking with Intranet networks or the Internet
based also on the IP. To communicate and receive
service on an IP network, a host must have an IP
Address. In the 5G network, the host in question is the
User Equipment (UE), and the Session Management
Function (SMF) is responsible for allocating IP
Addresses to the UE [5]. This can be either a static IP
address or a dynamic IP address.

5G architecture is split into control and user plane
to better manage networking and computing resources.
The control plane (CP) includes network functions that
manage signaling, subscription management,
authentication and fees charging, and does not have
high bandwidth, low latency requirements. The SMF is
one such function and manages the establishment,
modification and release of UE connectivity sessions,
also called PDU (Protocol Data Unit) Sessions. The
user plane (UP), on the other hand, handles user traffic
which is deployed at the network edge to provide low
latency, high bandwidth services. In traditional IP
networks, the interworking with subnetworks or other
IP networks is done with IP routers. From the
perspective of the IP network interworking with the 5G
network, the UP is seen as a normal IP router [2].
Therefore, the SMF must also allocate IP chunks -
ranges of IP addresses - to the UP so that the UP may
advertise and correctly route traffic from the network to
the UE. The UE generally receives an IP Address that
falls into the IP chunk of the serving User Plane
Function (UPF).

To adhere to the cloud native architecture of the
5G Core, the SMF is made up of loosely coupled micro-
services that splits functionality between each service.
The IP Allocation service is one such micro-service that
provides the function of allocating and managing IP
Addresses for UE. A high level decomposition of the
SMF is as follows: Layer 1 - Ingresses and Egresses
services which act as gateways for other Network
Functions and manage high availability and Load
Balancing traffic between computing units; Layer 2 -
Application and Logic core, a number of stateless
software cores which handle the internal business logic
of the SMF; and Layer 3 - the Database which keeps
track of system state. The IP Allocation service resides

in the Application layer while using the Database layer
to maintain consistency

On IP networks, TCP is one of the most
commonly used protocol that is designed to send
packets across the Internet and ensures the integrity of
data sent over the network [1, 2, 6]. In order to transmit
data, TCP establishes a connection between a source
and its destination. TCP can only transfer one message
at a time per connection. A normal TCP transaction
operated like this: client establishes a connection to
server; client sends a request to server and wait for the
response; server responses to client; the connection is
closed or is reserved to be used for next transactions. A
transaction needs to wait for other transaction to be
completed before it can be started. A common strategy
is to open multiple connections to serve multiple
transactions at a time, which can help to improve
concurrency and to reduce latency, but opening too
many connections can be costly.

TCP uses a three-way handshaking to establish a
connection between the client and the server [3]. A
three-way handshaking process is expensive because it
requires three packets (SYNC, SYNC-ACK, and ACK)
to be transferred. To avoid having to open the
connection many times, a TCP connection can be made
persistent to be reused. However, additional resources
are required to maintain each persistent TCP
connection. Multiple TCP clients where each one opens
several connections to the server can cause the server
to be overloaded.

To address that weakness of TCP for the
applications in 4G/5G mobile core networks, our R&D
team has come up with a proposition of a new
application protocol names as CoTCP. The CoTCP is
designed to solve the concurrency problem of TCP and
on our design, a CoTCP transaction is operated in
asynchronous mode so that multiple ones can be
executed concurrently over the same TCP connection
thus makes CoTCP able to meet the requirement of
high number of transactions per second (TPS) and low
latency system while ensuring low number of (TCP)
connections.

The rest of the paper is organized as follows. The
investigation result of similar works will be given on
Section 2. Section 3 will present the details of our new
proposed application protocol, named as CoTCP.
Experimental setup and performance evaluation will
be presented in Section 4. Finally, Section 5 concludes
our paper.

2. Related Works

On this section, we will discuss about current
researches on the problem of high-performance TCP
client-server system and how to scale up TCP for
handling of large number of concurrent clients. This
problem remains always the hot (research) topic for
decades.

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 009-016

11

The C10K problem [7] was coined in 1999 by
software engineer Dan Kegel. It is the problem of
optimizing network sockets to handle 10,000
connections at the same time. C10K problem is
currently solved by certain web servers such as Nginx
[5] which applies event-driven architecture to disorder
the execution flow of network programs and maximizes
the utilization of CPU. By the early of 2020s, the
problem is scaled up to C10M which means to
concurrently handle 10,000,000 connections. Several
solutions have been proposed to solve the C10M
problem also, such as in [9, 10, 11]. Those solutions
mainly focus on optimizing or bypassing the kernel and
therefore utilize multi-core processors and reduce
system calls and context switching overheads.
Recently, there are high-speed packet I/O frameworks
such as DPDK [12], netmap [13], and PF RING [14]
that allow user-space applications to exchange packets
with the kernel networking stack, providing
unprecedented network performance for applications.

All of the above-mentioned solutions solve the
concurrency problem of TCP by trying to increase the
number of concurrent connections but none has been
focused on utilizing a single connection to handle
multiple (application) transactions concurrently. With
the introduction of coroutine in modern programming
languages such as Golang [15], Python, and Kotlin
[17]; handling millions of transactions at the same time
becomes significantly less expensive. Coroutine is a

light-weight thread managed by user-space which
allows execution to be suspended or resumed without
context switching overheads [17]. Using coroutines,
applications can easily handle millions of concurrent
transactions but to open and to manage millions of
concurrent connections is still a challenge to this day.

3. The Proposed Solution

3.1. Proposed Architecture

As said above, on this work, we’ve proposed a
new application-level protocol to solve the concurrency
problem of TCP. The new protocol was named as
CoTCP (Concurrent request-response over TCP) and
this section will give a detailed presentation of its
design and operation.

The core part of new proposed protocol are its
transactions. CoTCP transactions are designed
asynchronously in which a request could be sent before
the response of another request is received as depicted
on Fig. 3.

In this asynchronous transaction mode, responses
could be received out of the order in which requests
were sent. To make this possible, we assigned each
request with a unique identifier (ID) and then the
corresponding response must have the same ID so that
it can be matched to its own request. As such, the
proposed structure of a CoTCP message is depicted as
on the Fig. 4.

Fig. 2. Requests and responses

are sent sequentially.

Fig. 3. Requests and responses

are sent concurrently.

Fig. 4. Message's structure.

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 009-016

12

Fig. 5. Application architecture of CoTCP Client

Fig. 6. Application architecture of CoTCP server

The message is composed of three parts:

- ID: A 4 bytes, unique integer that identifies a pair
of request and response;

- Body’s Length: A 2 bytes integer that indicates
the size of message’s body;

- Body: The actual content of the message that is
stored in binary format.

The working procedure of CoTCP on client side
is illustrated as in Fig. 5.

The procedure is a sequence of steps as follows:

- Step 1: Establish a new connection to the server;

- Step 2: Create an event loop to listen on the
established connection;

- Step 3: Generate a unique ID for each request
message;

- Step 4: Send request message and open a channel
to wait for the response;

- Step 5: When the event loop receives data, split
the data stream into messages and send them to
the corresponding channels;

- Step 6: Read the response message from the
channel and close the channel.

 From the server side, the CoTCP working
procedure is as depicted on the Fig. 6.

It also goes through steps as following:

- Step 1: Accept a new connection from the client;

- Step 2: Create an event loop to listen on the
established connection;

- Step 3: When the event loop receives data, split
the data stream into messages and handle them
concurrently;

- Step 4: Assign the request’s ID to the
corresponding response and send response to the
client.

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 009-016

13

3.2. Integration Works

In this sub-section, we will explain how to
implement CoTCP client and server applications that
can provide high concurrency and low latency with
small overheads.

We choose Golang as the programming language
to implement CoTCP because its built-in co-routines
are suitable for building high concurrency applications.

The core of the CoTCP application is its event
loop. Each TCP connection is managed by one event
loop running on an independent coroutine. The
responsibility of the event loop is to listen on the
connection for incoming messages and to handle them
concurrently. Since TCP transmits data in stream and
there is no boundary between TCP packets, it has the
problem of packets sticking together. In order to solve
this problem, each CoTCP message has a length field
that can be used to split the data stream into messages.
For CoTCP server, the event loop will scan on the input
data stream for request messages and will spawn a
coroutine to handle each one; the response message is
then sent back to the client through the same connection
of its request. For CoTCP client, the event loop will
scan on the input data stream for response messages
and will send them to the corresponding waiting
channels.

In order to match the response message to its
request, each request is assigned to a channel that waits
for response from the event loop. This mechanism
makes a transaction look like a synchronous process.
The list of waiting channels is stored in a hash table
that can be used to lookup the channel by the ID of the
response message.

4. Testing Results and Performance Evaluation

To evaluate the performance of the new protocol,
we have setup the test-bed (Fig. 7) and conducted three
performance benchmarks with different application

configurations where each one was taken for both TCP
and CoTCP.

The benchmarks were performed as following
procedure:

- Step 1: Initiate the server with predefined
configurations;

- Step 2: The server waits for incoming requests
and responses after a delay;

- Step 3: Initiate the client with predefined
configurations;

- Step 4: The client establishes a fixed number of
connections to the server;

- Step 5: The client initiates a pool of worker
coroutines to send request to the server and wait
for the response;

- Step 6: The average number of transactions per
second (TPS) and average latency is calculated
where a transaction is started from the time of
sending request until receiving response;

- Step 7: For TCP benchmark, transactions on the
same connection are executed sequentially;

- Step 8: For CoTCP benchmark, transactions on
the same connection are executed concurrently.

Each benchmark includes one server to handle
requests and one benchmark tool acting as the client:

- The server is configurable with the following
parameters: number of CPUs used, delay duration
before sending responses back to the client, and
size of the response’s body;

- The client is configurable with the following
parameters: number of CPUs used, number of
opened connections to the server, number of
worker coroutines used to send requests to the
server, and size of the request’s body.

Fig. 7. Performance benchmark's setup.

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 009-016

14

4.1. First Benchmarking

4.1.1 Testing Configurations

This benchmarking test was designed to test the
performance of CoTCP in comparison with TCP on the
scenario that the number of connections from the client
to server has increased from 1 to 500.

Table 1. Server’s configurations

Parameter Value

Type of CPU Intel(R) Xeon(R) Gold 6242R CPU
@ 3.10GHz

Number of
CPUs 8

Reponse delay 0 ms
Size of
response’s body 10 bytes

Table 2. Client's Configurations

Parameter Value

Type of CPU Intel(R) Xeon(R) Gold 6242R
CPU @ 3.10GHz

Number of
CPUs 8

Number of
worker
coroutines

500

Size of request’s
body 10 bytes

4.1.2 Testing Results

According to Fig. 8 and Fig. 9, we can conclude
that:

- For small number of connections (10 connections
and below), the performance of CoTCP is about
two times better than the performance of TCP;

- For big number of connections (100 connections
and above), the performance of CoTCP is similar
to the performance of TCP;

- The optimal number of connections for TCP is
500 which is equal to the number of worker
coroutines; Increasing the number of connections
beyond 500 will not improve the concurrency but
produce idle connections;

- The optimal number of connections for CoTCP is
about 10 connections; As the number of
connections grows, the performance of CoTCP
slightly decreases due to the overheads for
maintaining extra connections.

Fig. 8. TPS vs. Number of Connections

Fig. 9. Latency vs. Number of Connections

4.2. Second Benchmarking

4.2.1 Testing Configurations

This benchmarking test was designed with the
difference to the first benchmarking which has the
response delay increased from 0 to 10.

Table 1. Server’s configurations

Parameter Value

Type of CPU Intel(R) Xeon(R) Gold
6242R CPU @ 3.10GHz

Number of CPUs 8
Reponse delay 10 ms
Size of response’s
body 10 bytes

Table 2. Client's Configurations

Parameter Value

Type of CPU Intel(R) Xeon(R) Gold
6242R CPU @ 3.10GHz

Number of CPUs 8
Number of worker
coroutines 500

Size of request’s
body 10 bytes

1 10 100 500
TCP 35763 233881 418542 449329
CoTCP 76621 460298 449152 429857

0
200000
400000
600000

TP
S

Number of Connections

TPS vs Number of Connections

TCP CoTCP

1 10 100 500
TCP 13,97668 2,137291 1,194261 1,112286
CoTCP 6,524401 1,085896 1,112787 1,162568

0
5

10
15

La
te

nc
y

(m
s)

Number of Connections

Latency vs Number of Connections

TCP CoTCP

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 009-016

15

4.2.2 Testing Results

According to Fig. 10 and Fig. 11, we can conclude
that:

- The performance of TCP linearly increases as the
number of connections increases from 1 to 500;

- The performance of CoTCP is the same for any
number of connections.

At 500 connections, the performance of TCP is
similar to the performance of CoTCP and is close to
ideal which is 50,000 TPS and 10ms latency.

Fig. 10. TPS vs. Number of Connections

Fig. 11. Latency vs. Number of Connections

4.3 Third Benchmarking

4.3.1 Testing Configurations

This benchmarking test was designed with the
difference to the second benchmarking which has the
response delay increased from 10 to 100.
Table 1. Server’s configurations

Parameter Value

Type of CPU Intel(R) Xeon(R) Gold
6242R CPU @ 3.10GHz

Number of CPUs 8

Reponse delay 100 ms

Size of response’s body 10 bytes

Table 2. Client's Configurations

Parameter Value

Type of CPU Intel(R) Xeon(R) Gold
6242R CPU @ 3.10GHz

Number of CPUs 8
Number of worker
coroutines 500

Size of request’s body 10 bytes

4.3.2 Testing Results

Fig. 12. TPS vs. Number of Connections

Fig. 13. Latency vs. Number of Connections

According to Fig. 12 and Fig. 13, we can conclude
that even though we have inscrease the response delay
of server from 10ms to 100ms, the results are still the
same as on the second benchmarking at item 4.2. that
is:

- The performance of TCP linearly increases as the
number of connections increases from 1 to 500.

- The performance of CoTCP is the same for any
number of connections.

At 500 connections, the performance of TCP is
similar to the performance of CoTCP and is close to
ideal which are 5000 TPS and 100ms latency.

1 10 100 500
TCP 96 948 9273 46657
CoTCP 46918 46425 46413 46409

0
10000
20000
30000
40000
50000

TP
S

Number of Connections

TPS vs Number of Connections

TCP CoTCP

1 10 100 500
TCP 5134,0511 522,67383 53,858919 10,715458
CoTCP 10,654108 10,76679 10,770552 10,770902

0
1000
2000
3000
4000
5000
6000

La
te

nc
y

(m
s)

Number of Connections

Latency vs Number of Connections

TCP CoTCP

1 10 100 500
TCP 9 99 991 4955
CoTCP 4968 4955 4952 4952

0
1000
2000
3000
4000
5000
6000

TP
S

Number of Connections

TPS vs Number of Connections

TCP CoTCP

1 10 100 500
TCP 46623,212 4682,313 500,75773 100,88943
CoTCP 100,60968 100,86741 100,93161 100,93352

0
10000
20000
30000
40000
50000

La
te

nc
y

(m
s)

Number of Connections

Latency vs Number of Connections

TCP CoTCP

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 009-016

16

5. Conclusion

On this paper, we have presented our work on
proposing a new a protocol based on TCP named as
CoTCP, which allows sending and receiving multiple
messages concurrently over a single TCP connection.
Numerical results show several advancements from our
work as below:
- CoTCP allows to send requests and receive

responses asynchronously over the same
connection, therefore, it helps to improve
concurrency and reduce latency without having to
open many connections;

- In case the server can handle requests and
response to the client immediately, which rarely
happens in real conditions, the performance of
CoTCP is not better than sending requests and
receiving responses sequentially using TCP;

- In case the server needs a certain amount of time
to handle requests and response to the client, the
performance of CoTCP is much better than the
performance of TCP for small number of
connections; These become comparable as the
number of connections grows.
The performance of CoTCP is less dependent on

number of connections than the performance of TCP.
The benchmark results show significant improvements
in concurrency of CoTCP compared to TCP. However,
there is still some limitation on the proposed protocol,
for example, it does not support multiplexing
capability [18, 19] on a single connection.
Furthermore, while a large message is being sent, other
messages are blocked from being sent over the same
connection. In the future work, we will add that
multiplexing feature to the CoTCP. In principle, to
achieve multiplexing on a single connection, a CoTCP
message must be divided in multiple parts before being
sent. Parts of multiple messages will be mixed together
and will be sent over the same connection. The server
will receive messages’ parts and combine them into
complete messages.
6. Acknowledgement

This work is supported by Switching Technology
Research Center, Viettel HighTech Corp. The authors
would also like to thank AMF team and all 5G core
project members

References
[1] J. Postel (ed.), Internet protocol - DARPA internet

program protocol specification, RFC 791,
USC/Information Sciences Institute, Sep. 1981.
https://doi.org/10.17487/rfc0791

[2] J. Postel (ed.), Transmission control protocol - DARPA
internet program protocol specification, RFC 793,
USC/Information Sciences Institute, Sep. 1981.
https://doi.org/10.17487/rfc0793

[3] 3GPP, TS 23.501: System architecture for the 5G
System (5GS), version 16.6.0 Rel. 16, October 2020.

[4] 3GPP, TS 29.561: Interworking between 5G Network
and external Data Networks, version 16.4.0 Rel. 16,
August 2020.

[5] An architecture for IP address allocation with CIDR,
IETF RFC 1518, 1993.
https://doi.org/10.17487/rfc1518

[6] E. Conrad, S. Misenar, and J. Feldman, The Basics of
Hacking and Penetration Testing, 2nd ed., 2012.

[7] D. Kegel, The C10K problem, May 8, 1999 [Online].
Available:
https://web.archive.org/web/19990508164301/http://w
ww.kegel.com/c10k.html

[8] D. DeJonghe, Nginx Cookbook, 2nd ed., O'Reilly
Media, Inc., Oct. 28, 2020.

[9] R. Graham, The secret to 10 million concurrent
connections - The kernel is the problem, not the
solution, 2013 [Online]. Available:
http://highscalability.com/blog/2013/5/13/the-secret-
to-10-million-concurrent-connections-the-kernel-
i.html

[10] M. Rotaru, Scaling to 12 million concurrent
connections: how MigratoryData did it, Oct. 10, 2013
[Online]. Available:
https://mrotaru.wordpress.com/2013/10/10/scaling-to-
12-million-concurrent-connections-how-
migratorydata-did-it/

[11] R. Rotaru, How MigratoryData solved the C10M
problem: 10 million concurrent connections on a single
commodity server, May 20, 2015 [Online]. Available:
https://migratorydata.com/blog/migratorydata-solved-
the-c10m-problem/

[12] Data plane development kit, www.dpdk.org., [Online].
Avaialable: https://www.dpdk.org (accessed: Jun. 22,
2022).

[13] L. Rizzo, Netmap: a novel framework for fast packet
I/O, USENIX Annual Technical Conference, June 12-
15, 2012, Boston, USA. pp. 101-112.

[14] Pf ring zero copy [Online]. Available:
https://www.ntop.org/products/packet-
capture/pf_ring/pf_ring-zc-zero-copy (accessed: Jun.
22, 2022).

[15] A. A. A. Donovan, and B. W. Kernighan, The go
programming language, Published Oct 26, 2015 in
paperback and Nov 20 in e-book Addison-Wesley,
380pp. ISBN: 978-0134190440.

[16] K. Falls and W. Stevens, TCP/IP Illustrated, Volume 1:
The protocols, Addison-Wesley, 2011.

[17] Kotlin, Coroutine Language [Online]. Available:
https://kotlinlang.org/docs/coroutines-overview.html

[18] J. Burke, Multiplexing, Nemertes Research, Aug. 2021
[Online]. Available:
https://www.techtarget.com/searchnetworking/definiti
on/multiplexing

[19] D. Cohen, Multiplexing protocol, IEN-90,
USC/Information Sciences Institute, May 2, 1979.

http://www.dpdk.org/
https://www.dpdk.org/

	1. Introduction0F

