

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 034-042

34

Incorporating User Item Similarity
in Hybrid Neighborhood-Based Recommendation Systems

Tan Nghia Duong*, Truong Giang Do, Tuan Nghia Cao

School of Electronics and Telecommunications, Hanoi University of Science and Technology, Ha Noi, Vietnam
*Corresponding author email: nghia.duongtan@hust.edu.vn

Abstract

Recommendation systems have been developed in many domains to help users with information overload from
the large volume of online multimedia content by providing them with appropriate options. Recently developed
hybrid recommendation systems require a large amount of data to understand users’ interests and give
appropriate suggestions. However, several internet privacy issues make users skeptical about sharing their
personal information with online service providers, limiting the potential of these systems. The study in this
paper introduces various novel methods utilizing the baseline estimate to learn user interests in specific item
features from their past interactions. Subsequently, extracted user feature vectors are implemented to estimate
the user-item correlations, providing an additional fine-tuning factor for neighborhood-based collaborative
filtering systems. Comprehensive experiments show that utilizing the user-item similarity scores in the rating
prediction task can improve the accuracy of hybrid neighborhood-based systems by at least 2.11% compared
to traditional methods while minimizing the need for tracking users' digital footprints.

Keywords: Collaborative filtering, data mining, neighborhood-based, recommendation system.

1. Introduction1

The continuously accelerated growth of
communication technology and data storage in the past
decades has benefited customers with an enormous
amount of online multimedia content, creating billion-
dollar industries. Following this evolution,
recommendation systems (RSs) have been widely
developed to automatically help users to filter
redundant information and suggest only suitable
products that fit their needs. Such systems are used in a
variety of domains and have become a part of our daily
online experience [1].

RSs are commonly classified into three main
types: the content-based technique, the collaborative
filtering technique, and the hybrid technique. The
content-based approach learns to recommend items
that are similar to the ones that a user liked based on the
item features. The main weakness of this approach is
the lack of available and reliable metadata associated
with items. Meanwhile, the collaborative filtering (CF)
approach only relies on users' interaction history
which can be either explicit or implicit feedback. CF
systems can be divided into two major categories:
i) neighborhood-based models which focus on
computing the correlation between items or users using
rating information [2], and ii) matrix factorization
models which could explore the latent factors
connecting items to users in order to make accurate
recommendations [1, 3, 4]. Recently, deep learning has
also been proven as a potential approach for

ISSN: 2734-9373
https://doi.org/10.51316/jst.163.ssad.2023.33.1.5
Received: January 4, 2022; accepted: October 20, 2022

implementing CF system by learning the hidden
relationships in user interactions [5, 6]. However, it is
often the case that there is not enough transaction data
to make accurate recommendations for a new user or
item. To tackle this cold-start problem, hybrid methods
are proposed by combining auxiliary information into
CF models [7].

In the interest of the hybrid approach and its
advantages, our study attempts to improve typical
neighborhood-based RSs utilizing available content-
related knowledge. The main contributions of this work
are summarized as follows:

- Introducing new methods to represent user
preference via combining the user's interaction
data and item's content-based information, which
helps to estimate the similarity between a user and
an item;

- Integrating the user-item similarity into the
baseline estimate of neighborhood-based RSs to
provide more precise recommendations,
surpassing competitive hybrid models.

The remainder of this paper is organized as
follows. Section 2 reviews the basic knowledge of
neighborhood-based CF systems including hybrid
models. Detailed descriptions of our proposed methods
are presented in Section 3. Section 4 gives experimental
results and in-depth analysis. At last, we conclude this
study in Section 5.

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 034-042

35

2. Preliminaries

In this paper, 𝑢𝑢, 𝑣𝑣 denote users and 𝑖𝑖, 𝑗𝑗 denote
items. 𝑟𝑟𝑢𝑢𝑢𝑢 denotes the rating by user 𝑢𝑢 for item 𝑖𝑖
where high values indicate a strong preference and
all the (𝑢𝑢, 𝑖𝑖) pairs are stored in the set
𝕂𝕂 = {(𝑢𝑢, 𝑖𝑖)|𝑟𝑟𝑢𝑢𝑢𝑢 is known}. Meanwhile, 𝑅𝑅(𝑢𝑢) denotes
the set of all items rated by user 𝑢𝑢. In the rating
prediction task, the objective is to predict unknown
rating r�𝑢𝑢𝑢𝑢 where user 𝑢𝑢 has not rated item 𝑖𝑖 yet.

Popular neighborhood-based CF techniques for
the rating prediction task and an existing hybrid variant
are briefly reviewed as follows.

2.1. Neighborhood-Based Models

The neighborhood-based approach is one of the
most popular techniques in CF, which is only based on
the similarity between users or items to give
recommendations. There are two methods for
implementing neighborhood-based CF models: i) user-
oriented model which predicts a user's preference based
on similar users, and ii) item-oriented model which
finds similar items to the item a user liked and
recommends these items to her.

Of the two methods, the latter introduced in [2]
has become dominant due to its superior accuracy and
its capability of providing a rational explanation for
recommendations [1]. Therefore, our implementations
in this work adopt the item-oriented approach as the
baseline model.

The fundamental of neighborhood-based models
is similarity measure. As illustrated in Fig. 1, by
computing the similarity degree 𝑠𝑠𝑢𝑢𝑖𝑖 between all pairs of
items 𝑖𝑖 and 𝑗𝑗 using popular similarity measures such as
Cosine similarity (Cos) or Pearson Correlation
Coefficients (PCC), we can identify the set of 𝑘𝑘
neighbors 𝕊𝕊𝑘𝑘(𝑖𝑖,𝑢𝑢) which consists of 𝑘𝑘 most similar
items to 𝑖𝑖 rated by user 𝑢𝑢.

The most straightforward method of predicting
the rating of user 𝑢𝑢 for item 𝑖𝑖 is a weighted average of
the ratings of similar items as follows:

�̂�𝑟𝑢𝑢𝑢𝑢 =
� 𝑠𝑠𝑢𝑢𝑖𝑖 𝑟𝑟𝑢𝑢𝑖𝑖𝑖𝑖∈𝕊𝕊𝑘𝑘(𝑢𝑢,𝑢𝑢)

� 𝑠𝑠𝑢𝑢𝑖𝑖𝑖𝑖∈𝕊𝕊𝑘𝑘(𝑢𝑢,𝑢𝑢)

 (1)

Even though (1) can capture the user-item
interactions, much of the observed ratings are due to the
bias effects associated with either users or items,
independently of their interactions. In detail, some
items usually receive higher ratings than others, and
some users tend to give higher ratings than others. To
predict �̂�𝑟𝑢𝑢𝑢𝑢, kNNBaseline model [8] also takes the bias
effect associated with either users or items into account
by adding the baseline estimate to the weighted average
of the ratings of similar items as follows:

�̂�𝑟𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑢𝑢𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑢𝑢𝑢𝑢 +
� 𝑠𝑠𝑢𝑢𝑖𝑖(𝑟𝑟𝑢𝑢𝑖𝑖 − 𝑏𝑏𝑢𝑢𝑖𝑖)𝑖𝑖∈𝕊𝕊𝑘𝑘(𝑢𝑢,𝑢𝑢)

� 𝑠𝑠𝑢𝑢𝑖𝑖𝑖𝑖∈𝕊𝕊𝑘𝑘(𝑢𝑢,𝑢𝑢)

 (2)

where 𝑏𝑏𝑢𝑢𝑢𝑢 = μ + 𝑏𝑏𝑢𝑢 + 𝑏𝑏𝑢𝑢 denotes the baseline estimate,
μ denotes the mean of overall ratings, 𝑏𝑏𝑢𝑢 and 𝑏𝑏𝑢𝑢
correspond to the bias of user 𝑢𝑢 and item 𝑖𝑖, respectively,
which can be trained using popular optimization
algorithms such as Stochastic Gradient Descent (SGD)
or Alternating Least Squares (ALS).

Fig. 1. The simplified flow diagram of a kNNBaseline
system

2.2. Integrating Content-Based Information into
Neighborhood-Based Models

The study in [7] showed that the sparsity of the
rating matrix could yield an inaccurate similarity score
between two items that share only a few common users.
Furthermore, filtering common users who rated both
items to calculate the similarity score is a time-
consuming task due to a large number of users. To
address these problems, novel similarity measures were
proposed using item content-based information to
modify the conventional kNNBaseline model into a
hybrid system. The flow graph of an item-based hybrid
kNNBaseline system is illustrated in Fig. 2, where the
“Filtering common users that rated both items” step in
conventional kNNBaseline system (Fig. 1) is no longer
necessary.

Assume that each item 𝑖𝑖 is characterized by a
feature vector 𝒒𝒒𝑢𝑢 = �𝑞𝑞𝑢𝑢1, 𝑞𝑞𝑢𝑢2, … , 𝑞𝑞𝑢𝑢𝑖𝑖� ∈ ℝ𝑖𝑖 where 𝑓𝑓 is
the number of features, which is stored in matrix
𝑸𝑸 ∈ ℝ𝑘𝑘×𝑖𝑖. The value of each element encodes how
strong an item exhibits particular properties. The
similarity score 𝑠𝑠𝑢𝑢𝑖𝑖 between movies 𝑖𝑖 and 𝑗𝑗 is calculated
as follows [7, 9]:

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 034-042

36

𝑠𝑠𝑢𝑢𝑖𝑖Cos
content =

∑ 𝑞𝑞𝑢𝑢𝑘𝑘𝑞𝑞𝑖𝑖𝑘𝑘
𝑖𝑖
𝑘𝑘=1

�∑ 𝑞𝑞𝑢𝑢𝑘𝑘2
𝑖𝑖
𝑘𝑘=1 �∑ 𝑞𝑞𝑖𝑖𝑘𝑘2

𝑖𝑖
𝑘𝑘=1

 (3)

or

𝑠𝑠𝑢𝑢𝑖𝑖PCC
content =

∑ (𝑞𝑞𝑢𝑢𝑘𝑘 − 𝒒𝒒�𝑢𝑢)�𝑞𝑞𝑖𝑖𝑘𝑘 − 𝒒𝒒�𝑖𝑖�
𝑖𝑖
𝑘𝑘=1

�∑ (𝑞𝑞𝑢𝑢𝑘𝑘 − 𝒒𝒒�𝑢𝑢)2
𝑖𝑖
𝑘𝑘=1 �∑ �𝑞𝑞𝑖𝑖𝑘𝑘 − 𝒒𝒒�𝑖𝑖�

2𝑖𝑖
𝑘𝑘=1

(4)

where 𝒒𝒒�𝑢𝑢 and 𝒒𝒒�𝑖𝑖 are the mean of feature vectors 𝒒𝒒𝑢𝑢
and 𝒒𝒒𝑖𝑖 , respectively. Hereafter, the hybrid kNN-
Baseline model using one of these similarity measures
is referred to as kNNContent.

Fig. 2. The simplified flow diagram of a kNNContent
system.

While also sharing the same predicting method
compared to both kNNBaseline and kNNContent [7]
models, our proposed model described in Section 3.2
extends the baseline estimate formula 𝑏𝑏𝑢𝑢𝑢𝑢 in (2). The
content-based information is also not limited to item
profiles as in [7] but is enhanced with the user’s interest
estimated using several novel methods.

3. Proposed Systems

So far, neighborhood-based CF models have
successfully applied the item-item similarity exploited
via rating information and the available item features.
In contrast, the knowledge about user-user correlation
finds it difficult to be deployed in practical applications
due to its modest performance and high memory
requirement [1]. Nonetheless, the interest of a user in
an individual characteristic of each item, to our best
knowledge, lacks careful consideration. One of the
main reasons is that the user-item correlation is
commonly defined as a similarity degree between a
user's interest in individual item features and an item
feature vector, which requires a customer to provide his

personal preferences. In reality, it is impractical due to
a variety of data privacy concerns.

This study first tackles this problem by
introducing various novel methods to represent a user
preference in the form of a vector, utilizing her past
interactions with items in the system and the feature
vectors of those items. After gathering reliable
information about users, we then propose a
modification to the baseline estimate of kNNBaseline
model and its variants by integrating the user-item
similarity scores, which boosts the precision of the
conventional kNNBaseline model.

3.1. Estimating User Interests for User-Item
Similarity Measure

In RSs, there are two main sources of information
to learn user interests and give recommendations: the
interaction records of users on the system and the item
content information. User personal data, however, is
not included in public datasets for research due to the
risk of exposing user identities. Therefore, there is
rarely any data or statistic that directly specifies user
interest in each item feature. This lack of information
has limited the potential performance of RS in practice.
In this section, we present 3 different methods to
characterize a user's interest in item features based on
given ratings of the user and metadata of the items that
he rated.

The most straightforward approach to estimate a
user’s interest is via a weighted average of the feature
vectors 𝒒𝒒𝑢𝑢 of items that he rated by the normalized
ratings as follows:

𝒑𝒑𝑢𝑢norm =
∑ 𝑟𝑟𝑢𝑢𝑢𝑢norm.𝒒𝒒𝑢𝑢𝑢𝑢∈𝑅𝑅(𝑢𝑢)

|𝑅𝑅(𝑢𝑢)|
 (5)

where 𝑟𝑟𝑢𝑢𝑢𝑢norm is the rating of user 𝑢𝑢 for item 𝑖𝑖 which has
been normalized to the range of [0,1]. As a result, the
normalized feature vector 𝒑𝒑𝑢𝑢norm of user 𝑢𝑢 has the same
dimension and range of element values as an item
feature vector 𝒒𝒒𝑢𝑢. More importantly, by using (5), each
user is currently described in an explainable way:
elements with higher values indicate that the user has a
greater preference for the corresponding item attributes
and vice versa.

Although this method creates a simple shortcut to
understand user preferences, all users are treated in the
same way: all users' ratings are normalized using the
same minimum and maximum rating values of the
system while, in practice, users have a variety of
tendencies of rating an item. For example, easy-going
people often rate movies a little higher than the average,
and conversely, strict users often give lower scores than
the others. That means if two users have conflicting
views after watching a movie but accept to give a 3-star
rating for that movie, for example, then the system
described in (5) will implicitly assume they have the
same weight of opinion. This problem leads to several
researches taking the user and item biases into account,
which have a considerable impact on CF systems [4, 8].

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 034-042

37

Therefore, a modification of (5) incorporating the effect
of biases is proposed as follows:

𝒑𝒑𝑢𝑢biased =
∑ 𝑧𝑧𝑢𝑢𝑢𝑢 .𝒒𝒒𝑢𝑢𝑢𝑢∈𝑅𝑅(𝑢𝑢)

∑ |𝑧𝑧𝑢𝑢𝑢𝑢|𝑢𝑢∈𝑅𝑅(𝑢𝑢)
 (6)

where 𝑧𝑧𝑢𝑢𝑢𝑢 = 𝑟𝑟𝑢𝑢𝑢𝑢 − 𝑏𝑏𝑢𝑢𝑢𝑢 denotes the residual rating.

In more detail, (6) applies 𝑧𝑧𝑢𝑢𝑢𝑢 as weighting factors
to the corresponding item feature vectors, which helps
to eliminate the restrictions of 𝑟𝑟𝑢𝑢𝑢𝑢norm. The resulting
biased user feature vector 𝒑𝒑𝑢𝑢biased has its elements in the
value range of [−1, +1], where −1 / +1 indicates that
he hates/loves the respective item attribute, and 0 is
neutral preference. It is expected that 𝒑𝒑𝑢𝑢biased could
measure the user interest in each item attribute more
precisely than its normalized version 𝒑𝒑𝑢𝑢norm.

However, both of the above methods treat all
items equally in profiling a user’s interest. For example,
the scores of “Titanic” and “Mad Max” for
the romantic genre are 0.90 and 0.05, respectively.
Assume that Janet's normalized ratings for
these movies are �̃�𝑟Janet,Titanic = 0.7 and
�̃�𝑟Janet,Madmax = 0.72, which are almost identical. Thus,
the romantic genre score of Janet calculated by (5) is
quite low: (0.7 × 0.9 + 0.72 × 0.05)/2 = 0.333. The
fact that “Mad Max” has almost no romantic element in
the movie does not mean that Janet doesn't like
romantic movies since she also loves “Titanic”, one of
the most epic romance movies in history. Equation (6)
also encounters the same problem of taking features
that the movie does not exhibit (indicated by low
scores) into account. This might lead to severe
misunderstanding on learning the interests of users in a
variety of circumstances.

This problem can be solved by alleviating the
influence of low score features whilst primarily
focusing on features with high values. Accordingly, the
simplest method is to use the scores themselves as the
weights in parallel with normalized ratings to estimate
user feature vectors so that low score features will equal
themselves out of the final user feature vectors. The
biased feature vector of user 𝑢𝑢 weighted by the item
feature vector can be formulated as follows:

𝒑𝒑𝑢𝑢w−biased =
∑ 𝑧𝑧𝑢𝑢𝑢𝑢 .𝒒𝒒𝑢𝑢2𝑢𝑢∈𝑅𝑅(𝑢𝑢)

∑ |𝑧𝑧𝑢𝑢𝑢𝑢|.𝒒𝒒𝒊𝒊𝑢𝑢∈𝑅𝑅(𝑢𝑢)
 (7)

Specifically for the above example, the interest
score of Janet for the romantic genre calculated using
(7) is equal to 0.854, which is much more reasonable
than measuring the affection of a user for a specific
kind of genre based on items that are not relevant to that
genre.

From the user feature vector 𝒑𝒑𝑢𝑢 calculated using
one of the three above methods, the relevance between
a user and an item can be effectively evaluated using
common similarity measures such as Cos or PCC as
follows:

𝑠𝑠𝑢𝑢𝑢𝑢Cos =
∑ 𝑝𝑝𝑢𝑢𝑘𝑘𝑞𝑞𝑖𝑖𝑘𝑘
𝑖𝑖
𝑘𝑘=1

�∑ 𝑝𝑝𝑢𝑢𝑘𝑘2
𝑖𝑖
𝑘𝑘=1 �∑ 𝑞𝑞𝑖𝑖𝑘𝑘2

𝑖𝑖
𝑘𝑘=1

 (8)

𝑠𝑠𝑢𝑢𝑢𝑢PCC =
∑ (𝑝𝑝𝑢𝑢𝑘𝑘 − 𝒑𝒑�𝑢𝑢)�𝑞𝑞𝑖𝑖𝑘𝑘 − 𝒒𝒒�𝑖𝑖�
𝑖𝑖
𝑘𝑘=1

�∑ (𝑝𝑝𝑢𝑢𝑘𝑘 − 𝒑𝒑�𝑢𝑢)2𝑖𝑖
𝑘𝑘=1 �∑ �𝑞𝑞𝑖𝑖𝑘𝑘 − 𝒒𝒒�𝑖𝑖�

2𝑖𝑖
𝑘𝑘=1

(9)

In the following section, we demonstrate the
effectiveness of the newly proposed representations of
a user by integrating user-time similarity 𝑠𝑠𝑢𝑢𝑢𝑢 into
popular neighborhood-based systems, namely kNN-
Baseline model and its variants.

3.2. Integrating the User-Item Correlations into the
Baseline Estimate

In kNNBaseline, the baseline estimate 𝑏𝑏𝑢𝑢𝑢𝑢 takes
the main role of predicting the coarse ratings while the
analogy between items serves as a fine-tuning term to
improve the accuracy of the final predictions.
Subsequently, the more precise the baseline estimate is
to the target rating, the better the kNNBaseline model
gets in terms of prediction accuracy as demonstrated in
several previous studies [8, 9]. However, we realize
that a conventional baseline estimate only considers the
biases of users and items separately and ignores the
user-item correlations, which might lead to an
incomplete evaluation.

For example, an RS needs to estimate the ratings
of user James for two movies “Titanic” and “Mad
Max”. Assume the average rating denoted by 𝜇𝜇 is 3.7
stars. “Titanic” is considerably more well-received by
the general audience than an ordinary movie, so it tends
to be rated 0.5 stars above the average. Meanwhile,
James is a critical user, who usually rates 0.3 stars
lower than a moderate user. Thus, the baseline estimate
of “Titanic” rated by James would be 3.9 stars
(= 3.7 − 0.3 + 0.5). On the other hand, “Mad Max” is
also highly popular and tends to be rated 0.6 stars
higher than the mean rating; hence, the baseline
estimate of James for “Mad Max” would be 4.0 stars
(= 3.7 − 0.3 + 0.6), which is similar to the baseline
rating for the “Titanic” movie.

However, from James's past interactions with
other movies on the system, the recommendation
system estimates James's interests using one of the
methods described in Section 3.1 and discovers that a
romantic and drama movie like “Titanic” seems to be
more suitable for James, while his personal preference
is contradictory compared to an action and thriller
movie like “Mad Max”. Consequently, the above
predicted ratings of James turn out to be rather
irrational.

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 034-042

38

Fig. 1: The residual rating of several users with respect to the user-item similarity degree.

Fig. 3 illustrates the correlations between the

residual ratings and the user-item similarity scores of
some users, where 𝑠𝑠𝑢𝑢𝑢𝑢 values are calculated using PCC
similarity measure to compare the original Tag
Genome data of the movies in the MovieLens 20M
dataset and the user feature vectors 𝒑𝒑𝑢𝑢w−biased. The red
trendlines determined by linear regression show that
there is an approximately linear relationship between
the user-item correlations and the residual ratings: the
more interested a user is in a movie (i.e., the higher
user-item similarity score), the higher he tends to rate
that movie.

In order to take the analogy between a user and an
item into account, we propose a revised version of the
baseline estimate by integrating the user-item similarity
score as follows:

𝑏𝑏𝑢𝑢𝑢𝑢 = μ + 𝑏𝑏𝑢𝑢 + 𝑏𝑏𝑢𝑢 + ω × 𝑠𝑠𝑢𝑢𝑢𝑢 (10)

where 𝑠𝑠𝑢𝑢𝑢𝑢 is the similarity degree between user 𝑢𝑢 and
item 𝑖𝑖 calculated by a similarity measure such as Cos in
(8) or PCC in (9), and ω serves as the weight to adjust
the contribution of the user-item correlation term to fit
the rating information.

By introducing ω, the least squares problem of the
enhanced baseline estimate term is now updated to the
following function:

𝑏𝑏𝑢𝑢∗ , 𝑏𝑏𝑢𝑢∗,ω∗ = arg min
𝑏𝑏𝑢𝑢,𝑏𝑏𝑖𝑖,ω

� �𝑟𝑟𝑢𝑢𝑢𝑢 − (μ + 𝑏𝑏𝑢𝑢 + 𝑏𝑏𝑢𝑢 + ω𝑠𝑠𝑢𝑢𝑢𝑢)�
2

𝑢𝑢,𝑢𝑢∈𝕂𝕂

+ λ ��𝑏𝑏𝑢𝑢2
𝑢𝑢

+ �𝑏𝑏𝑢𝑢2

𝑢𝑢

+ � ω2

𝑢𝑢,𝑢𝑢∈𝕂𝕂

�

(11)

In this paper, two common optimization
techniques, namely SGD and ALS, are experimented to
solve this problem. An SGD optimizer minimizes the
sum of the squared errors in (11) using the following
update rule:

 𝑏𝑏𝑢𝑢 ← 𝑏𝑏𝑢𝑢 + α(𝑒𝑒𝑢𝑢𝑢𝑢 − λ. 𝑏𝑏𝑢𝑢)

 𝑏𝑏𝑢𝑢 ← 𝑏𝑏𝑢𝑢 + α(𝑒𝑒𝑢𝑢𝑢𝑢 − λ. 𝑏𝑏𝑢𝑢)

 𝜔𝜔 ← 𝜔𝜔 + 𝛼𝛼(𝑒𝑒𝑢𝑢𝑢𝑢 . 𝑠𝑠𝑢𝑢𝑢𝑢 − 𝜆𝜆.𝜔𝜔)

(12)

where 𝑒𝑒𝑢𝑢𝑢𝑢 = 𝑟𝑟𝑢𝑢𝑢𝑢 − r�𝑢𝑢𝑢𝑢 denotes the predicting error, α
denotes the learning rate, and λ denotes L2
regularization term.

Different from SGD, the ALS technique
decouples the calculation of one parameter from the
others [8]. Each iteration of ALS can be described as
follows. First, for each item 𝑖𝑖, the optimizer fixes the
𝑏𝑏𝑢𝑢 's and ω to solve for the 𝑏𝑏𝑢𝑢 's:

𝑏𝑏𝑢𝑢 =
∑ 𝑟𝑟𝑢𝑢𝑢𝑢 − 𝜇𝜇 − 𝑏𝑏𝑢𝑢 − 𝜔𝜔𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢|(𝑢𝑢,𝑢𝑢)∈𝕂𝕂

𝜆𝜆𝑢𝑢 + |{𝑢𝑢|(𝑢𝑢, 𝑖𝑖) ∈ 𝕂𝕂}|
 (13)

Then, for each user 𝑢𝑢, the optimizer fixes the 𝑏𝑏𝑢𝑢 's and
ω to solve for the 𝑏𝑏𝑢𝑢 's:

𝑏𝑏𝑢𝑢 =
∑ 𝑟𝑟𝑢𝑢𝑢𝑢 − 𝜇𝜇 − 𝑏𝑏𝑢𝑢 − 𝜔𝜔𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢|(𝑢𝑢,𝑢𝑢)∈𝕂𝕂

𝜆𝜆𝑢𝑢 + |{𝑖𝑖|(𝑢𝑢, 𝑖𝑖) ∈ 𝕂𝕂}|
 (14)

Finally, the optimizer fixes both the 𝑏𝑏𝑢𝑢 's and the 𝑏𝑏𝑢𝑢 's to
solve for ω:

𝜔𝜔 =
∑ 𝑠𝑠𝑢𝑢𝑢𝑢(𝑟𝑟𝑢𝑢𝑢𝑢 − 𝜇𝜇 − 𝑏𝑏𝑢𝑢 − 𝑏𝑏𝑢𝑢)𝑢𝑢,𝑢𝑢∈𝕂𝕂

𝜆𝜆𝜔𝜔 + |𝕂𝕂|
 (15)

Here, the regularization terms λi, λu, and λω are
the shrinkage and vary due to the number of ratings that
affect each parameter. Therefore, each parameter of
𝑏𝑏𝑢𝑢 's, 𝑏𝑏𝑢𝑢 's, and 𝜔𝜔 needs a distinct value of 𝜆𝜆. By applying
a learnable weighting factor 𝜔𝜔 to the user-item
similarity term, the new kNNBaseline model using the
same predicting method in (2) is capable of exploiting
auxiliary information to achieve more precise
predictions.

4. Performance Evaluation

4.1. MovieLens Dataset and Evaluation Criteria

In this work, one of the most popular datasets for
RS research named MovieLens 20M [10] is used as a
benchmark. The dataset contains 20,000,263 ratings
given by 138,493 users to 27,278 movies. Additionally,
there are 465,564 tag applications across 27,278
movies. Especially, Tag Genome data, which is
computed using a machine learning system on user-
contributed content including tags, ratings, and textual

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 034-042

39

reviews, encodes how strongly movies exhibit
particular properties represented by tags [10].

To utilize this kind of data, a cleaning process is
applied to the dataset. Specifically, the movies without
genome tags are excluded, then, only movies and users
with at least 20 ratings are kept. Table 1 summarizes
the result of the cleaning stage, where the sparsity of
the preprocessed dataset is reduced from 99.47% to
98.97%. The final preprocessed dataset is split into 2
distinct parts: 80% as the training set and the remaining
20% as the testing set.

Table 1. Summary of the original MovieLens 20M
dataset and the preprocessed one.

Dataset #Ratings #Users #Movies

Original 20,000,263 138,493 27,278

Preprocessed 19,793,342 138,185 10,239

To evaluate the performance of the proposed

models compared to related works, this paper uses three
commonly used indicators in the rating prediction task,
including RMSE (Root Mean Squared Error) and MAE
(Mean Absolute Error) for accuracy evaluation where
smaller values indicate better performance and Time [s]
for timing evaluation.

In more detail, RMSE and MAE are calculated
using the following equations:

RMSE = � �
(r�𝑢𝑢𝑢𝑢 − 𝑟𝑟𝑢𝑢𝑢𝑢)2

|𝑇𝑇𝑒𝑒𝑠𝑠𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇|
𝑢𝑢,𝑢𝑢∈TestSet

 (16)

MAE = �
𝑢𝑢,𝑢𝑢∈TestSet

|r�𝑢𝑢𝑢𝑢 − 𝑟𝑟𝑢𝑢𝑢𝑢|
|𝑇𝑇𝑒𝑒𝑠𝑠𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇|

 (17)

where |TestSet| is the size of the testing set. The total
duration of the learning process on the training set and
predicting all samples in the testing set of the model is
measured as Time [s].

All experiments are carried out using Google
Colaboratory with high RAM configuration (25GB
RAM) and no GPU.

4.2. Baseline Models

In this paper, several popular CF models are
selected as baselines to evaluate the proposed methods.
Firstly, we implement two competitive neighborhood-
based models including kNNBaseline [8] and
kNNContent [7]. SVD [3] and SVD++ [3] are
implemented as the two representatives of the matrix
factorization technique. Besides, I-RBM [6] and I-
Autorec [5], two deep-learning CF models, are also
implemented for comparison.

The optimal hyperparameters for each baseline
model are carefully tuned. In particular, the error rates

of neighborhood-based models are calculated with the
neighborhood size 𝑘𝑘 ∈ {10, 15, 20, 25, 30, 35, 40}.
Coscontent, PCC and PCCcontent are chosen as the
similarity measures in kNNBaseline and kNNContent
models. SVD and SVD++ models are trained using 40
factors with 100 iterations and a step size of 0.002.

To assess the new methods of characterizing users
and the proposed baseline estimate in Section 3, the Tag
Genome data in the MovieLens 20M dataset is used to
construct the feature vector for each movie 𝑖𝑖 as
𝒒𝒒𝑢𝑢 = {𝑔𝑔𝑢𝑢1,𝑔𝑔𝑢𝑢2, … ,𝑔𝑔𝑢𝑢𝑘𝑘 , … } where 𝑔𝑔𝑢𝑢𝑘𝑘 is the genome
score of genome tag 𝑘𝑘𝑡𝑡ℎ. In our experiments, 𝑝𝑝𝑢𝑢norm,
𝑝𝑝𝑢𝑢biased, and 𝑝𝑝𝑢𝑢w-biased are first integrated into the original
baseline estimate to find the optimal technique for
profiling user interest. The enhanced baseline estimate
is then implemented into several neighborhood-based
models to comprehensively evaluate its impact on the
final prediction.

4.3. Accuracy of the Baseline Estimate Utilizing the
User-Item Correlations

In this section, the enhanced baseline estimates
are learned using both SGD and ALS optimization
algorithms for a more thorough comparison. For SGD,
the baseline estimates are trained using the typical
learning rate value 𝛼𝛼 = 0.005 and the typical
regularization value 𝜆𝜆 = 0.02. For ALS, the typical
values for regularization terms 𝜆𝜆𝑢𝑢 and 𝜆𝜆𝑢𝑢 in the
MovieLens dataset are 15 and 10, respectively [11].
However, the number of training points in set 𝕂𝕂 is
much larger than the number of appearances of each
user or item, which completely differs from the value
of λ𝜔𝜔 in (13) from λ𝑢𝑢 and λ𝑢𝑢 in (11) and (12). Therefore,
a grid search is performed on 𝜆𝜆𝜔𝜔, which finds that
𝜆𝜆𝜔𝜔 = −9,500,000 provides the system with good
performance.

Table 2shows that utilizing the user-item
correlations helps to improve the predicting accuracy of
the original baseline estimate at the price of increased
complexity. Empirical results also prove the superior of
𝑝𝑝𝑢𝑢w-biased over its counterparts for both similarity
measures being used. Specifically, calculating the user-
item similarity with PCC achieves the coarse rating
prediction with 6.46% lower RMSE and 6.71% lower
MAE but takes approximately 3.6 times as much time
as the original baseline estimate (optimized via ALS).

A noteworthy point here is that ALS achieves
consistently lower error rates than SGD for all cases at
the expense of requiring an additional hyperparameter
tuning process (and thus a further computational
complexity). However, this trade-off is acceptable at
this stage because the absolute time to determine the
baseline estimate compared to the total time to make
the final prediction is negligible. Hence, ALS is
selected as the optimizer for the proposed baseline
estimate hereafter.

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 034-042

40

Table 2. Performance of the enhanced baseline estimates with different types of user feature vectors.

User feature
vectors

Similarity
measure

SGD ALS

RMSE MAE Time [s] RMSE MAE Time [s]

None 0.8593 0.6595 24 0.8576 0.6590 34

𝑝𝑝𝑢𝑢norm

Cos
0.8553 0.6567 71 0.8351 0.6348 114

(-0.47%) (-0.42%) (x3.0) (-2.62%) (-3.67%) (x3.4)

PCC
0.8432 0.6474 75 0.8184 0.6274 121

(-1.87%) (-1.83%) (x3.1) (-4.80%) (-4.79%) (x3.6)

𝑝𝑝𝑢𝑢biased

Cos
0.8153 0.6239 73 0.8129 0.6228 117

(-5.12%) (-5.40%) (x3.3) (-5.21%) (-5.49%) (x3.4)

PCC
0.8096 0.6201 79 0.8072 0.6186 126

(-5.78%) (-5.97%) (x3.3) (-5.88%) (-6.13%) (x3.7)

𝑝𝑝𝑢𝑢w-biased

Cos
0.8149 0.6235 74 0.8057 0.6172 119

(-5.17%) (-5.46%) (x3.1) (-6.05%) (-6.34%) (x3.5)

PCC
0.8069 0.6171 80 0.8022 0.6148 122

(-6.10%) (-6.43%) (x3.3) (-6.46%) (-6.71%) (x3.6)

4.4. Performance of the Unified Neighborhood-Based
System

Finally, the advanced baseline estimates are
integrated into kNNBaseline and kNNContent models
to refine the process of predicting unknown ratings. For
calculating the item-item similarity in kNNBaseline
model, two common measures in implementing
neighborhood-based RS, namely Cos and PCC, are
examined. The same goes for kNNContent model,
where Coscontent and PCCcontent are both implemented for
comparison.

As shown in Fig. 4, the outperformance of the
modified baseline estimates over their original shown
in Table 2 makes significant accuracy improvements in
the rating prediction task: the newly proposed
neighborhood-based models, totally surpass their initial
versions for all cases by a large margin. Moreover, the
empirical results again confirm that incorporating the
user and item biases, along with eliminating the effect
of low score features, can produce a much more reliable
version of user feature vectors.

Another noticeable observation from Fig. 4 is that
even though incorporating 𝑠𝑠𝑢𝑢𝑢𝑢 calculated by PCC is
clearly better than Cos when using 𝑝𝑝𝑢𝑢norm, the difference
between these two similarity measures gets much
smaller in the case of 𝑝𝑝𝑢𝑢biased and insignificant with
𝑝𝑝𝑢𝑢w-biased. This is because the user feature vector
generated by (6) or (7) has the original ratings
subtracted by the baseline estimate, which makes the
mean of the resulting vector come close to 0. Therefore,
applying Cos or PCC to the approximately zero-mean
vectors produces nearly identical results.

Fig. 4: Error rates of kNNBaseline and kNNContent
models when incorporating the user-item similarity
scores.

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 034-042

41

Table 3. Performance of the neighborhood-based
models utilizing the user-item correlations against
popular CF models.

Model RMSE MAE Time [s]

kNNBaseline (𝑘𝑘 = 40) 0.8108 0.6167 565

kNNContent (𝑘𝑘 = 20) 0.7885 0.5988 293

SVD (40 factors) 0.7922 0.6042 292

SVD++ (40 factors) 0.7894 0.5992 27,387

I-RBM 0.7951 0.6065 96,455

I-AutoRec 0.7808 0.5931 69,860

kNNBaseline
incorporating 𝑠𝑠𝑢𝑢𝑢𝑢

(𝑘𝑘 = 40)
0.7853 0.5981 659

kNNContent
incorporating 𝑠𝑠𝑢𝑢𝑢𝑢

(𝑘𝑘 = 25)
0.7719 0.5866 392

kNN with hybrid
similarity matrix
incorporating 𝑠𝑠𝑢𝑢𝑢𝑢

(𝑘𝑘 = 25)

0.7690 0.5830 420

Due to the discussed reasons, in the following

experiments, 𝑝𝑝𝑢𝑢w-biased and PCC are thus adopted to
calculate 𝑠𝑠𝑢𝑢𝑢𝑢 for best accuracy. Table 3 shows a
comparison between the neighborhood-based models
incorporating the user-item correlations and several
common CF ones, including deep learning systems.
Note that for a fair comparison, the number of
neighbors 𝑘𝑘 of each neighborhood-based model is
chosen for the best performance. In this study, the
hybrid similarity matrix proposed in [12] is also
integrated into kNN with 𝑠𝑠𝑢𝑢𝑢𝑢 to boost the accuracy of
the unified system.

Specifically, the kNNContent model with 𝑠𝑠𝑢𝑢𝑢𝑢,
gains:

- 4.80% lower RMSE and 4.88% lower MAE than
the original kNNBaseline.

- 2.11% lower RMSE and 2.03% lower MAE than
the original kNNContent.

- 2.56% lower RMSE and 2.91% lower MAE than
SVD.

- 2.22% lower RMSE and 2.10% lower MAE than
SVD++.

- 2.91% lower RMSE and 3.28% lower MAE than
I-RBM

- 1.14% lower RMSE and 1.10% lower MAE than
I-AutoRec.

On the other hand, by combining the hybrid
similarity matrix [12] and using user interests in

specific item’s features into kNN, the prediction
accuracy gains 0.29% lower RMSE and 0.36% lower
MAE than the kNNContent with 𝑠𝑠𝑢𝑢𝑢𝑢. This
improvement again validates the effectiveness of
incoporating 𝑠𝑠𝑢𝑢𝑢𝑢 into neighborhood-based RS.

These improvements in predicting accuracy are
achieved at the expense of the additional complexity.
However, in practice evaluating the user-item
similarity matrix from fixed-length vectors could be
performed in parallel with a low computational cost.
Hence, we consider that this trade-off is worth in real-
life applications.

5. Conclusion

Conventional neighborhood-based CF methods
have shown remarkable success in real-life systems.
However, due to the lack of user information as a result
of several personal privacy concerns on the internet,
user-item correlations are not well-considered in
implementing RS despite their usefulness in describing
users’ interests. In this paper, we first introduced
various techniques to characterize user preferences
utilizing both rating data and item content information.
The new user representations not only help the system
understand user interests in each item attribute but also
make it possible to measure reliable user-item
correlations. Consequently, an innovative method was
proposed to adjust the baseline estimate of kNN-based
that takes user-item similarity scores into account.
Thereby, the resulting hybrid models achieve at least
2.11% lower RMSE and 2.03% lower MAE compared
to their neighborhood-based counterparts, whilst
performing at least 1.10% better compared to other
deep learning and matrix factorization systems. This
leads to the conclusion that neighborhood-based RSs
could be greatly improved by integrating both the item-
item and user-item correlations in the predicting model.
In addition, we have combined this model with a
previously proposed publication, the prediction results
have improved but not significantly compared to the
idea presented in this paper.

These promising results with user-item similarity
have opened us up to several potential research
directions. Our future work will focus on extending the
application of user-item correlations in other CF
systems, not limited to neighborhood-based ones. We
are also interested in applying modern neural networks
to learn hidden relationships between a user’s ratings
and the content of those items that he rated to learn
more about him and providing efficient user-item
similarity scores.

References
[1] F. Ricci, L. Rokach, B. Shapira, Recommender

systems: introduction and challenges, in Recommender
Systems Handbook, Springer, 2015, p. 1–34.

 https://doi.org/10.1007/978-1-4899-7637-6_1

[2] Sarwar, B., Karypis, G., Konstan, J., Riedl, J. Item-
based collaborative filtering recommendation

JST: Smart Systems and Devices

 Volume 33, Issue 1, January 2023, 034-042

42

algorithms. In Proceedings of the 10th international
conference on World Wide Web, pp. 285-295, April
2001.

 https://doi.org/10.1145/371920.372071.

[3] Y. Koren, Factorization meets the neighborhood: A
multifaceted collaborative filtering model, in
Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
2008,

 https://doi.org/10.1145/1401890.1401944.

[4] Y. Koren, R. Bell and C. Volinsky, Matrix
factorization techniques for recommender systems,
Computer, vol. 42, p. 30–37, 2009,

 https://doi.org/10.1109/MC.2009.263.

[5] Sedhain, S., Menon, A.K., Sanner, S., Xie, L., Autorec:
Autoencoders meet collaborative filtering,
in Proceedings of the 24th International
Conference on World Wide Web, 2015,

 https://doi.org/10.1145/2740908.2742726

[6] Salakhutdinov, R., Mnih, A., Hinton, G.,
Restricted Boltzmann machines for collaborative
filtering, in Proceedings of the 24th International
Conference on Machine Learning, ACM, 2007,
https://doi.org/10.1145/1273496.1273596

[7] T. N. Duong, V. D. Than, T. A. Vuong, T. H. Tran, Q.
H. Dang, D. M. Nguyen, H. M. Pham, A novel hybrid
recommendation system integrating content-based and

rating information, in International Conference on
Network-Based Information Systems, 2019,

 https://doi.org/10.1007/978-3-030-29029-0_30.

[8] Y. Koren, Factor in the neighbors: Scalable and
accurate collaborative filtering, ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 4, p. 1,
2010,

 https://doi.org/10.1145/1644873.1644874.

[9] N. Duong Tan, T. A. Vuong, D. M. Nguyen, Q. H.
Dang, Utilizing an autoencoder-generated item
representation in hybrid recommendation system,
IEEE Access, vol. PP, pp. 1-1, April 2020,

 https://doi.org/10.1109/ACCESS.2020.2989408.

[10] F. M. Harper, J. A. Konstan, The movielens datasets:
History and context, ACM Transactions on Interactive
Intelligent Systems (TIIS), vol. 5, p. 19, 2016.

 https://doi.org/10.1145/2827872

[11] N. Hug, Surprise: A python library for recommender
systems, Journal of Open Source Software, vol. 5, p.
2174, 2020,

 https://doi.org/10.21105/joss.02174.

[12] T. N. Duong, T. G. Do, N. N. Doan, T. N. Cao, T. D.
Mai, Hybrid similarity matrix in neighborhood-based
recommendation system, in 2021 8th NAFOSTED
Conference on Information and Computer Science
(NICS), pp. 475-480 2021,

 https://doi.org/10.1109/NICS54270.2021.9701524.

	1. Introduction0F
	2. Preliminaries
	2.1. Neighborhood-Based Models
	2.2. Integrating Content-Based Information into Neighborhood-Based Models

	3. Proposed Systems
	3.1. Estimating User Interests for User-Item Similarity Measure
	3.2. Integrating the User-Item Correlations into the Baseline Estimate

	4. Performance Evaluation
	4.1. MovieLens Dataset and Evaluation Criteria
	4.2. Baseline Models
	4.3. Accuracy of the Baseline Estimate Utilizing the User-Item Correlations
	4.4. Performance of the Unified Neighborhood-Based System

	5. Conclusion

