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Abstract 

In the study, the authors developed a portable, non-invasive smart device for real-time monitoring of electric 
motors' working conditions based on IoT technology and artificial intelligence. The device collects vibration 
data of an electric motor, predicting anomalies using deep learning algorithms. Additionally, an application 
was built to track the real-time working conditions of the electric motors. Whenever an anomaly is detected, 
an alert message is immediately sent to the user via their smartphone. For anomaly prediction, two types of 
vibration data were utilized in the deep learning algorithms: one in the time domain and the other in the 
frequency domain, obtained through a discrete Fourier transform. Various feature extraction models in deep 
learning algorithms were employed to assess the accuracy of each model in predicting electric motor 
anomalies. Experiments were conducted on a grinding machine operating under various grinding conditions 
to evaluate the accuracy of the developed device in predicting anomalies. The results indicate that predicting 
the working condition of an electric motor using time-domain vibration data is more accurate than using 
frequency-domain data. It was found that the Serenest26d_32x4d and Reset 34 feature extraction models 
achieved better training results with time-domain vibration data compared to other models. The Reset 34 
feature extraction model achieves the highest accuracy, with an F1-score of 1, when predicting the working 
condition of the grinding machine. The running time for all prediction models is under 0.02 seconds, 
demonstrating the capability for real-time monitoring of the electric motor's working condition using the 
developed device. 

Keywords: Motor condition monitoring, non-invasive monitoring, smart device, deep learning algorithms,     
real-time monitoring. 

 

1. Introduction* 

Electric motors have played a crucial role in 

providing motion sources across various fields, 

including transportation, aerospace, machine tools, 

robotics, injection molding, production lines, and 

home appliances [1-3]. Particularly in the 

manufacturing sector, electric motors drive most 

devices and machines. A market study indicates that 

the global electric motor industry was valued at 

approximately 145.14 billion in 2022 and is projected 

to reach 292.23 billion by 2032. This growth is 

expected to occur at a compound annual growth rate 

(CAGR) of 7.3% from 2023 to 2032. 

Regular monitoring of the working conditions of 

electric motors is essential and characterized by 

several critical needs. First and foremost, it ensures 

operational efficiency by early detecting potential 

issues, such as excessive vibration, overheating, or 

electrical imbalances. These early warnings can 

prevent costly downtime, as they enable maintenance 

teams to address problems before they escalate into 

significant failures that could halt operations and incur 

substantial repair costs. Secondly, it enhances safety 
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by identifying potential hazards, such as mechanical 

failures and/or electrical faults, that could lead to 

serious accidents. Moreover, tracking the electric 

motor’s performance metrics helps to optimize motor 

efficiency, thereby facilitating energy management, 

optimizing energy consumption and reducing 

operational costs. Finally, it aids in predictive 

maintenance strategies, allowing for timely 

interventions or maintenance that prolong the motor’s 

lifespan. Overall, effective monitoring of the working 

condition of electric motors is neccessary for ensuring 

reliability, safety, and cost-effectiveness in           

motor-driven systems. 

Monitoring the working condition of electric 

motors can be accomplished by two approaches. The 

first one is the invasive monitoring techniques, and the 

other one is non-invasive techniques. Invasive 

monitoring involves installing sensors directly on or 

within the motor to measure parameters such as 

temperature, vibration, and electrical signals [4]. 

These methods provide highly accurate and detailed 

data, enabling precise diagnostics and early detection 

of potential issues. However, it often requires motor 
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disassembly or significant modifications, leading to 

higher installation costs and potential downtime. 

Moreover, the invasive nature can sometimes interfere 

with the motor’s normal operation, potentially 

affecting its performance. 

On the other hand, non-invasive monitoring 

techniques rely on external sensors or meters to 

measure and analyze the electric motor’s operation 

conditions [5, 6]. Non-invasive monitoring is generally 

easier and cheaper to implement since it does not 

require physical alterations to the motor. Therefore, it 

minimizes downtime and avoids any risk of interfering 

with the motor’s operation. However, the accuracy of 

non-invasive methods may be lower than invasive 

techniques. This is because they rely on indirect 

measurements and complex data processing and 

analysis. Additionally, non-invasive monitoring may 

struggle with many noises from the surrounding 

enviroment or nearby working machines which 

potentially results in less precise diagnostics. 

Recently, alongside the growth of the internet, 

artificial intelligence (AI), and wireless 

communication technologies (WCT), the development 

of internet of things (IoT) devices is flourishing across 

various fields such as home appliances and healthcare 

services [7-9], and industrial manufacturing sectors 

[10]. The advancements in AI and WCT not only 

enhance the performance and accuracy of non-invasive 

systems for monitoring electric motors but also enable 

real-time monitoring. The integration of these           

non-invasive monitoring systems with IoT platforms 

facilitates effective real-time monitoring and remote 

control of electric motors. Furthermore, artificial 

intelligence techniques like machine learning (ML) 

can be utilized to analyze the collected data and 

provide improved assessments of electric motor 

performance. 

Many efforts have been made to develop           

non-invasive monitoring systems or devices for 

electric motors based on IoT and/or AI. Magadán et al. 

[11] created an IoT system for wireless monitoring of 

electric motor conditions using wireless multi-sensor 

modules and single-board computers as gateways. It 

was reported that the system could monitor electric 

motors in real-time by collecting their vibration data. 

However, the use of the Bluetooth Low Energy (BLE) 

communication protocol between the sensors and the 

gateways limits the communication range. 

Additionally, obstacles typically exist in a practical 

production environment. Consequently, the data 

transfer speed between the sensors and the gateway is 

reduced, resulting in high latency. Furthermore, the 

analysis of the collected data for predicting anomalies 

in the electric motor was not addressed. 

Similarly, Firmansah et al. [12], Mykoniatis et al. 

[13], Muhammad Sidik et al. [14], and Kunthong          

et al [15] also reported on IoT systems for monitoring 

electric motors. It was noted that the vibration of an 

electric motor is measured and displayed on a mobile 

application without predicting anomalies during the 

motor's operation [12]. Furthermore, the prediction of 

anomalies in an electric motor relies on the vibration 

magnitude and/or the case temperature of the motor 

exceeding a predefined limit [13, 14]. This leads to 

inaccurate predictions of anomalies when the electric 

motor operates under varying loading conditions (for 

instance, a driving motor for interrupted cutting or 

cutting at different depths). In such cases, the vibration 

magnitude of the electric motor fluctuates significantly 

depending on the depth of cut, yet it continues to 

function effectively. However, the monitoring system 

may alert the user frequently, resulting in false 

predictions. This creates inconvenience for users. 

Furthermore, relying on a fixed motor case 

temperature threshold to predict anomalies in electric 

motors based on temperature is not always reliable. 

This is due to the significant temperature variations 

that can occur between day and night or across 

different seasons, such as winter and summer. 

Consequently, the motor case temperature threshold 

should be a dynamic value that is continuously updated 

according to the actual operating conditions of the 

motor. Conversely, predicting anomalies in an electric 

motor by comparing its operational vibration data and 

temperature with that of a motor with a faulty ball 

bearing [15] is both inaccurate and challenging to 

implement in practice. This is because the fault 

associated with a ball bearing in an electric motor is 

not quantifiable, and a faulty ball bearing represents 

only one specific case among numerous types of motor 

malfunctions. Therefore, using faulty ball bearing data 

to predict anomalies in electric motors may lead to 

inappropriate applications for other types of motor 

failures. Additionally, the developed system 

necessitates that users observe and compare the 

collected vibration data from a functioning motor with 

that of a faulty motor. This process is time-consuming 

and poses challenges for practical applications. 

Therefore, it is highly desirable to have an IoT 

system to monitor the working conditions of an electric 

motor, capable of autonomously predicting anomalies 

based on the collected operational data. In this study, 

the authors present an innovative system for 

monitoring the working conditions of an electric motor 

using IoT technology and artificial intelligence (AI). 

The collected vibration data from the electric motor is 

analyzed by deep learning algorithms to predict motor 

anomalies. 

2. Development of IoT System for Monitoring 

Working Conditions of an Electric Motor 

Fig.  1 illustrates the IoT system developed in this 

study for monitoring the working conditions of electric 

motors. The system’s infrastructure resembles a 

standard IoT system, comprising four elements: 

devices, gateway, IoT platform, and a user application. 



  

JST: Smart Systems and Devices 

Volume 35, Issue 2, May 2025, 025-34 

27 

 

Each monitoring device is attached to an electric motor 

(as shown in the accompanying photo in Fig. 1) to 

measure its operating signals (such as vibration data 

and the motor’s frame temperature) and subsequently 

sends these signals to the cloud (IoT platform) through 

a local computer (gateway) via wireless 

communication. The signals are then analyzed using 

deep learning algorithms to detect any abnormal signs 

or malfunctions of the electric motor. The working 

condition of the electric motor is tracked in real-time 

on the user application running on a smartphone. Any 

anomaly detected in the electric motor will be 

immediately communicated to the user. Consequently, 

any abnormal operating signs are detected at an early  

stage, minimizing the risk of serious malfunctions in the 

motor.  

Fig.  2(a) illustrates the design of the electric 

motor condition monitoring device developed in this 

study. The vibration sensor and central processing unit 

are integrated onto a printed circuit board (referred to 

as the control PCB). A lithium battery serves as the 

device's power source. Both the control PCB and the 

lithium battery are housed in a hard plastic case 

composed of two halves (i.e., upper case and lower 

case). The entire device is mounted on a plate designed 

for optimal contact with the cover of an electric motor. 

The overall dimensions of the device are                   

70mm × 55mm × 50mm. 

 

Fig. 1.  IoT infrastructure of rotational speed and vibration measuring device system  

 

            
  

         (a) 3D design model of the device                                         (b) Block diagram of monitoring device 

Fig. 2.  3D design model and block diagram of monitoring device 
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Fig.  2 (b) illustrates the block diagram of the 

electric motor working condition monitoring device. 

The control principle of the device aligns with several 

IoT systems previously presented [5, 7], which 

comprises the following units. 

- Central Processing Unit (CPU): This is the most 

crucial component of the device, often referred to 

as its brain. The CPU contains the circuits 

necessary to process raw data gathered from 

sensors, store information, and transmit output 

control signals. 

- Wireless Communication Unit (WCU): This 

WCU enables the CPU to communicate with the 

cloud server platform and/or smart devices via a 

Wi-Fi network. The sensing signals from the 

electric motor (i.e., the vibration data and motor 

frame temperature) are collected in real-time and 

synchronized with the cloud server and a user 

application through the WCU. 

- Sensor Unit: This unit comprises a 6-axis 

accelerometer-magnetometer sensor (GY-511 

LSM303DLHC) and temperature sensors (NTC 

MF 52 thermistors). The accelerometer-

magnetometer sensor is a type of micro-electro-

mechanical system (MEMS) that operates based 

on the principles of the piezoresistive 

accelerometer and Hall Effect Magnetometer. 

The GY-511 LSM303DLHC sensor measures the 

vibration accelerations of the motor in the x, y, 

and z directions, as well as the magnetic field. It 

then converts these measurements into electrical 

signals. 

- Power Supply Unit: This unit consists of a 

rechargeable lithium battery and a battery 

management circuit. It provides appropriate 

power for the entire system. In addition, the 

battery is charged using a dedicated charger for 

the device. This charger ensures a consistent 

power supply for the device to operate 

continuously. 

To access the monitoring device via the IoT 

platform, an application (app) has been developed for 

smartphones using Kotlin and the Android Studio IDE. 

The app displays various operational parameters of the 

electric motor, including vibration accelerations in the 

x, y, and z directions, rotation speed, the motor's frame 

temperature, and ambient temperature. 

It is important to note that the device used for 

measuring rotation speed is specifically designed for 

induction motors, as previously reported [5]. In the 

app, the operational parameters of each electric motor 

are organized into specific tabs, as illustrated in Fig.  3. 

Whenever an anomaly or malfunction in an electric 

motor is detected, a warning message will be promptly 

displayed on the application screen to alert the user.  

3. Measuring Vibration Data of an Electric Motor 

Fig. 4 illustrates the flowchart diagram for 

predicting anomalies in an electric motor using 

artificial intelligence. A Deep Learning (DL) 

algorithm was employed to analyze the vibration data 

of the electric motor, which was measured by the 

developed IoT device in this study. Firstly, the raw 

vibration data of an electric motor was collected from 

the accelerometer-magnetometer sensor inside the 

device (i.e., vibration accelerations of the motor in the 

x, y, and z directions). The data collection process is 

detailed as follows. 

 
 

     

                 (a)                                 (b)                                (c)                                 (d)                               (e) 

Fig. 3. User interfaces of the mobile application: (a) Login interface; (b) Dashboard interface; (c) Devices list 

interface; (d) Motor vibration data interface; (e) Rotational speed and motor’s frame temperature
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Fig. 4. Flowchart for predicting abnormal vibrations in electric motors using a deep learning algorithm 

 

 

Fig. 5. Experiment setup for measuring the vibration 

of an electric motor 

 

Fig. 5 illustrates the experimental setup for 

measuring vibration data from an electric motor using 

the developed device. The device is affixed to the 

electric motor of a grinding machine (Bosch        

GBG35-15 double-wheeled bench grinder). Vibration 

data was collected under two scenarios: the first under 

normal working conditions, and the second under 

abnormal working conditions (artificially induced 

impact forces). 

Fig. 6 (a) illustrates the experimental setup for 

measuring the vibration data of the grinding machine 

under normal working conditions. Grinding 

experiments were performed on two types of 

workpiece materials. The first involved grinding 

aluminum, while the second focused on S50C steel. 

Throughout the grinding process, the feeding force 

was manually adjusted to gather vibration data from 

the grinding machine at various material removal rates. 

In total, 450 vibration data samples corresponding to 

different material removal rates were collected for 

both aluminum and steel grinding. Each sample was 

recorded over 1.5 seconds, yielding 448 data points.  

Fig.  6 (b) presents the collected vibration data of 

the grinding machine in the x, y, and z directions (i.e., 

vibration accelerates of the grinding machine in the x, 

y, and z axes). It was noted that the vibration data of 

the grinding machine exhibited the smallest magnitude 

in the z direction compared to the other directions. This 

measurement data is reasonable, as the vibration of the 

grinding machine in the z direction is constrained by 

the floor.         

 

(a) Grinding experiments under normal working 

conditions 

 

 

(b) Vibration data of the grinding machine measured 

under normal working conditions 

Fig.  6. Experiment setup for collecting vibration data 

from the grinding machine under normal working 

conditions 
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Fig.  7 (a) illustrates the experimental setup for 

measuring vibration data of the grinding machine 

under abnormal working conditions by artificially 

inducing impact forces. The impact forces were 

applied to the grinding machine in the x, y, and z 

directions while it was operating to generate artificial 

abnormal vibration data. In total, 450 vibration data 

samples were collected, corresponding to various 

magnitudes and directions of impact forces. Each 

abnormal vibration data sample was recorded over     

1.5 seconds, yielding 448 data points.  

Fig.  7 (b) displays the measured vibration data of 

the grinding machine in the x, y, and z directions under 

abnormal conditions (i.e., vibration accelerates of the 

grinding machine in these directions when the impact 

force is suddenly applied). It is noted that when the 

impact force is exerted on the grinding machine, the 

vibration accelerates, and the magnitudes increase 

abruptly. 

 

 

 

 

(a) Grinding experiments under abnormal working 

conditions 

 

(b) Vibration data of the grinding machine measured 

under abnormal working conditions 

Fig.  7. Experiment setup for collecting vibration data 

from the grinding machine under abnormal working 

conditions 

 

(a) Flowchart for predicting the working condition of an electric motor based on vibration data using a deep 

learning algorithm 

  

 

(b) Data architecture in deep learning algorithm   

Fig. 8. Flowchart for predicting the working condition of an electric motor and the data architecture utilizing a 

deep learning algorithm 
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4. Prediction of Anomalies in Electric Motors Using 

Artificial Intelligence 

Fig.  8 (a) illustrates the flowchart of the electric 

motor's working condition prediction process based on 

vibration data using a DL algorithm. Firstly, raw 

vibration data was filtered to denoise it. In this work, 

Kalman filter was utilized to remove noise. Two types 

of filtered data were utilized as datasets for training the 

model in the DL algorithm. The first type is filtered 

vibration data (i.e., vibration data in the time domain), 

while the second is the discrete Fourier transform 

(DFT) of the filtered vibration data, which converts the 

vibration data from the time domain to the frequency 

domain. The details of the DFT of the vibration data 

were previously presented [5]. The filtered vibration 

data of the motor served as the dataset for model 

training in the DL algorithm. The dataset was divided 

into two separate subsets: the training set, which 

comprises 80% of the total data, and the remaining 

20%, which is the test set. The filtered data undergoes 

feature extraction and classification processes using 

the DL algorithm to predict abnormal vibration signals 

of the electric motor. In the experiment, three different 

models for feature extraction were used to assess the 

accuracy of each model. These models are 

EfficientNet_b0, Resnet34, and Seresnext26d_32x4d.  

Fig.  8 (b) illustrates the data architecture for 

predicting the working condition of an electric motor 

based on vibration data using a deep learning (DL) 

algorithm. The raw vibration data, sized at 448×3 and 

collected from the developed device, was filtered to 

eliminate unwanted noise. It is important to note that 

the filtering process may alter the mean value and 

variance of the data, but the data size remains 

unchanged. The filtered vibration data (i.e., still sized 

at 448×3) underwent a convolutional neural network 

(CNN) layer for feature extraction. The output from 

the feature extraction layer is a vector sized at 1×4096, 

which contains several valid characteristics of the 

vibration data for classification. This vector was then 

passed through a fully connected layer that includes 

hidden layers. The hidden layers were interconnected 

via weight and bias parameters for signal 

classification. In this study, the cross-entropy loss 

function was employed to calculate the error between 

the prediction results and the original input signal (i.e., 

the labeled input signal). During the model training 

process, the weights and biases were continuously 

updated through the calculation of the loss function 

and backpropagation. By utilizing a rectified linear 

unit (ReLU) activation function, the output value of 

the ReLU function of the model ranges between           

[0, +∞), and the classification of the signal is 

determined using a threshold. Through experiments, a 

threshold ReLU value of 0.5 was found to be optimal 

for signal classification. Signals resulting in a ReLU 

value smaller than 0.5 correspond to normal or good 

conditions, while those exceeding this threshold 

indicate abnormal or bad conditions. 

5. Results and Discussions 

Fig. 9 illustrates the variation of the                  

cross-entropy loss function against the training step for 

predicting the working condition of the grinding 

machine based on vibration data using a DL algorithm. 

Curves a, b, and c represent the loss function variation 

for input vibration data in the time domain, utilizing 

the Efficientnet_b0, Resnet34, and Seresnext26d_32x4d 

feature extraction models, respectively. Similarly, 

curves d, e, and f depict the loss function variation for 

input vibration data in the frequency domain, also 

using the Efficientnet_b0, Resnet34, and 

Seresnext26d_32x4d feature extraction models. It is 

observed that the loss function decreases as the 

training step increases for all types of input data and 

feature extraction models. Notably, the loss function 

decreases rapidly when the training step is below 300, 

slows down between 300 and 600, and reaches 

saturation when the training step exceeds 600.

 

Fig. 9. Variation of the loss function during the training of a model in deep learning algorithms 
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It is observed in Fig. 9 that, with the same feature 

extraction model, utilizing vibration data in the time 

domain yields a lower loss function value compared to 

using vibration data in the frequency domain. This 

indicates that predicting the working condition of the 

grinding machine with time-domain vibration data is 

more effective than with frequency-domain data. The 

reason for this is that the stimulating impact forces 

acting on the grinding machine are random in 

direction, timing, and magnitude. Applying the DFT to 

convert the vibration data from the time domain to the 

frequency domain may diminish or obscure the 

characteristics of the impact process. Consequently, 

the loss function is higher for predicting the working 

condition of the grinding machine when using 

vibration data in the frequency domain. Additionally, 

it is noted that the Seresnext26d_32x4d and Resnet34 

feature extraction models achieve superior training 

results when employing time-domain vibration data 

compared to other models.  

The results of employing various training models 

to assess the test set (which constitutes 20% of the total 

dataset) are summarized in Table 1. The experiments 

were conducted using a GPU P100. The F1-score is 

utilized to evaluate the quality of predictions regarding 

abnormal working conditions of the electric motor in 

the grinding machine. The F1-score [8, 9] is defined as 

shown as below: 

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                     (1) 

where  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                          (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                              (3) 

 

It is found from Table 1 that the F1-scores of all 

prediction models exceed 0.9, with calculation times 

ranging from 0.01 to 0.02 seconds. This indicates that 

the prediction of the electric motor's working condition 

in the grinding machine is highly accurate and suitable 

for real-time monitoring of abnormal working 

conditions. It is noted that, using the same feature 

extraction model, the vibration data in the time domain 

yields a superior F1-score. This suggests that 

predicting the electric motor's working condition with 

time-domain vibration data is more effective than 

using frequency-domain data. Among the feature 

extraction models, the Resnet34 model demonstrates 

the best prediction capability for the grinding 

machine's working condition, achieving an F1-score of 

1 and an average running time of 0.0126 seconds 

(when utilizing GPU P100), which is significantly 

shorter than the device's sampling time of 

approximately 1.5 seconds. Thus, it confirms that the 

device can effectively perform real-time predictions of 

the electric motor's working condition using vibration 

data.  

Fig. 10 illustrates the prediction results of the 

grinding machine's working condition across various 

grinding experiments utilizing the DL algorithm on a 

GPU P100. In this experiment, the Resnet34 model 

was employed for feature extraction of vibration data 

in the time domain. Fig.  10 (a) presents the vibration 

acceleration data when the grinding machine operates 

without cutting. The prediction result closely aligns 

with the actual labeling, indicating that the grinding 

machine is functioning under normal conditions. 

Similarly, Fig. 10 (b) displays vibration 

acceleration data during the grinding of an aluminum 

rod. The ReLU function value of the model is 0.3221, 

which is below the threshold (i.e., 0.5). Consequently, 

the prediction result is 0, suggesting that the grinding 

machine is operating normally. In contrast, when the 

grinding machine operates under impact force in the x 

direction (as shown in Fig.  10 (c)) or in the z direction 

(as depicted in Fig.  10 (d)), some sudden variations in 

the vibration acceleration data are observed in the 

Fig.10 (c) and Fig. 10 (d). The values of the ReLU 

function of the model are 2.1341 and 14.929 when the 

grinding machine is operating under impact force in 

the x and z directions, respectively. These values 

exceed the threshold, indicating that the grinding 

machine is operating under abnormal conditions. The 

prediction results demonstrate that the deep learning 

model used in this study is highly accurate for 

predicting the working condition of the grinding 

machine 

Table 1: Results of using different training models to evaluate the test set (using GPU P100)

Dataset Model Parameters F1 score Running time (s) 

Kalman Filter Data 

(in the time domain)  

Efficientnet_b0 5.3M 0.9292 0.0097 

Resnet34 21.3M 1.0000 0.0126 

Seresnext26d_32x4d 16.8M 0.9955 0.0136 

Kalman Filter and DFT 

Data 

(in the frequency 

domain) 

Efficientnet_b0 5.3M 0.9114 0.0155 

Resnet34 21.3M 0.9655 0.0167 

Seresnext26d_32x4d 16.8M 0.9614 0.0177 
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(a) Free cutting running experiment 

 

  
(b) Grinding of aluminum rod experiment 

 

  
(c) Operating under impact force in x direction 

 

   
(d) Operating under impact force in z direction 

Fig. 10. Prediction results of working conditions for the grinding machine using a deep learning algorithm

6. Conclusion 

In this paper, the authors developed a compact, 

non-invasive smart device for real-time monitoring of 

electric motor working conditions based on IoT 

technology and deep learning algorithms. The device 

predicts anomalies in electric motors by analyzing 

their vibration data using deep learning algorithms. 

Additionally, a mobile application was created to track 

the real-time working conditions of the electric motors. 

Whenever an anomaly is detected, a notification 

message is immediately sent to the user via the 

application as a warning. Experiments were conducted 

on an electric motor of a grinding machine operating 

under various grinding conditions to evaluate the 

device's prediction accuracy. Vibration data from the 

grinding machine in both the time and frequency 

domains was used as two types of datasets for the deep 

learning algorithms. Furthermore, various feature 

extraction models were employed to assess the 

prediction accuracy of the grinding machine's 

anomalies. The experimental results indicate that 

predicting the working condition of the grinding 

machine using time-domain vibration data is more 

accurate than using frequency-domain data. It was also 

found that the Seresnext26d_32x4d and Resnet34 
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feature extraction models yield better training 

accuracy when utilizing time-domain vibration data 

compared to other models. The Resnet34 feature 

extraction model achieves the highest prediction 

accuracy, with an F1-score of 1, when predicting the 

working condition of the grinding machine. The 

developed device successfully predicted various 

working conditions of the grinding machine. It is 

demonstrated that the device is capable of real-time 

monitoring of electric motors. The success of this 

research lays the foundation of several future 

applications, including real-time monitoring of 

numerous machines utilizing electric motors. 

Additionally, it facilitates predictive maintenance of 

electric motors inside many machines, enabling 

technicians to detect potential issues before they 

escalate into costly failures. Consequently, it heralds a 

new era of intelligent manufacturing, where precision 

and reliability enhance productivity and growth. 

Future research will concentrate on testing the 

measuring device across various engine types and 

measurements in real production environment 

conditions to assess the device's features and accuracy. 
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