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Abstract 

Recommendation systems have been developed in many domains to help users with information overload from 
the large volume of online multimedia content by providing them with appropriate options. Recently developed 
hybrid recommendation systems require a large amount of data to understand users’ interests and give 
appropriate suggestions. However, several internet privacy issues make users skeptical about sharing their 
personal information with online service providers, limiting the potential of these systems. The study in this 
paper introduces various novel methods utilizing the baseline estimate to learn user interests in specific item 
features from their past interactions. Subsequently, extracted user feature vectors are implemented to estimate 
the user-item correlations, providing an additional fine-tuning factor for neighborhood-based collaborative 
filtering systems. Comprehensive experiments show that utilizing the user-item similarity scores in the rating 
prediction task can improve the accuracy of hybrid neighborhood-based systems by at least 2.11% compared 
to traditional methods while minimizing the need for tracking users' digital footprints. 

Keywords: Collaborative filtering, data mining, neighborhood-based, recommendation system. 

 

1.  Introduction1 

The continuously accelerated growth of 
communication technology and data storage in the past 
decades has benefited customers with an enormous 
amount of online multimedia content, creating billion-
dollar industries. Following this evolution, 
recommendation systems (RSs) have been widely 
developed to automatically help users to filter 
redundant information and suggest only suitable 
products that fit their needs. Such systems are used in a 
variety of domains and have become a part of our daily 
online experience [1]. 

RSs are commonly classified into three main 
types: the content-based technique, the collaborative 
filtering technique, and the hybrid technique. The 
content-based approach learns to recommend items 
that are similar to the ones that a user liked based on the 
item features. The main weakness of this approach is 
the lack of available and reliable metadata associated 
with items. Meanwhile, the collaborative filtering (CF) 
approach only relies on users' interaction history  
which can be either explicit or implicit feedback. CF 
systems can be divided into two major categories:  
i) neighborhood-based models which focus on 
computing the correlation between items or users using 
rating information [2], and ii) matrix factorization 
models which could explore the latent factors 
connecting items to users in order to make accurate 
recommendations [1, 3, 4]. Recently, deep learning has 
also been proven as a potential approach for 
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implementing CF system by learning the hidden 
relationships in user interactions [5, 6]. However, it is 
often the case that there is not enough transaction data 
to make accurate recommendations for a new user or 
item. To tackle this cold-start problem, hybrid methods 
are proposed by combining auxiliary information into 
CF models [7]. 

In the interest of the hybrid approach and its 
advantages, our study attempts to improve typical 
neighborhood-based RSs utilizing available content-
related knowledge. The main contributions of this work 
are summarized as follows: 

- Introducing new methods to represent user 
preference via combining the user's interaction 
data and item's content-based information, which 
helps to estimate the similarity between a user and 
an item; 

- Integrating the user-item similarity into the 
baseline estimate of neighborhood-based RSs to 
provide more precise recommendations, 
surpassing competitive hybrid models. 

The remainder of this paper is organized as 
follows. Section 2 reviews the basic knowledge of 
neighborhood-based CF systems including hybrid 
models. Detailed descriptions of our proposed methods 
are presented in Section 3. Section 4 gives experimental 
results and in-depth analysis. At last, we conclude this 
study in Section 5. 
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2.  Preliminaries 

In this paper, 𝑢𝑢, 𝑣𝑣 denote users and 𝑖𝑖, 𝑗𝑗 denote 
items. 𝑟𝑟𝑢𝑢𝑢𝑢 denotes the rating by user 𝑢𝑢 for item 𝑖𝑖  
where high values indicate a strong preference and  
all the (𝑢𝑢, 𝑖𝑖) pairs are stored in the set  
𝕂𝕂 = {(𝑢𝑢, 𝑖𝑖)|𝑟𝑟𝑢𝑢𝑢𝑢  is known}. Meanwhile, 𝑅𝑅(𝑢𝑢) denotes 
the set of all items rated by user 𝑢𝑢. In the rating 
prediction task, the objective is to predict unknown 
rating r�𝑢𝑢𝑢𝑢 where user 𝑢𝑢 has not rated item 𝑖𝑖 yet. 

Popular neighborhood-based CF techniques for 
the rating prediction task and an existing hybrid variant 
are briefly reviewed as follows. 

2.1. Neighborhood-Based Models 

The neighborhood-based approach is one of the 
most popular techniques in CF, which is only based on 
the similarity between users or items to give 
recommendations. There are two methods for 
implementing neighborhood-based CF models: i) user-
oriented model which predicts a user's preference based 
on similar users, and ii) item-oriented model which 
finds similar items to the item a user liked and 
recommends these items to her. 

Of the two methods, the latter introduced in [2] 
has become dominant due to its superior accuracy and 
its capability of providing a rational explanation for 
recommendations [1]. Therefore, our implementations 
in this work adopt the item-oriented approach as the 
baseline model. 

The fundamental of neighborhood-based models 
is similarity measure. As illustrated in Fig. 1, by 
computing the similarity degree 𝑠𝑠𝑢𝑢𝑖𝑖  between all pairs of 
items 𝑖𝑖 and 𝑗𝑗 using popular similarity measures such as 
Cosine similarity (Cos) or Pearson Correlation 
Coefficients (PCC), we can identify the set of 𝑘𝑘 
neighbors 𝕊𝕊𝑘𝑘(𝑖𝑖,𝑢𝑢) which consists of 𝑘𝑘 most similar 
items to 𝑖𝑖 rated by user 𝑢𝑢. 

The most straightforward method of predicting 
the rating of user 𝑢𝑢 for item 𝑖𝑖 is a weighted average of 
the ratings of similar items as follows: 

�̂�𝑟𝑢𝑢𝑢𝑢 =
� 𝑠𝑠𝑢𝑢𝑖𝑖  𝑟𝑟𝑢𝑢𝑖𝑖𝑖𝑖∈𝕊𝕊𝑘𝑘(𝑢𝑢,𝑢𝑢)

� 𝑠𝑠𝑢𝑢𝑖𝑖𝑖𝑖∈𝕊𝕊𝑘𝑘(𝑢𝑢,𝑢𝑢)

 (1) 

Even though (1) can capture the user-item 
interactions, much of the observed ratings are due to the 
bias effects associated with either users or items, 
independently of their interactions.  In detail, some 
items usually receive higher ratings than others, and 
some users tend to give higher ratings than others. To 
predict �̂�𝑟𝑢𝑢𝑢𝑢, kNNBaseline model [8] also takes the bias 
effect associated with either users or items into account 
by adding the baseline estimate to the weighted average 
of the ratings of similar items as follows: 

�̂�𝑟𝑢𝑢𝑢𝑢𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑢𝑢𝑘𝑘𝑘𝑘 = 𝑏𝑏𝑢𝑢𝑢𝑢 +
� 𝑠𝑠𝑢𝑢𝑖𝑖(𝑟𝑟𝑢𝑢𝑖𝑖 − 𝑏𝑏𝑢𝑢𝑖𝑖)𝑖𝑖∈𝕊𝕊𝑘𝑘(𝑢𝑢,𝑢𝑢)

� 𝑠𝑠𝑢𝑢𝑖𝑖𝑖𝑖∈𝕊𝕊𝑘𝑘(𝑢𝑢,𝑢𝑢)

 (2) 

where 𝑏𝑏𝑢𝑢𝑢𝑢 = μ + 𝑏𝑏𝑢𝑢 + 𝑏𝑏𝑢𝑢 denotes the baseline estimate, 
μ denotes the mean of overall ratings, 𝑏𝑏𝑢𝑢 and 𝑏𝑏𝑢𝑢 
correspond to the bias of user 𝑢𝑢 and item 𝑖𝑖, respectively, 
which can be trained using popular optimization 
algorithms such as Stochastic Gradient Descent (SGD) 
or Alternating Least Squares (ALS). 

 
Fig. 1. The simplified flow diagram of a kNNBaseline 
system 
 
2.2. Integrating Content-Based Information into 
Neighborhood-Based Models 

The study in [7] showed that the sparsity of the 
rating matrix could yield an inaccurate similarity score 
between two items that share only a few common users. 
Furthermore, filtering common users who rated both 
items to calculate the similarity score is a time-
consuming task due to a large number of users. To 
address these problems, novel similarity measures were 
proposed using item content-based information to 
modify the conventional kNNBaseline model into a 
hybrid system. The flow graph of an item-based hybrid 
kNNBaseline system is illustrated in Fig. 2, where the 
“Filtering common users that rated both items” step in 
conventional kNNBaseline system (Fig. 1) is no longer 
necessary. 

Assume that each item 𝑖𝑖 is characterized by a 
feature vector 𝒒𝒒𝑢𝑢 = �𝑞𝑞𝑢𝑢1, 𝑞𝑞𝑢𝑢2, … , 𝑞𝑞𝑢𝑢𝑖𝑖� ∈ ℝ𝑖𝑖 where 𝑓𝑓 is 
the number of features, which is stored in matrix  
𝑸𝑸 ∈ ℝ𝑘𝑘×𝑖𝑖. The value of each element encodes how 
strong an item exhibits particular properties. The 
similarity score 𝑠𝑠𝑢𝑢𝑖𝑖  between movies 𝑖𝑖 and 𝑗𝑗 is calculated 
as follows [7, 9]: 
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𝑠𝑠𝑢𝑢𝑖𝑖Cos
content =

∑ 𝑞𝑞𝑢𝑢𝑘𝑘𝑞𝑞𝑖𝑖𝑘𝑘
𝑖𝑖
𝑘𝑘=1

�∑ 𝑞𝑞𝑢𝑢𝑘𝑘2
𝑖𝑖
𝑘𝑘=1 �∑ 𝑞𝑞𝑖𝑖𝑘𝑘2

𝑖𝑖
𝑘𝑘=1

 (3) 

or 

𝑠𝑠𝑢𝑢𝑖𝑖PCC
content =

∑ (𝑞𝑞𝑢𝑢𝑘𝑘 − 𝒒𝒒�𝑢𝑢)�𝑞𝑞𝑖𝑖𝑘𝑘 − 𝒒𝒒�𝑖𝑖�
𝑖𝑖
𝑘𝑘=1

�∑ (𝑞𝑞𝑢𝑢𝑘𝑘 − 𝒒𝒒�𝑢𝑢)2
𝑖𝑖
𝑘𝑘=1 �∑ �𝑞𝑞𝑖𝑖𝑘𝑘 − 𝒒𝒒�𝑖𝑖�

2𝑖𝑖
𝑘𝑘=1

 

(4) 

where 𝒒𝒒�𝑢𝑢 and 𝒒𝒒�𝑖𝑖 are the mean of feature vectors 𝒒𝒒𝑢𝑢 
and 𝒒𝒒𝑖𝑖 , respectively. Hereafter, the hybrid kNN-
Baseline model using one of these similarity measures 
is referred to as kNNContent. 

 
Fig. 2. The simplified flow diagram of a kNNContent 
system. 

While also sharing the same predicting method 
compared to both kNNBaseline and kNNContent [7] 
models, our proposed model described in Section 3.2 
extends the baseline estimate formula 𝑏𝑏𝑢𝑢𝑢𝑢 in (2). The 
content-based information is also not limited to item 
profiles as in [7] but is enhanced with the user’s interest 
estimated using several novel methods. 

3.  Proposed Systems 

So far, neighborhood-based CF models have 
successfully applied the item-item similarity exploited 
via rating information and the available item features. 
In contrast, the knowledge about user-user correlation 
finds it difficult to be deployed in practical applications 
due to its modest performance and high memory 
requirement [1]. Nonetheless, the interest of a user in 
an individual characteristic of each item, to our best 
knowledge, lacks careful consideration. One of the 
main reasons is that the user-item correlation is 
commonly defined as a similarity degree between a 
user's interest in individual item features and an item 
feature vector, which requires a customer to provide his 

personal preferences. In reality, it is impractical due to 
a variety of data privacy concerns. 

This study first tackles this problem by 
introducing various novel methods to represent a user 
preference in the form of a vector, utilizing her past 
interactions with items in the system and the feature 
vectors of those items. After gathering reliable 
information about users, we then propose a 
modification to the baseline estimate of kNNBaseline 
model and its variants by integrating the user-item 
similarity scores, which boosts the precision of the 
conventional kNNBaseline model. 

3.1. Estimating User Interests for User-Item 
Similarity Measure 

In RSs, there are two main sources of information 
to learn user interests and give recommendations: the 
interaction records of users on the system and the item 
content information. User personal data, however, is 
not included in public datasets for research due to the 
risk of exposing user identities. Therefore, there is 
rarely any data or statistic that directly specifies user 
interest in each item feature. This lack of information 
has limited the potential performance of RS in practice. 
In this section, we present 3 different methods to 
characterize a user's interest in item features based on 
given ratings of the user and metadata of the items that 
he rated. 

The most straightforward approach to estimate a 
user’s interest is via a weighted average of the feature 
vectors 𝒒𝒒𝑢𝑢 of items that he rated by the normalized 
ratings as follows: 

𝒑𝒑𝑢𝑢norm =
∑ 𝑟𝑟𝑢𝑢𝑢𝑢norm.𝒒𝒒𝑢𝑢𝑢𝑢∈𝑅𝑅(𝑢𝑢)

|𝑅𝑅(𝑢𝑢)|
 (5) 

where 𝑟𝑟𝑢𝑢𝑢𝑢norm is the rating of user 𝑢𝑢 for item 𝑖𝑖 which has 
been normalized to the range of [0,1]. As a result, the 
normalized feature vector 𝒑𝒑𝑢𝑢norm of user 𝑢𝑢 has the same 
dimension and range of element values as an item 
feature vector 𝒒𝒒𝑢𝑢. More importantly, by using (5), each 
user is currently described in an explainable way: 
elements with higher values indicate that the user has a 
greater preference for the corresponding item attributes 
and vice versa. 

Although this method creates a simple shortcut to 
understand user preferences, all users are treated in the 
same way: all users' ratings are normalized using the 
same minimum and maximum rating values of the 
system while, in practice, users have a variety of 
tendencies of rating an item. For example, easy-going 
people often rate movies a little higher than the average, 
and conversely, strict users often give lower scores than 
the others. That means if two users have conflicting 
views after watching a movie but accept to give a 3-star 
rating for that movie, for example, then the system 
described in (5) will implicitly assume they have the 
same weight of opinion. This problem leads to several 
researches taking the user and item biases into account, 
which have a considerable impact on CF systems [4, 8]. 
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Therefore, a modification of (5) incorporating the effect 
of biases is proposed as follows: 

𝒑𝒑𝑢𝑢biased =
∑ 𝑧𝑧𝑢𝑢𝑢𝑢 .𝒒𝒒𝑢𝑢𝑢𝑢∈𝑅𝑅(𝑢𝑢)

∑ |𝑧𝑧𝑢𝑢𝑢𝑢|𝑢𝑢∈𝑅𝑅(𝑢𝑢)
 (6) 

where 𝑧𝑧𝑢𝑢𝑢𝑢 = 𝑟𝑟𝑢𝑢𝑢𝑢 − 𝑏𝑏𝑢𝑢𝑢𝑢 denotes the residual rating. 

In more detail, (6) applies 𝑧𝑧𝑢𝑢𝑢𝑢 as weighting factors 
to the corresponding item feature vectors, which helps 
to eliminate the restrictions of 𝑟𝑟𝑢𝑢𝑢𝑢norm. The resulting 
biased user feature vector 𝒑𝒑𝑢𝑢biased has its elements in the 
value range of [−1, +1], where −1 / +1 indicates that 
he hates/loves the respective item attribute, and 0 is 
neutral preference. It is expected that 𝒑𝒑𝑢𝑢biased could 
measure the user interest in each item attribute more 
precisely than its normalized version 𝒑𝒑𝑢𝑢norm. 

However, both of the above methods treat all 
items equally in profiling a user’s interest. For example, 
the scores of “Titanic” and “Mad Max” for  
the romantic genre are 0.90 and 0.05, respectively. 
Assume that Janet's normalized ratings for  
these movies are �̃�𝑟Janet,Titanic = 0.7 and 
�̃�𝑟Janet,Madmax = 0.72, which are almost identical. Thus, 
the romantic genre score of Janet calculated by (5) is 
quite low: (0.7 × 0.9 + 0.72 × 0.05)/2 = 0.333. The 
fact that “Mad Max” has almost no romantic element in 
the movie does not mean that Janet doesn't like 
romantic movies since she also loves “Titanic”, one of 
the most epic romance movies in history. Equation (6) 
also encounters the same problem of taking features 
that the movie does not exhibit (indicated by low 
scores) into account. This might lead to severe 
misunderstanding on learning the interests of users in a 
variety of circumstances. 

This problem can be solved by alleviating the 
influence of low score features whilst primarily 
focusing on features with high values. Accordingly, the 
simplest method is to use the scores themselves as the 
weights in parallel with normalized ratings to estimate 
user feature vectors so that low score features will equal 
themselves out of the final user feature vectors. The 
biased feature vector of user 𝑢𝑢 weighted by the item 
feature vector can be formulated as follows: 

𝒑𝒑𝑢𝑢w−biased =
∑ 𝑧𝑧𝑢𝑢𝑢𝑢 .𝒒𝒒𝑢𝑢2𝑢𝑢∈𝑅𝑅(𝑢𝑢)

∑ |𝑧𝑧𝑢𝑢𝑢𝑢|.𝒒𝒒𝒊𝒊𝑢𝑢∈𝑅𝑅(𝑢𝑢)
 (7) 

Specifically for the above example, the interest 
score of Janet for the romantic genre calculated using 
(7) is equal to 0.854, which is much more reasonable 
than measuring the affection of a user for a specific 
kind of genre based on items that are not relevant to that 
genre. 

From the user feature vector 𝒑𝒑𝑢𝑢 calculated using 
one of the three above methods, the relevance between 
a user and an item can be effectively evaluated using 
common similarity measures such as Cos or PCC as 
follows: 

𝑠𝑠𝑢𝑢𝑢𝑢Cos =
∑ 𝑝𝑝𝑢𝑢𝑘𝑘𝑞𝑞𝑖𝑖𝑘𝑘
𝑖𝑖
𝑘𝑘=1

�∑ 𝑝𝑝𝑢𝑢𝑘𝑘2
𝑖𝑖
𝑘𝑘=1 �∑ 𝑞𝑞𝑖𝑖𝑘𝑘2

𝑖𝑖
𝑘𝑘=1

 (8) 

𝑠𝑠𝑢𝑢𝑢𝑢PCC =
∑ (𝑝𝑝𝑢𝑢𝑘𝑘 − 𝒑𝒑�𝑢𝑢)�𝑞𝑞𝑖𝑖𝑘𝑘 − 𝒒𝒒�𝑖𝑖�
𝑖𝑖
𝑘𝑘=1

�∑ (𝑝𝑝𝑢𝑢𝑘𝑘 − 𝒑𝒑�𝑢𝑢)2𝑖𝑖
𝑘𝑘=1 �∑ �𝑞𝑞𝑖𝑖𝑘𝑘 − 𝒒𝒒�𝑖𝑖�

2𝑖𝑖
𝑘𝑘=1

 

(9) 

In the following section, we demonstrate the 
effectiveness of the newly proposed representations of 
a user by integrating user-time similarity 𝑠𝑠𝑢𝑢𝑢𝑢 into 
popular neighborhood-based systems, namely kNN-
Baseline model and its variants. 

3.2. Integrating the User-Item Correlations into the 
Baseline Estimate 

In kNNBaseline, the baseline estimate 𝑏𝑏𝑢𝑢𝑢𝑢 takes 
the main role of predicting the coarse ratings while the 
analogy between items serves as a fine-tuning term to 
improve the accuracy of the final predictions. 
Subsequently, the more precise the baseline estimate is 
to the target rating, the better the kNNBaseline model 
gets in terms of prediction accuracy as demonstrated in 
several previous studies [8, 9]. However, we realize 
that a conventional baseline estimate only considers the 
biases of users and items separately and ignores the 
user-item correlations, which might lead to an 
incomplete evaluation. 

For example, an RS needs to estimate the ratings 
of user James for two movies “Titanic” and “Mad 
Max”. Assume the average rating denoted by 𝜇𝜇 is 3.7 
stars. “Titanic” is considerably more well-received by 
the general audience than an ordinary movie, so it tends 
to be rated 0.5 stars above the average. Meanwhile, 
James is a critical user, who usually rates 0.3 stars 
lower than a moderate user. Thus, the baseline estimate 
of “Titanic” rated by James would be 3.9 stars 
(= 3.7 − 0.3 + 0.5). On the other hand, “Mad Max” is 
also highly popular and tends to be rated 0.6 stars 
higher than the mean rating; hence, the baseline 
estimate of James for “Mad Max” would be 4.0 stars 
(= 3.7 − 0.3 + 0.6), which is similar to the baseline 
rating for the “Titanic” movie. 

However, from James's past interactions with 
other movies on the system, the recommendation 
system estimates James's interests using one of the 
methods described in Section 3.1 and discovers that a 
romantic and drama movie like “Titanic” seems to be 
more suitable for James, while his personal preference 
is contradictory compared to an action and thriller 
movie like “Mad Max”. Consequently, the above 
predicted ratings of James turn out to be rather 
irrational. 
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Fig. 1: The residual rating of several users with respect to the user-item similarity degree. 

 
Fig. 3 illustrates the correlations between the 

residual ratings and the user-item similarity scores of 
some users, where 𝑠𝑠𝑢𝑢𝑢𝑢 values are calculated using PCC 
similarity measure to compare the original Tag 
Genome data of the movies in the MovieLens 20M 
dataset and the user feature vectors 𝒑𝒑𝑢𝑢w−biased. The red 
trendlines determined by linear regression show that 
there is an approximately linear relationship between 
the user-item correlations and the residual ratings: the 
more interested a user is in a movie (i.e., the higher 
user-item similarity score), the higher he tends to rate 
that movie. 

In order to take the analogy between a user and an 
item into account, we propose a revised version of the 
baseline estimate by integrating the user-item similarity 
score as follows: 

𝑏𝑏𝑢𝑢𝑢𝑢 = μ + 𝑏𝑏𝑢𝑢 + 𝑏𝑏𝑢𝑢 + ω × 𝑠𝑠𝑢𝑢𝑢𝑢  (10) 

where 𝑠𝑠𝑢𝑢𝑢𝑢 is the similarity degree between user 𝑢𝑢 and 
item 𝑖𝑖 calculated by a similarity measure such as Cos in 
(8) or PCC in (9), and ω serves as the weight to adjust 
the contribution of the user-item correlation term to fit 
the rating information. 

By introducing ω, the least squares problem of the 
enhanced baseline estimate term is now updated to the 
following function: 

𝑏𝑏𝑢𝑢∗ , 𝑏𝑏𝑢𝑢∗,ω∗ = arg min
𝑏𝑏𝑢𝑢,𝑏𝑏𝑖𝑖,ω

� �𝑟𝑟𝑢𝑢𝑢𝑢 − (μ + 𝑏𝑏𝑢𝑢 + 𝑏𝑏𝑢𝑢 + ω𝑠𝑠𝑢𝑢𝑢𝑢)�
2

𝑢𝑢,𝑢𝑢∈𝕂𝕂

+ λ ��𝑏𝑏𝑢𝑢2
𝑢𝑢

+ �𝑏𝑏𝑢𝑢2

𝑢𝑢

+ � ω2

𝑢𝑢,𝑢𝑢∈𝕂𝕂

� 

(11) 

In this paper, two common optimization 
techniques, namely SGD and ALS, are experimented to 
solve this problem. An SGD optimizer minimizes the 
sum of the squared errors in (11) using the following 
update rule: 

 𝑏𝑏𝑢𝑢 ← 𝑏𝑏𝑢𝑢 + α(𝑒𝑒𝑢𝑢𝑢𝑢 − λ. 𝑏𝑏𝑢𝑢) 

 𝑏𝑏𝑢𝑢 ← 𝑏𝑏𝑢𝑢 + α(𝑒𝑒𝑢𝑢𝑢𝑢 − λ. 𝑏𝑏𝑢𝑢) 

 𝜔𝜔 ← 𝜔𝜔 + 𝛼𝛼(𝑒𝑒𝑢𝑢𝑢𝑢 . 𝑠𝑠𝑢𝑢𝑢𝑢 − 𝜆𝜆.𝜔𝜔) 

(12) 

where 𝑒𝑒𝑢𝑢𝑢𝑢 = 𝑟𝑟𝑢𝑢𝑢𝑢 − r�𝑢𝑢𝑢𝑢 denotes the predicting error, α 
denotes the learning rate, and λ denotes L2 
regularization term. 

Different from SGD, the ALS technique 
decouples the calculation of one parameter from the 
others [8]. Each iteration of ALS can be described as 
follows. First, for each item 𝑖𝑖, the optimizer fixes the 
𝑏𝑏𝑢𝑢 's and ω to solve for the 𝑏𝑏𝑢𝑢 's: 

𝑏𝑏𝑢𝑢 =
∑ 𝑟𝑟𝑢𝑢𝑢𝑢 − 𝜇𝜇 − 𝑏𝑏𝑢𝑢 − 𝜔𝜔𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢|(𝑢𝑢,𝑢𝑢)∈𝕂𝕂

𝜆𝜆𝑢𝑢 + |{𝑢𝑢|(𝑢𝑢, 𝑖𝑖) ∈ 𝕂𝕂}|
 (13) 

Then, for each user 𝑢𝑢, the optimizer fixes the 𝑏𝑏𝑢𝑢 's and 
ω to solve for the 𝑏𝑏𝑢𝑢 's: 

𝑏𝑏𝑢𝑢 =
∑ 𝑟𝑟𝑢𝑢𝑢𝑢 − 𝜇𝜇 − 𝑏𝑏𝑢𝑢 − 𝜔𝜔𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢|(𝑢𝑢,𝑢𝑢)∈𝕂𝕂

𝜆𝜆𝑢𝑢 + |{𝑖𝑖|(𝑢𝑢, 𝑖𝑖) ∈ 𝕂𝕂}|
 (14) 

 

Finally, the optimizer fixes both the 𝑏𝑏𝑢𝑢 's and the 𝑏𝑏𝑢𝑢 's to 
solve for ω: 

𝜔𝜔 =
∑ 𝑠𝑠𝑢𝑢𝑢𝑢(𝑟𝑟𝑢𝑢𝑢𝑢 − 𝜇𝜇 − 𝑏𝑏𝑢𝑢 − 𝑏𝑏𝑢𝑢)𝑢𝑢,𝑢𝑢∈𝕂𝕂

𝜆𝜆𝜔𝜔 + |𝕂𝕂|
 (15) 

Here, the regularization terms λi, λu, and λω are 
the shrinkage and vary due to the number of ratings that 
affect each parameter. Therefore, each parameter of 
𝑏𝑏𝑢𝑢 's, 𝑏𝑏𝑢𝑢 's, and 𝜔𝜔 needs a distinct value of 𝜆𝜆. By applying 
a learnable weighting factor 𝜔𝜔 to the user-item 
similarity term, the new kNNBaseline model using the 
same predicting method in (2) is capable of exploiting 
auxiliary information to achieve more precise 
predictions. 

4.  Performance Evaluation 

4.1. MovieLens Dataset and Evaluation Criteria 

In this work, one of the most popular datasets for 
RS research named MovieLens 20M [10] is used as a 
benchmark. The dataset contains 20,000,263 ratings 
given by 138,493 users to 27,278 movies. Additionally, 
there are 465,564 tag applications across 27,278 
movies. Especially, Tag Genome data, which is 
computed using a machine learning system on user-
contributed content including tags, ratings, and textual 
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reviews, encodes how strongly movies exhibit 
particular properties represented by tags [10]. 

To utilize this kind of data, a cleaning process is 
applied to the dataset. Specifically, the movies without 
genome tags are excluded, then, only movies and users 
with at least 20 ratings are kept. Table 1 summarizes 
the result of the cleaning stage, where the sparsity of 
the preprocessed dataset is reduced from 99.47% to 
98.97%. The final preprocessed dataset is split into 2 
distinct parts: 80% as the training set and the remaining 
20% as the testing set. 

Table 1. Summary of the original MovieLens 20M 
dataset and the preprocessed one. 

Dataset #Ratings #Users #Movies 

Original 20,000,263 138,493 27,278 

Preprocessed 19,793,342 138,185 10,239 

 
To evaluate the performance of the proposed 

models compared to related works, this paper uses three 
commonly used indicators in the rating prediction task, 
including RMSE (Root Mean Squared Error) and MAE 
(Mean Absolute Error) for accuracy evaluation where 
smaller values indicate better performance and Time [s] 
for timing evaluation. 

In more detail, RMSE and MAE are calculated 
using the following equations: 

RMSE = � �
(r�𝑢𝑢𝑢𝑢 − 𝑟𝑟𝑢𝑢𝑢𝑢)2

|𝑇𝑇𝑒𝑒𝑠𝑠𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇|
𝑢𝑢,𝑢𝑢∈TestSet

 (16) 

MAE = �  
𝑢𝑢,𝑢𝑢∈TestSet

|r�𝑢𝑢𝑢𝑢 − 𝑟𝑟𝑢𝑢𝑢𝑢|
|𝑇𝑇𝑒𝑒𝑠𝑠𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇|

 (17) 

where |TestSet| is the size of the testing set. The total 
duration of the learning process on the training set and 
predicting all samples in the testing set of the model is 
measured as Time [s]. 

All experiments are carried out using Google 
Colaboratory with high RAM configuration (25GB 
RAM) and no GPU. 

4.2. Baseline Models 

In this paper, several popular CF models are 
selected as baselines to evaluate the proposed methods. 
Firstly, we implement two competitive neighborhood-
based models including kNNBaseline [8] and 
kNNContent [7]. SVD [3] and SVD++ [3] are 
implemented as the two representatives of the matrix 
factorization technique. Besides, I-RBM [6] and I-
Autorec [5], two deep-learning CF models, are also 
implemented for comparison. 

The optimal hyperparameters for each baseline 
model are carefully tuned. In particular, the error rates 

of neighborhood-based models are calculated with the 
neighborhood size 𝑘𝑘 ∈ {10, 15, 20, 25, 30, 35, 40}. 
Coscontent, PCC and PCCcontent are chosen as the 
similarity measures in kNNBaseline and kNNContent 
models. SVD and SVD++ models are trained using 40 
factors with 100 iterations and a step size of 0.002. 

To assess the new methods of characterizing users 
and the proposed baseline estimate in Section 3, the Tag 
Genome data in the MovieLens 20M dataset is used to 
construct the feature vector for each movie 𝑖𝑖 as  
𝒒𝒒𝑢𝑢 = {𝑔𝑔𝑢𝑢1,𝑔𝑔𝑢𝑢2, … ,𝑔𝑔𝑢𝑢𝑘𝑘 , … } where 𝑔𝑔𝑢𝑢𝑘𝑘 is the genome 
score of genome tag 𝑘𝑘𝑡𝑡ℎ. In our experiments, 𝑝𝑝𝑢𝑢norm, 
𝑝𝑝𝑢𝑢biased, and 𝑝𝑝𝑢𝑢w-biased are first integrated into the original 
baseline estimate to find the optimal technique for 
profiling user interest. The enhanced baseline estimate 
is then implemented into several neighborhood-based 
models to comprehensively evaluate its impact on the 
final prediction. 

4.3. Accuracy of the Baseline Estimate Utilizing the 
User-Item Correlations 

In this section, the enhanced baseline estimates 
are learned using both SGD and ALS optimization 
algorithms for a more thorough comparison. For SGD, 
the baseline estimates are trained using the typical 
learning rate value 𝛼𝛼 = 0.005 and the typical 
regularization value 𝜆𝜆 = 0.02. For ALS, the typical 
values for regularization terms 𝜆𝜆𝑢𝑢 and 𝜆𝜆𝑢𝑢 in the 
MovieLens dataset are 15 and 10, respectively [11]. 
However, the number of training points in set 𝕂𝕂 is 
much larger than the number of appearances of each 
user or item, which completely differs from the value 
of λ𝜔𝜔 in (13) from λ𝑢𝑢 and λ𝑢𝑢  in (11) and (12). Therefore, 
a grid search is performed on 𝜆𝜆𝜔𝜔, which finds that  
𝜆𝜆𝜔𝜔 = −9,500,000 provides the system with good 
performance.  

Table 2shows that utilizing the user-item 
correlations helps to improve the predicting accuracy of 
the original baseline estimate at the price of increased 
complexity. Empirical results also prove the superior of 
𝑝𝑝𝑢𝑢w-biased over its counterparts for both similarity 
measures being used. Specifically, calculating the user-
item similarity with PCC achieves the coarse rating 
prediction with 6.46% lower RMSE and 6.71% lower 
MAE but takes approximately 3.6 times as much time 
as the original baseline estimate (optimized via ALS).  

A noteworthy point here is that ALS achieves 
consistently lower error rates than SGD for all cases at 
the expense of requiring an additional hyperparameter 
tuning process (and thus a further computational 
complexity). However, this trade-off is acceptable at 
this stage because the absolute time to determine the 
baseline estimate compared to the total time to make 
the final prediction is negligible. Hence, ALS is 
selected as the optimizer for the proposed baseline 
estimate hereafter. 



 
JST: Smart Systems and Devices 

 Volume 33, Issue 1, January 2023, 034-042 

40 

 
Table 2. Performance of the enhanced baseline estimates with different types of user feature vectors. 

User feature 
vectors 

Similarity 
measure 

SGD ALS 

RMSE MAE Time [s] RMSE MAE Time [s] 

None 0.8593 0.6595 24 0.8576 0.6590 34 

𝑝𝑝𝑢𝑢norm 

Cos 
0.8553 0.6567 71 0.8351 0.6348 114 

(-0.47%) (-0.42%) (x3.0) (-2.62%) (-3.67%) (x3.4) 

PCC 
0.8432 0.6474 75 0.8184 0.6274 121 

(-1.87%) (-1.83%) (x3.1) (-4.80%) (-4.79%) (x3.6) 

𝑝𝑝𝑢𝑢biased 

Cos 
0.8153 0.6239 73 0.8129 0.6228 117 

(-5.12%) (-5.40%) (x3.3) (-5.21%) (-5.49%) (x3.4) 

PCC 
0.8096 0.6201 79 0.8072 0.6186 126 

(-5.78%) (-5.97%) (x3.3) (-5.88%) (-6.13%) (x3.7) 

𝑝𝑝𝑢𝑢w-biased 

Cos 
0.8149 0.6235 74 0.8057 0.6172 119 

(-5.17%) (-5.46%) (x3.1) (-6.05%) (-6.34%) (x3.5) 

PCC 
0.8069 0.6171 80 0.8022 0.6148 122 

(-6.10%) (-6.43%) (x3.3) (-6.46%) (-6.71%) (x3.6) 
 

4.4. Performance of the Unified Neighborhood-Based 
System 

Finally, the advanced baseline estimates are 
integrated into kNNBaseline and kNNContent models 
to refine the process of predicting unknown ratings. For 
calculating the item-item similarity in kNNBaseline 
model, two common measures in implementing 
neighborhood-based RS, namely Cos and PCC, are 
examined. The same goes for kNNContent model, 
where Coscontent and PCCcontent are both implemented for 
comparison. 

As shown in Fig. 4, the outperformance of the 
modified baseline estimates over their original shown 
in Table 2 makes significant accuracy improvements in 
the rating prediction task: the newly proposed 
neighborhood-based models, totally surpass their initial 
versions for all cases by a large margin. Moreover, the 
empirical results again confirm that incorporating the 
user and item biases, along with eliminating the effect 
of low score features, can produce a much more reliable 
version of user feature vectors. 

Another noticeable observation from Fig. 4 is that 
even though incorporating 𝑠𝑠𝑢𝑢𝑢𝑢 calculated by PCC is 
clearly better than Cos when using 𝑝𝑝𝑢𝑢norm, the difference 
between these two similarity measures gets much 
smaller in the case of 𝑝𝑝𝑢𝑢biased and insignificant with 
𝑝𝑝𝑢𝑢w-biased. This is because the user feature vector 
generated by (6) or (7) has the original ratings 
subtracted by the baseline estimate, which makes the 
mean of the resulting vector come close to 0. Therefore, 
applying Cos or PCC to the approximately zero-mean 
vectors produces nearly identical results. 

 

 
Fig. 4: Error rates of kNNBaseline and kNNContent 
models when incorporating the user-item similarity 
scores. 
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Table 3. Performance of the neighborhood-based 
models utilizing the user-item correlations against 
popular CF models. 

Model RMSE MAE Time [s] 

kNNBaseline (𝑘𝑘 = 40) 0.8108 0.6167 565 

kNNContent (𝑘𝑘 = 20) 0.7885 0.5988 293 

SVD (40 factors) 0.7922 0.6042 292 

SVD++ (40 factors) 0.7894 0.5992 27,387 

I-RBM 0.7951 0.6065 96,455 

I-AutoRec 0.7808 0.5931 69,860 

kNNBaseline 
incorporating 𝑠𝑠𝑢𝑢𝑢𝑢 

(𝑘𝑘 = 40) 
0.7853 0.5981 659 

kNNContent 
incorporating 𝑠𝑠𝑢𝑢𝑢𝑢 

(𝑘𝑘 = 25) 
0.7719 0.5866 392 

kNN with hybrid 
similarity matrix 
incorporating 𝑠𝑠𝑢𝑢𝑢𝑢 

(𝑘𝑘 = 25) 

0.7690 0.5830 420 

 
Due to the discussed reasons, in the following 

experiments, 𝑝𝑝𝑢𝑢w-biased and PCC are thus adopted to 
calculate 𝑠𝑠𝑢𝑢𝑢𝑢 for best accuracy. Table 3 shows a 
comparison between the neighborhood-based models 
incorporating the user-item correlations and several 
common CF ones, including deep learning systems. 
Note that for a fair comparison, the number of 
neighbors 𝑘𝑘 of each neighborhood-based model is 
chosen for the best performance. In this study, the 
hybrid similarity matrix proposed in [12] is also 
integrated into kNN with 𝑠𝑠𝑢𝑢𝑢𝑢 to boost the accuracy of 
the unified system. 

Specifically, the kNNContent model with 𝑠𝑠𝑢𝑢𝑢𝑢, 
gains: 

- 4.80% lower RMSE and 4.88% lower MAE than 
the original kNNBaseline. 

- 2.11% lower RMSE and 2.03% lower MAE than 
the original kNNContent. 

- 2.56% lower RMSE and 2.91% lower MAE than 
SVD. 

- 2.22% lower RMSE and 2.10% lower MAE than 
SVD++. 

- 2.91% lower RMSE and 3.28% lower MAE than 
I-RBM 

- 1.14% lower RMSE and 1.10% lower MAE than 
I-AutoRec. 

On the other hand, by combining the hybrid 
similarity matrix [12] and using user interests in 

specific item’s features into kNN, the prediction 
accuracy gains 0.29% lower RMSE and 0.36% lower 
MAE than the kNNContent with 𝑠𝑠𝑢𝑢𝑢𝑢. This 
improvement again validates the effectiveness of 
incoporating 𝑠𝑠𝑢𝑢𝑢𝑢 into neighborhood-based RS. 

These improvements in predicting accuracy are 
achieved at the expense of the additional complexity. 
However, in practice evaluating the user-item 
similarity matrix from fixed-length vectors could be 
performed in parallel with a low computational cost. 
Hence, we consider that this trade-off is worth in real-
life applications. 

5.  Conclusion 

Conventional neighborhood-based CF methods 
have shown remarkable success in real-life systems. 
However, due to the lack of user information as a result 
of several personal privacy concerns on the internet, 
user-item correlations are not well-considered in 
implementing RS despite their usefulness in describing 
users’ interests. In this paper, we first introduced 
various techniques to characterize user preferences 
utilizing both rating data and item content information. 
The new user representations not only help the system 
understand user interests in each item attribute but also 
make it possible to measure reliable user-item 
correlations. Consequently, an innovative method was 
proposed to adjust the baseline estimate of kNN-based 
that takes user-item similarity scores into account. 
Thereby, the resulting hybrid models achieve at least 
2.11% lower RMSE and 2.03% lower MAE compared 
to their neighborhood-based counterparts, whilst 
performing at least 1.10% better compared to other 
deep learning and matrix factorization systems. This 
leads to the conclusion that neighborhood-based RSs 
could be greatly improved by integrating both the item-
item and user-item correlations in the predicting model. 
In addition, we have combined this model with a 
previously proposed publication, the prediction results 
have improved but not significantly compared to the 
idea presented in this paper. 

These promising results with user-item similarity 
have opened us up to several potential research 
directions. Our future work will focus on extending the 
application of user-item correlations in other CF 
systems, not limited to neighborhood-based ones. We 
are also interested in applying modern neural networks 
to learn hidden relationships between a user’s ratings 
and the content of those items that he rated to learn 
more about him and providing efficient user-item 
similarity scores. 
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