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Abstract 

The study presents a simple way to optimally design a Proportional-Differential (PD) controller and apply it to 
the vibration control of a quarter car model's active suspension system. First, the optimization objectives are 
determined, including minimizing the vehicle body acceleration and the suspension deflection. The tyre 
deflection and road holding constraints are also considered. Next, the variables, including the components in 
the gain vector of the PD controller, are optimized using the Balancing Composite Motion Optimization 
(BCMO) algorithm. Different controller configurations, according to the two above optimization objectives, are 
simulated to verify the performance of the controllers for the nominal system and for the system when its mass 

and stiffness are varied. An H controller in a reputable published study is also included for comparison. The 
simulation results show the proposed PD controllers' high control efficiency and robustness, especially the PD 
controller, which is based on minimizing the vehicle body's acceleration. 
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1. Introduction1 

The problem of controlling the vibration of 

structures is often to reduce or eliminate unwanted 

vibrations. Therefore, this problem has received the 

attention of many researchers [1-5].  

Among control structures, active suspension 

systems of transport vehicles also need due attention 

because the safety and comfort of cars need to be 

continuously improved to serve passengers and 

luggage [6-8]. 

Many different control algorithms have been 

applied to the field of structural vibration control in 

general and vibration control of active suspension 

systems in particular [1-8]. Among these controllers, 

the Proportional-Differential (PD) controller is 

commonly used because it has many advantages, such 

as simplicity, high efficiency, and ease of 

optimization. Determining the parameters of PD 

controllers can be done by trial and error methods or 

by using tuning tools of specialized software.  

The Balancing Composite Motion Optimization 

(BCMO) is a recently published herding-based 

optimization algorithm [9]. This algorithm has many 
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advantages, such as not requiring algorithm 

parameters, being simple to use, fast convergence, etc. 

For the above reasons, this study presents a 

simple approach to optimally design a PD controller 

using the BCMO algorithm and applies it to vertical 

vibration control of an active suspension system of a 

quarter car model. 

2. The Active Suspension Model 

Consider the active suspension of a quarter car 

model, as shown in Fig. 1 [10, 11]. 

 

Fig. 1. The active suspension system 
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In this model, the mass, stiffness, and damping 

coefficient of the vehicle body and the wheel are m1, 

m2, k1, k2, c1, and c2, respectively. The car body and the 

wheel displacements are z1 and z2. The road profile is 

denoted w.  

The system's Lagrange equations are as follows:  
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Therefore, the motion equations of the system are 

as follows: 
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The system's state vector is: 
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For this active suspension system, the goals and 

constraints are as follows [10]: 

- Minimize the vehicle body acceleration: 

1 minz →     (7) 

- Minimize the suspension deflection: 

1 2 minz z− →     (8) 

- Minimize the tyre deflection: 

2 minrz z− →     (9) 

- The constraint on the road holding: 

( )
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The gravitational acceleration g is 9.81 m/s2. 

- The constraint on the actuator limitation (umax is 

the actuator's maximum control force): 

maxu u     (11) 

3. Control Design 

The operating diagram of the suspension system 

using the PD controller is plotted in Fig. 2, where K is 

the gain vector of the PD controller as follows: 

 1 2 1 2P P D DK k k k k=     (12) 

Hence, kP1 and kP2 are coefficients for 

proportional variables, while kD1 and kD2 are 

coefficients for differential variables.  

 

 

Fig. 2. The operating diagram of the system 
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The problem of optimal design of the PD 

controller for the active suspension system, as shown 

in Fig. 1, is presented with design variables, objective 

functions, and constraints as following.  

- Design variables include four parameters of the 

gain vector K (kP1, kP2, kD1, and kD2). 

- Objective functions are formulas (7) and (8). 

- As constraints, in addition to the above 

constraints in (9) and (10), (8) is converted into the 

following form: 

2 2 maxr rz z z−      (13) 

In which z2rmax is a given value. 

4. Numerical Simulations 

Consider a suspension system with the following 

parameters [10]: m1 = ×320 kg, m2 = 40 kg,                       

k1 = 18000 N/m, k2 = ×200000 N/m, c1 = 1000 Ns/m, 

and c2 = 10 Ns/m, where  and  are real numbers 

taking on the values 0.9, 1, or 1.1. The road surface 

profile w has a bump shape [10]: 
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where L = 5 m and A = 0.08 m are the length and height 

of the bump, respectively. The vehicle's speed V is  

12.5 m/s (45 km/h). So,  
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The maximum allowable values of the 

suspension deflection (SD), the tyre deflection (TD), 

and the control force are given as [10]: z12max = 0.1 m, 

z2rmax = 0.01764 m, and umax = 2500 N. 

The PD controller is optimized according to the 

objective functions in (7) and (8) and they are denoted 

as PDa and PDd, respectively, with their gain vectors 

Ka and Kd. The results of the optimization problem for 

the gain vectors Ka and Kd are as follows:  

Ka = [-12917.37   9414.65   700.94   522.77] 

Kd = [-14104.33   12258.64   964.89   -712.78] 

In this study, the simulation results of the H 

controller (denoted as Hinf) in [10] are also compared 

in this section. The Hinf's control force is calculated as 

follows [10]: 
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The gain vector Ki is as follows [10]: 

Ki = [10098   49655   -1896   909] 

First, the simulations are performed with the 

nominal system ( =  = 1). Let the relative SD and 

TD be the ratio between SD and TD to their maximum 

allowable values, respectively. The relative tyre force 

(TF) is the ratio in (10). The time responses of the body 

acceleration, the relative SD, the relative TD, the 

relative TF, and the control force are shown in Fig. 3. 

The symbol UC corresponds to the uncontrolled case.  

 

 

 
Fig. 3. The system's time responses in the case of            

 =  = 1, V = 12.5 m/s 
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The vehicle body mass (m1) and tyre stiffness (k2) 

may change in actual use. Therefore, simulations for 

different values of  and   are also performed. The 

results of these simulations are shown in Fig. 4 to     

Fig. 7 with other pairs of  and   values                           

(V = 12.5 m/s). 

The results in Fig. 4 to Fig. 7 when V = 12.5 m/s 

show that the controllers meet the control objectives, 

i.e., reduce vehicle body acceleration and suspension 

deflection compared to the uncontrolled case. At the 

same time, the controllers are robust to changes in the 

mass and stiffness parameters of the suspension 

system.  

 

 

 

 
Fig. 4. The system's time responses in the case of            

 = 1.1 and  = 1.1, V = 12.5 m/s 

 

Fig. 5. The system's time responses in the case of               

 = 1.1 and  = 0.9, V = 12.5 m/s 
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Fig. 6. The system's time responses in the case of           

 = 0.9 and  = 1.1, V = 12.5 m/s 

 
Fig. 7. The system's time responses in the case of            

 = 0.9 and  = 0.9, V = 12.5 m/s 
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Additionally, the relative SD, the relative TD, the 

relative TF, and the control force all satisfy their 

constraints. 

The variation (%) of peak values of vehicle body 

acceleration ( 1z ), SD, TD of Hinf, PDa, and PDd 

compared to those of the uncontrolled case, and peak 

value of control force u of PDa and PDd compared to 

that of Hinf is listed in Table 1.  

Table 1a. The variation (%) of peak values of the 
vehicle body acceleration, SD, TD, and control force 
criteria ( = 1,  = 1, V = 12.5 m/s) 

Criteria Hinf PDa PDd 

1z  -31.67 -69.02 -25.90 

SD -26.54 -14.50 -32.00 

TD -15.78 -44.45 -8.82 

u 0 0.06 -3.08 

 

Table 1b. The variation (%) of peak values of the 
vehicle body acceleration, SD, TD, and control force 
criteria ( = 1.1,  = 1.1, V = 12.5 m/s) 

Criteria Hinf PDa PDd 

1z  -29.50 -67.03 -25.14 

SD -24.68 -12.80 -29.33 

TD -13.24 -43.26 -7.86 

u 0 -1.46 -7.70 

 

Table 1c. The variation (%) of peak values of the 
vehicle body acceleration, SD, TD, and control force 
criteria ( = 1.1,  = 0.9, V = 12.5 m/s) 

Criteria Hinf PDa PDd 

1z  -30.46 -67.99 -23.63 

SD -22.51 -11.43 -28.18 

TD -14.40 -42.44 -5.59 

u 0 -0.37 -5.14 

 

Table 1d. The variation (%) of peak values of the 
vehicle body acceleration, SD, TD, and control force 
criteria ( = 0.9,  = 1.1, V = 12.5 m/s) 

Criteria Hinf PDa PDd 

1z  -33.17 -69.11 -28.00 

SD -30.11 -17.19 -32.45 

TD -17.54 -46.22 -11.82 

u 0 0.49 -0.85 

Table 1e. The variation (%) of peak values of the 
vehicle body acceleration, SD, TD, and control force 
criteria ( = 0.9,  = 0.9, V = 12.5 m/s) 

Criteria Hinf PDa PDd 

1z  -33.98 -68.64 -26.68 

SD -28.11 -16.21 -31.20 

TD -18.65 -45.75 -9.96 

u 0 1.30 1.92 

 

In simulation cases when V = 12.5 m/s, the PDa 

controller gives outstandingly good results for vehicle 

body acceleration and the relative TD and the relative 

TF indicators compared to the remaining controllers. 

The PDd controller provides the best deflection 

criterion results for the suspension system. The 

maximum control force of the controllers is 

approximately equal. 

The above simulation results are for the case 

where the vehicle's speed is 12.5 m/s. Next, the 

controllers' effectiveness continues to be validated as 

the vehicle's speed changes. 

The variation (%) of peak values of vehicle body 

acceleration ( 1z ), SD, TD of Hinf, PDa, and PDd 

compared to those of the uncontrolled case, and peak 

value of control force u of PDa and PDd compared to 

that of Hinf when V = 10 m/s and 15 m/s                           

( = 1,  = 1) is shown in Table 2 and Table 3, 

respectively. 

Table 2. The variation (%) of peak values of the 
vehicle body acceleration, SD, TD, and control force 
criteria ( = 1,  = 1, V = 10 m/s) 

Criteria Hinf PDa PDd 

1z  -45.23 -69.63 -40.56 

SD -36.20 -23.31 -29.93 

TD -36.50 -64.40 -31.65 

u 0 1.92 11.82 

 

Table 3. The variation (%) of peak values of the 
vehicle body acceleration, SD, TD, and control force 
criteria ( = 1,  = 1, V = 15 m/s) 

Criteria Hinf PDa PDd 

1z  -16.54 -63.97 -9.29 

SD -13.78 -2.15 -19.22 

TD 7.62 -19.90 17.63 

u 0 -4.62 -1.29 
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The time responses of the body acceleration, the 

relative SD, the relative TD, the relative TF, and the 

control force when V = 10 m/s and 15 m/s ( = 1,           

 = 1) are shown in Fig. 8 and Fig. 9, respectively. 

The results in Tables 2 and 3 and Fig. 8 and       

Fig. 9 show that PDa is still effective in reducing the 

vehicle body acceleration and tyre deflection. 

 
Fig. 8. The system's time responses in the case of           

 = 1 and  = 1, V = 10 m/s 

 
Fig. 9. The system's time responses in the case of           

 = 1 and  = 1, V = 15 m/s 
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5. Conclusion 

This study presents an approach for the optimal 

design of PD controllers for the active suspension 

system of a quarter-car model. The setup steps of these 

controllers are simple and explicit based on optimizing 

the parameters of the gain vector using the BCMO 

algorithm. The proposed controllers are highly 

effective, especially for reducing the vehicle body 

acceleration by the PDa controller. The approach can 

be extended to active suspension models with more 

degrees of freedom and nonlinearity and to controlled 

mechanical models in general. 
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