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Abstract 

The study tries to classify the axisymmetric boattail models  with minimum drag using numerical simulation 
and neural networks. Numerical simulation was conducted for the boattail model in a range of angles from 0 
to 22°and length from 0.5 to 1.5 diameter of the model. The Mach number was changed from 0.1 to 3.0. The 
results revealed that, the angle with minimum drag is around 14° at subsonic  but it dramatically shifts to 7-9° 
at supersonic conditions. The maximum error of the neural network in predicting aerodynamic drag is less 
than 2%. At subsonic flow, the angle with minimum drag is around 14° and boattail length was 1.5 times the 
model diameter. At supersonic conditions, the angle and length are around 7° and 1.5 diameter of the model, 
respectively. Increasing boattail length results in reducing drag. This study provides a good reference for 
further design of flying objects and proposes control method for drag reduction. 
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1. Introduction1 

Blunt-based model is a common object in 

aerospace engineering as well as for practical 

applications such as building or bridges. This kind of 

model features a large separation behind the base, 

which results in high aerodynamic drag. To reduce the 

drag, modification of the model is required. Among the 

techniques for drag reduction, boattail shows a high 

effectiveness. The boattail is understood as an 

additional conical geometry added to the base. By 

reducing the base area, the drag can be reduced. 

However, drag reduction highly depends on the 

boattail geometry, which includes both the angles, 

length, and velocity conditions [1-4].  

In various studies by Tran et al. [1, 2], a 

numerical method was applied to calculate the drag 

behavior of the axisymmetric model acquired with    

0.7-diameter conical boattail at both subsonic and 

supersonic conditions. In those studies, a traditional 

method was applied to solve the Navier-Stokes 

equation for drag. Although this method is sufficiently 

powerful for aerodynamic force and surface flow, it is 

quietly expensive with many steps for simulation. The 

other approach is used by experimental studies, which 

were conducted by Mariotti et al. [5] and Tran et al. 

[6] for axisymmetric boattail models. However, the 

approach is not suitable in Vietnam due to the lack of 
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wind tunnel facilities. Consequently, other methods 

are required to develop for further studies. 

In recent years, the significant advancement of 

Artificial Neural Networks (ANNs) has transformed 

various aspects of the aerospace industry. Particularly 

notable is their application in predicting aerodynamic 

coefficients of flying objects, a field that has attracted 

considerable attention. ANNs, with their ability to 

learn from extensive and complex datasets, have 

become essential tools for this task. By leveraging data 

that includes the geometric and physical attributes of 

flying objects, as well as insights from simulations and 

flight tests, ANNs proficiently learn and predict 

aerodynamic coefficient values with remarkable 

accuracy. The use of ANNs in aerodynamic coefficient 

prediction not only streamlines the aircraft design 

process, reducing both time and costs but also provides 

deep insights into the factors influencing flight 

performance. This enables designers and engineers to 

enhance aircraft designs, optimizing performance 

metrics such as fuel efficiency while maintaining high 

standards of safety and reliability during operation. 

Thirumalainambi et al. [7], for example, examined the 

influence of activation functions and input data 

quantity on the predictive capabilities of ANNs for 

aerodynamic coefficients. The study found that with 

sufficient data, ANNs could effectively predict 
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complex aerodynamic coefficients such as drag, lift, 

and moment. Consequently, the sigmoid function in 

the hidden layer is the most suitable for a 3-layer ANN 

in the predictions of the aerodynamic parameters. 

In this study, a numerical process was presented 

to generate data for predicting the aerodynamic drag of 

an axisymmetric model with different boattail 

configurations. The simulation was conducted using 

Reynolds-averaged Navier-Stokes equations and the 

flow around the model was validated and discussed. A  

neural network was then developed to predict  

aerodynamic drag based on the acquired data. The 

results indicate that the proposed ANN achieves high 

accuracy, with an uncertainty of less than 2%. 

Additionally, it was confirmed that the boattail angle 

significantly influences the drag trend, whereas the 

boattail length contributes to drag reduction. Notably, 

the boattail model with the least drag shifts sharply 

from 14° to 7° when the flow transitions from subsonic 

to transonic and supersonic conditions. 

2. Numerical Method 

2.1. Model Geometry 

The geometry of the model is shown in Fig. 1. In 

the details, it has a diameter (D) of 57 mm and a total 

length of 5D. The nose of the model has an ogive shape 

with a length of 2D while the main body has a cylinder 

shape. The selection of the shape of the nose presents 

a large change of drag from subsonic to supersonic 

conditions. As a result, it is much easier to compare the 

outcome for a wide range of Mach numbers. The 

afterbody has a conical shape with changeable length 

and angles. The definition of boattail angle β can be 

seen from Fig. 1. The model is similar to the previous 

study by Platou et al. [8]. However, the boattail length 

can be changed in the current study. 

 

 

Fig. 1. Research model and mesh around the model 

2.2. Numerical Scheme  

In this study, the Reynolds-averaged             

Navier-Stokes (RANS) equations with the k-ω SST 

turbulence model are applied for numerical 

simulations. This model combines the k-ω model for 

near-wall flow and the k-ε model for far-wall flow. The 

k-ω SST turbulence model incorporates two additional 

turbulence equations, k-ε, and k-ω, to simulate 

turbulence characteristics, allowing for highly accurate 

results near the surface of the object and reducing 

computational time in numerical simulations. To 

derive the RANS equations, the averaging process is 

applied to the Navier-Stokes equations, including the 

continuity equation, the three momentum equations, 

and the energy equation. Specifically, the RANS 

model can be represented as follows [9]:  
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where: i, j = 1, 2, 3; ui is the average velocity 

component in each direction, p is pressure,  is the air 

density, and 
ij  is the stress tensor component; 
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Here, vt is the turbulent viscosity due to eddy 

viscosity, represented as follows: 
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In the above equations, *

2, , , , ,k k     are 

constants, chosen differently for near-wall and           

far-from-wall flows. 

This utilized the licensed commercial software 

ANSYS Fluent for simulation. The COUPLED 

algorithm was selected with a convergence criterion 
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set at a residual tolerance of 10-6, along with a      

second-order upwind scheme for both time and space. 

The numerical domain is defined with dimensions of   

36.5D × 22D × 22D in the x, y, and z directions, as 

illustrated in Fig. 2. The domain length is carefully 

chosen to ensure accurate capture of the wake flow. 

The boundary conditions for subsonic and supersonic 

flows within the computational domain are 

summarized in Table 1. 

 

Fig. 2. Numerical domain 

 

Table 1. Numerical conditions 

Condition Inlet Outlet Model 

Subsonic 
Velocity 

inlet 

Pressure 

outlet 
Wall 

Supersonic 
Pressure far 

field 

Pressure 

outlet 
Wall 

2.3. Mesh Structure around the Model 

In this study, a structured mesh is generated to 

ensure computational accuracy. A fine mesh with a 

growth ratio of 1.05 is applied near the model surface 

to capture boundary layer effects effectively. The first 

layer thickness away from the model is set at         

0.210-7 m, ensuring accurate turbulence modeling. 

Fig. 3 illustrates an example of the mesh distribution 

around a boattail body with a boattail angle β of 7° and 

the length-to-diameter ratio of the boattail (LD/D) of 1.0. 

 

Fig. 3. Mesh around the model with β = 7° and          

LD/D = 1.0  

 

Fig. 4 presents the drag coefficient of the               

7° boattail model with different mesh volumes. The 

Mach number in this case was 1.5. The difference in 

the results is not large with a maximum of 2% in 

comparison of the coarse mesh with the finest mesh. 

The drag coefficient decreases and reaches a constant 

value of 0.318 for mesh above 3.0 million cells. 

Consequently, the mesh cells of 3.6 million are 

selected for the all-numerical process for convergence 

of the results.  

 

Fig. 4. Effect of cell number on the drag coefficient 

 

Previously, the k-ω SST turbulence model shows 

an advantage model for simulation of the flow around 

the model with suitable numerical time. However, the 

results of this model are highly dependent on the two 

parameters of a1 and * particularly for the surface 

flow. For that reason, in this current study, these two 

parameters are selected automatically using a UDF 

function. We tested two k-ω SST turbulence models by 

changing the bending functions. The results of the drag 

are presented in the next section. 

2.4. Validation of the Numerical Method 

Since the drag is the main important result of this 

study, the calculation of the drag is compared with 

experimental results for validation. Fig. 5 presents the 

results of the drag coefficient for the 7° boattail model. 

The relevant results of previous studies and 

calculations using Datcom software are also added. In 

our simulation, different methods for parameter 

adjustment are also presented. As can be seen, when 

the parameter is adjusted, numerical results show close 

to experimental data by Platou et al. [8].  Although the 

results at supersonic conditions are captured well, the 

Datcom software can not present good results for 

Mach number around 1.0. The numerical method, 

therefore, can be used to obtain the initial drag 

coefficient for the training. 

 

Fig. 5. Drag as a function of Mach number by different 

numerical method 
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3. Results and Discussions 

3.1. Drag and Flow Behavior 

Fig. 6 shows the results of the drag coefficient for 

different boattail angles and Mach numbers from 

subsonic to supersonic conditions. At subsonic 

conditions, the results are highly consistent for two 

Mach numbers of 0.1 and 0.7. It is understood that the 

flow behavior and wake structure change little for the 

flow at subsonic and therefore the trend of the drag is 

similar. At supersonic flow, the trend of the drag is 

highly modified. In detail, the drag decreases with 

increasing Mach number, and the boattail angle with 

minimum drag shifts to around 7-9°. These results are 

highly consistent with previous data by Cumming et 

al. [10] at supersonic flow and by Tran et al. [6] at 

subsonic conditions.  

 
Fig. 6. Drag as a function of Mach number and boattail 

angles 

 

Under transonic conditions, the trend of the drag 

for different boattail angles is similar at both Mach 

numbers of 0.95 and 1.05, except for the difference in 

the values (see Fig. 7). Here, the drag coefficient 

decreases and gets the minimum value at β of 8° and 

then it increases to a boattail angle of up to 20°. For the 

angles above 20°, a decrease in drag occurs again. The 

trend of the drag is connected to the position of the 

shock wave occurring on the rear region of the model. 

For more details, the surface flow will be analyzed in 

the next section. The results of the drag provide 

sufficient good data for the training process, which 

will be conducted.  

 
Fig. 7. Drag as a function of boattail angles at transonic 

conditions 

 

Fig. 8. Drag as function of boattail length (M = 0.1) 

 

Fig. 8 illustrates the dependence of drag force on 

the boattail length at various boattail angles. At 

supersonic speeds, aerodynamic drag decreases 

significantly as the boattail length increases at small 

boattail angles β of 7° and 9°. When the boattail length 

is increased, the base area of the model reduces 

considerably, leading to a smaller wake and reduced 

base drag. However, at larger boattail angles (β ≥ 18°), 

the drag changes very little with increasing boattail 

length. This could be due to flow separation occurring 

on the tail surface at larger boattail angles. At subsonic 

speeds, the results also show a similar trend with 

increasing boattail length. However, the influence of 

the boattail angle differs, corresponding to the change 

in flow conditions between supersonic and subsonic 

speeds. It is evident that despite changes in boattail 

length, the boattail angle with the lowest drag remains 

at 14° in the subsonic speed range. Therefore, the 

boattail length does not affect the value of the boattail 

angle with the lowest drag. 

At subsonic speeds, a similar trend of decreasing 

drag with increasing boattail length is observed. At 

different boattail lengths, the boattail angle with the 

lowest drag is consistently 14° (Fig. 9). It can be seen 

that at the large boattail angle β of 18°, the drag 

changes very little. Additionally, at LD/D of 0.4, the 

difference in drag between the two boattail angles β of 

14° and 18° is not significant. However, the difference 

in drag between these two angles tends to increase as 

the boattail length increases. Similar to the supersonic 

case, at large boattail angles, flow separation occurs on 

the tail surface, generating high drag. The influence of 

boattail length on drag at large boattail angles is small. 

 

 

Fig. 9. Drag as function of boattail length at M = 2.0 
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The flow behavior around the boattail model is 

presented in Fig. 10 for different Mach number 

conditions for two typical boattail angles of 7° and 

14°. It can be seen that the flow around the model 

changes largely with the boattail model and Mach 

conditions. A large difference occurs for the subsonic 

and supersonic conditions. In detail, the flow is highly 

curvature and smooth at subsonic conditions for both 

two configurations. This is due to the smooth change 

of the flow. An increase in the velocity occurs around 

the leading edge of the boattail, which is due to the 

change of the geometry there. However, at supersonic 

flow, the existence of the shock wave can be seen 

clearly for boattail angles and makes the flow highly 

modified. At a boattail angle of 7°, the shock wave is 

weak with two main shocks occurring at the leading 

edge and trailing edge of the boattail. However, it 

becomes remarkably strong at the angle of 14° and the 

shock wave occurs mainly at the leading edge of the 

model. 

 

  

M = 0.1 

  

M = 1.5 

  

M = 2.0 

Fig. 10. Flow around the boattail model (left - β =7°, 

right - β =14°) 

 

3.2. Selection of Neuron Networks and Evaluation of 

Uncertainty 

To predict the drag coefficient of the model, a 

neural network is built. The neural network utilizes 

continuous transformations from input data passing 

through hidden layers via linear transformations, 

represented by the formula below: 

1 1 2 2 3 3

1

... n n

n

i i

i

z w x w x w x w x b

w x b
=

= + + + + +

= +
  (6) 

Here,
iw represents the weights of the input 

variables,
ix denotes the input variables, n is the 

number of input variables, and b is the bias adjustment 

coefficient. The bias adjustment coefficient functions 

akin to additional neurons that are not directly 

connected to preceding layers. By utilizing bias 

adjustment coefficients, we can dynamically shift the 

activation function position at neurons to the right or 

left, enhancing the flexibility of the network's training 

process and potentially boosting its efficiency. 

After traversing the hidden layer, the neural 

network proceeds to employ nonlinear transformations 

facilitated by activation functions. These functions 

play a pivotal role in both the training and operation of 

artificial neural networks, defining their nonlinear 

characteristics and learning capabilities. Various 

activation functions exist, with the following being 

commonly employed for predicting aerodynamic 

coefficients [11] as below: 

Sigmoid Function (Logsig): 

1
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Hyperbolic Tangent Sigmoid Function (tanh): 
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Loss Function optimization involves adjusting 

the parameters of the ANN to minimize its value. This 

optimization task is commonly accomplished using 

specialized algorithms. Various algorithms can be 

utilized for this purpose, including                    

Levenberg-Marquardt (LM), Bayesian Regularization 

(BR), and Gradient Descent with Momentum (GD), 

among others. In this study, we opt for the LM 

algorithm, as previous research has demonstrated its 

efficacy in predicting aerodynamic coefficients         

[12, 13]. 

The network structure is shown in Fig. 12.  In the 

study, a single-hidden-layer ANN is selected due to its 

simplicity while still ensuring the reliability of the 

obtained results, according to  [14]. The input layer 

includes the length of the boattail, its angle, and the 

Mach number of the flow. This study used one hidden 

layer and the output is the drag coefficient. The 

number of neurons in the hidden layer can be modified. 

To evaluate the stability of the neuron number on the 

results, different tests were conducted. Here, the 

number of neurons is changed from 2 to 200. 
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 In order to evaluate the uncertainty of the 

network, two parameters Mean Absolute Error (MAE ) 

and Coefficient of Determination (R) are calculated by 

the following equations:  

The MAE close to zero shows good parameters of 

the network while the R close to one is better. The error 

shows the difference in mean value between the 

training and test data. As can be seen, when the number 

of parameters in the network increases, the error 

becomes smaller up to n equal to 40. With further 

increasing n, the error increases again. For that 

purpose, this study used 30 neurons for the network. 

Note that the error of the network in predicting the drag 

coefficient is less than 0.3%. Next, the effect of the 

training algorithm and activation function of the 

results are investigated. The results are shown in 

Tables 2, 3, and 4. From the results, the BR algorithm 

and ReLU activation function are selected.  

 

Fig. 12. Design of the neural network 

Table 2. Effect of neuron number on the uncertainty 

Test 

number 

Neurons 

number 
MAE R 

Error 

(%) 

1 2 0.003 0.9832 8.86 

2 5 0.004 0.9997 1.24 

3 10 9.491 × 10-4 1 0.42 

4 15 7.926 × 10-4 1 0.25 

5 20 8.043 × 10-4 1 0.25 

6 25 7.419 × 10-4 1 0.23 

7 30 6.638 × 10-4 1 0.19 

10 35 7.124 × 10-4 1 0.22 

 

Table 3. Effect of training on the uncertainty 

Training 

function 
MAE R 

Error 

(%) 

BR 6.638×10-4 1 0.19 

LM 0.023 0.9884 2.61 

GD 0.161 0.8897 27.68 

 

Table 4. Effect of activate function on the error of the 

network 

Activate 

function 
MAE R 

Error 

(%) 

Sigmoid 6.6379×10-4 1 0.19 

Tanh 0.0011 1 0.24 

ReLU 0.00191 0.9872 0.29 

 

Fig. 13 presents several results from the training 

process, including the convergence and error history. 

It can be observed that overfitting does not occur, and 

the Mean Square Error (MSE) function exhibits good 

convergence. Additionally, the Coefficient of 

Determination (R) approaches a value of 1, indicating 

that the network's predictions account for a significant 

portion of the variability in the input and numerical 

output data. 

 

 

 

Fig. 13. ANN convergence and error history 
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Fig. 14 presents the results of the drag coefficient 

from ANN and Computational Fluid Dynamics (CFD) 

for different boattail angles at a Mach number of 2.0. 

A high consistency of the results is obtained for the 

two methods. The maximum difference of the results 

is less than 2%. When the parameters are carefully 

checked and selected, the ANN should be a good 

method for predicting the aerodynamic drag of the 

axisymmetric boattail model. Next, the network is 

extended for other cases of Mach number to find the 

boattail angles with minimum drag. 

 

Fig. 14. Drag by CFD and ANN 

 

3.3. Drag of the Model Using Neural Network  

The predicting results of the drag for two 

different flow conditions are shown in Fig. 13. Here, 

the x-axis shows the boattail angle while the y-axis 

presents the length of the boattail. Clearly, the drag 

trend is similar for two Mach number conditions and 

the length of the boattail has a large effect on the drag 

behavior.  

 

 
Fig. 15. Results of the drag by ANN (upper: subsonic 

flow, lower: supersonic flow) 

The results also indicate that the angle with 

minimum drag is around 12-16° at subsonic conditions 

and shifts to 6-8° at supersonic flow. In comparison to 

the supersonic flow, the drag at subsonic conditions 

changes much larger. Consequently, using boattail is 

sufficiently effective in subsonic flow in comparison 

to the case of supersonic conditions. This interesting 

result was not presented in previous investigations. In 

the next study, a convolutional neural network is 

developed for predicting the flow fields and pressure 

distribution around the model. 

4. Conclusions 

This study focuses on the drag of the 

axisymmetric boattail model by neural network. To 

obtain the data for the training process, CFD was 

developed. In detail, the RANS with the modified k-ω 

turbulent model was applied for the simulation to 

obtain initial data for the training process. The results 

revealed that the numerical data is highly consistent 

with experimental results. The main conclusion of this 

study is as below. 

At subsonic flow, the angle with minimum drag 

is around 14° but it dramatically shifts to 7-9° at 

supersonic conditions. The minimum drag is less 

sensitive to the boattail angle, while the drag reduces 

as the boattail length increases. 

The maximum error of the neural network in 

predicting aerodynamic drag is less than 2%. 

Consequently, it can be used in further study to predict 

the aerodynamic drag of the model.  

The existence of minimum drag at supersonic 

flow is due to the generation of shock waves around 

the boattail, which has a large effect on the pressure 

and drag trend. 

This study provides a good reference for further 

design of axisymmetric flying objects and proposes a 

good control method for drag reduction. 
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