
JST: Smart Systems and Devices

Volume 35, Issue 2, May 2025, 035-042

35

Orientation Motion Planning Using Cubic Spline Interpolation

Based on Euler Parameters

Nguyen Quang Hoang1*, Duong Minh Hai2, Dinh Van Phong1
1Hanoi University of Science and Technology, Ha Noi, Vietnam

2 Hanoi University of Business and Technology, Ha Noi, Vietnam
*Corresponding author email: hoang.nguyenquang@hust.edu.vn

Abstract

Many engineering applications require smooth orientation planning, i.e., interpolating the orientation of a rigid
body so that its motion is smooth through intermediate poses. This smooth motion ensures for instance the
continuity of the control torques. There are several ways to represent the orientation of a rigid body, so there
are also different ways to plan motion for orientation. Each way has its advantages and disadvantages. In
general, the problem of motion planning for the orientation has been less studied due to its complexity
compared to motion planning for the endpoint. This paper presents the motion planning for the orientation
using Euler parameters when the initial and final directions, and a set of intermediate directions are known.
First, the Euler parameters are interpolated using cubic splines, and then they are normalized. Numerical
simulations are carried out to validate the effectiveness of the proposed method. The proposed algorithms
presented here preserve the fundamental properties of the interpolated rotation. The algorithms presented in
this paper provide interpolation tools for rotation that are accurate, easy to implement.

Keywords: Euler’s parameters, orientation motion planning, cubic splines, numerical simulation.

1. Introduction

In many engineering applications, such as

satellite attitude control, multi-body dynamics, and

robot motion control in the workspace, it is necessary

not only to interpolate the trajectory of a point of the

body but also to interpolate its orientation or plan a

smooth rotational motion for the body. The trajectory

planning of a point in space can be carried out

independently for its three coordinates using

interpolation methods. This problem has been

thoroughly addressed in various studies [1, 3]. There

are several approaches to motion planning for a point

moving from an initial position to a final position, such

as using cubic, quintic, or higher-order polynomials,

harmonic functions, or designing trajectories based on

velocity profiles in the form of triangular or

trapezoidal shapes [2-8]. However, orientation motion

planning is more complex and depends on the choice

of parameters used to describe the orientation.

Different from point representation, there are

several ways to describe the orientation of a body in

space, such as the direction cosine matrix with nine

elements, the Euler angles with three variables, the

rotation axis and rotation angle, or the Euler

parameters with 4 variables. As we know, the

minimum number of parameters describing the

orientation is three, so when planning a motion for an

ISSN 2734-9373

https://doi.org/10.51316/jst.182.ssad.2025.35.2.5

Received: Mar 18, 2025; revised: Apr 19, 2025

accepted: Apr 19, 2025

orientation with more than three parameters, we need

to pay attention to the constraints between them.

Using the direction cosine matrix is an intuitive

description and convenient for coordinate

transformation. Using Euler angles is convenient for

representing component rotations and calculating

angular velocities in terms of their derivatives. With

this minimal set of parameters, we can plan the motion

for each Euler angle. However, it is difficult for the

kinematic differential equation when the body passes

through or nears singular poses.

Some authors have used the direction cosine

matrix to plan the motion for the direction [9, 10]

Accordingly, the cosine matrix is calculated only by

the sum of the direction cosine matrices at the nodes

with the weights being the shape functions of time. The

interpolation matrix is guaranteed by the direction

cosine matrices at the nodes thanks to the shape

function. However, the orthogonality of the direction

cosine matrix outside the nodes is difficult to ensure.

Theoretically, it is possible to approximate the

interpolation matrix to an orthogonal matrix. However,

this is not easy to do and will also incur costs in terms

of computation time and memory space.

In [10] authors expoilted a class of spline

algorithms for generating orientation trajectories that

approximately minimize angular acceleration.

JST: Smart Systems and Devices

Volume 35, Issue 2, May 2025, 035-042

36

A twice-differentiable curve is constructed based on

the rotation matrix that interpolates a given ordered set

of rotation matrices at specified knot times. In this

work, rotation matrices are parametrized by the unit

quaternion, canonical co-ordinate, and

Cayley-Rodrigues representations.

If Euler angles are chosen to describe orientation,

functions can be used to simultaneously interpolate all

three Euler angles. However, analytical singularities

often occur with Euler angles when the rotation axes

of two successive rotations coincide. If Euler

parameters or unit quaternions are used, interpolating

these parameters is relatively challenging, as it

requires maintaining that their modulus is equal to one.

Some methods have been developed for

quaternion interpolation [9-11, 13-15]. In [11] authors

use ν-quaternion splines for interpolation, in which an

iterative method is applied to determine the parameters

appearing in the interpolation method. In [12] authors

use the spherical linear interpolation for connecting

two consecutive orientations described by two

quaternions. However, with this method, the angular

velocity of the object is not continuous at the control

points.

To avoid singularities caused by the choice of

orientation parameters for the rigid body, this paper

selects Euler parameters or unit quaternions to

describe the orientation of the rigid body. The

interpolation method employs cubic spline functions to

smoothly interpolate the Euler parameters, which are

then normalized to ensure their magnitude remains

unitary for describing the object's orientation. The

proposed orientation planning over time ensures

smooth transitions of the body from the initial

direction to the final direction. Numerical simulations

are conducted to verify the effectiveness of the

proposed method.

The remainder of this paper is structured as

follows: Section 2 presents the orientation kinematics

of the rigid body, including Euler angles and Euler

parameters, to clarify the singularities when using

Euler angles and the advantages of Euler parameters.

Section 3 discusses orientation motion interpolation

using Euler parameters. Section 4 presents numerical

simulation results. Finally, a conclusion is provided in

the last section.

2. Orientation Kinematics of a Rigid Body

There are several approaches to representing the

orientation of a rigid body in space. For a free rigid

body, the minimum number of parameters required to

describe its orientation is three. When the number of

orientation parameters exceeds three, the number of

constraint equations must be equal to the number of

parameters minus three. Below are some common

methods for representing the orientation of a rigid

body in space:

- Euler angles, Cardan angles, Roll-Pitch-Yaw

angles (three independent angles),

- Direction cosine matrix with 9 elements, defined

by the special orthogonal group SO(3),

- Axis/angle (, u), with the constraint uTu = 1,

- Euler parameters or unit quaternions:  = [, T]T,

with the constraint T = 2 + T = 1.

A 3×3 direction cosine matrix consists of 9 real

numbers, with six constraint equations. Since the

rotation matrix has six redundant parameters, this

representation is computationally expensive.

Moreover, using orientation errors in the form of a

rotation matrix for control loops is not straightforward.

2.1 Euler Angles and Their Limitations

With three Euler angles, the orientation of a body

in space is determined by three consecutive rotations

around three axes in a specific sequence. However, this

representation contains singularities. For example,

with the three Euler angles [, , ] rotating

sequentially around the current axes in the z-x-z

sequence, the direction cosine matrix is given as

follows:

0 1 2 ,
() () () { }

z x z i j
r

c c s c s c s s c c s s

s c c c s s s c c c c s

s s s c c

  

           

           

    

= =

 − − −
 

= + − + − 
 
 

R R R R

When the element
33
r of the drection cosine matrix is

different from 1, using inverse trigonometric

functions, the Euler angles can be determined.

However, when
33

1r = , so  = 0 or
33

1r = − , so

 = , the angles  and  become indeterminate, and

only their sum or difference can be computed.

The angular velocity of a rigid body characterizes

the rate of change of its orientation in a reference

system. The relationship between angular velocity and

the direction cosine matrix is expressed by the

following equation:

(0) T= RR (1)

where
(0) is the skew-symmetric matrix

corresponding to the angular velocity vector
(0) in the

fixed coordinate system.

With three z-x-z Euler angles [, ,]T  =q , we have:

(0) ()=Q q q (2)

1 (0)()−=q Q q  (3)

JST: Smart Systems and Devices

Volume 35, Issue 2, May 2025, 035-042

37

where

0 sin sincos

0 sin cos sin

1 0 cos

 

  



 
 

= − 
 
 

Q

and

 1

sin cos cos cos
1

sin sin
cos sin 0

sin cos
0

sin sin

   

 
 

 

 

−

 
− 
 

=  
 −
 
 

Q .

It is clear that when  = 0 or  = , matrix
1−Q becomes

indeterminate, and it is impossible to determine q

from the angular velocity of the object.

2.2. Euler Parameters and Unit Quaternion

The axis/angle parameters and quaternion have

four parameters, allowing them to represent global

orientation without singularities. The axis/angle

parameters consist of a unit rotation axis and a

corresponding rotation angle. Euler's finite rotation

theorem states that any rotation around a single axis

can encompass all rotations around intersecting axes.

A unit quaternion is used to describe orientation

in this paper. Its parameters consist of a scalar and a

three-dimensional vector. The following equation

represents the relationship between the unit quaternion

and the axis/angle parameters:

 cos(/ 2), sin(/ 2)  = = u , (4)

where  s a real number representing the rotation

angle, and u is a unit vector indicating the direction of

the rotation axis.

A quaternion  consists of a pair comprising a

real part  and a vector part
1 2 3
i j k   = + + :

1 2 3
i j k    = + = + + +  . (5)

For a unit quaternion, the following constraint

must hold:

 2 2 2 2 2

1 2 3
1T    + = + + + =  . (6)

With the Euler parameters, [,]T T=  , the

rotation matrix is determined by the following

equation 0:

2

3
(,) () 2 ()

(,) (,)

T T

T

S  

 

= − + +

=

R I

E G

    

 
 (7)

with

 3 4

3

() (,)

()S R



 

=

 = + 
 

E E

I

 

− 
 (8)

and

3 4

3

() (,)

() R



 

=

 = − 
 

G G

I S

 

− 
,

where ()S  is the skew-symmetric matrix

corresponding to the three-element vector  :

3 2

3 1

2 1

0

() 0

0

 

 

 

 −
 

= = − 
 −
 

S   .

The detailed expression of the direction cosine matrix

is written as follows:

2 2

1 1 2 3 1 3 2
2 2

1 2 3 2 2 3 1
2 2

1 3 2 2 3 1 3

(,)

2() 1 2() 2()

2() 2() 1 2()

2() 2() 2() 1

()



       

       

       

 + − − +
 

= + + − − 
 − + + −  

=

R

R





From (7) it is noted that (,) (,) = − −R R  ,

meaning that each direction cosine matrix maps to two

unit quaternions:

  R  .

If we wants to compute the unit quaternion

corresponding to a given rotation matrix { }
ij
r=R ,

one of the solutions to this inverse problem is given as

follows:

11 22 33

1
1,

2
r r r = + + +

32 23 11 22 33

13 31 22 33 11

21 12 33 11 22

sgn() 1
1

sgn() 1
2

sgn() 1

r r r r r

r r r r r

r r r r r

 − − − +
 
 = − − − +
 

− − − + 
 

 . (9)

Where sgn() 1x = with 0x  and sgn() 1x = −

with 0x  . In (9), we set 0  , so that it corresponds

to the rotation angle [,]   − , ensuring that all

possible rotation angles can be described. Moreover,

unlike the case of computing the rotation angle and

axis from the direction cosine matrix, no singularities

occur in (9).

In the case where the orientation of the rigid body

changes over time, we need to establish the

relationship between the time derivative of the Euler

parameters [,]T T=  and the angular velocity of

JST: Smart Systems and Devices

Volume 35, Issue 2, May 2025, 035-042

38

the rigid body in the fixed coordinate system
(0) 3R . This relationship is given by the quaternion

propagation as follows:

(0)1

()
2

T= E  (10)

where (0) is the angular velocity vector of the object

expressed in the fixed coordinate system.

It can be shown that
3

() ()T =E E I  [5]. The

rows of the matrix ()E  are mutually orthogonal and

also orthogonal to  , hence () =E 0  , and can be

solved from (10) as:

 (0) 2 ()= E   . (11)

3. Orientation Motion Planning

3.1. Point-to-Point Orientation Motion Planning

The minimum requirement for an object is the

ability to move from the initial pose {p0, R0} or

{p0, 0} to the specified final pose {pf, Rf} or {pf, f}.

The movement process must be smooth. Therefore,

trajectory planning algorithms must be developed to

generate smooth and appropriate trajectories [3]. Now,

consider the possibility of finding a path between a

given set of points in the workspace using interpolation

curves:

0

() (, ,)
f

t f t=  

to ensure its norm is equal to 1.

The simplest solution is to use spherical linear

interpolation, where the interpolation function is

chosen as follows [12]:

0
sin[(1)] sin[]

() ,
sin

f
t t

t
 



− +
=
 

 (12)

with 0 1t  and the acute angle  between two

quaternion corresponding to two Euler parameters.

The above formula ensures that the Euler

parameters vary continuously from the initial value to

the final value, and ensures that its norm is equal to the

unit. However, it is not possible to impose its

derivative to match the desired angular velocity at the

initial and final times.

The interpolation scheme proposed in this paper

is as follows:

0 0

0 0

()()
()

()()
f

f

s t
t

s t

+ −
=

+ −

  


  
 (13)

With ()s t is a polynomial of order 3, 5,…. or any other

continuously smooth function that satisfies

(0) 0, (0) 0,

() 1, () 0.
f f

s s

s t s t

= =

= =
 (14)

Let
0 0

() ()()
f

t s t= + −z    , we have:

0
() ()()

f
t s t= −z   .

Let

0 0

() ()() () ()T

f
v t s t t t= + − = z z   ,

we can calculate:

() ()

()
() ()

T

T

t t
v t

t t
=
z z

z z
.

From this, the Euler parameters and their time

derivatives can be determined as follows:

()

()
()

t
t
v t

=
z

 (15)

and

2

() () () ()
()

()

t v t t v t
t

v t

−
=
z z

 (16)

Thus, with a smooth function ()s t satisfying

(14), we can construct the orientation trajectory for the

object using Euler parameters. The smooth function

()s t can be cubic polynomials, higher-order

polynomials, or even harmonic functions and cycloid

paths,…

3.2. Orientation Motion Planning through

Intermediate Poses

Problem Statement: Given a set of orientations to

be passed through:

0 1

{ , , , }
N

R R R or
0 1

{ , , , }
N

  

corresponding to specific time instances:

0 1

{0 }
N f

t t t t=    =

with initial and final angular velocities set to zero:

 0
() ()

f
t t= = 0  .

It is necessary to interpolate and construct

continuous functions (), 0
f

t t t  such that:

() , 0,1,...,
k k
t k N= =  .

First, we construct a spline curve passing through

a set of 1N + control points
i
q and the

corresponding time sequence:

JST: Smart Systems and Devices

Volume 35, Issue 2, May 2025, 035-042

39

0 1

0 1 1

0 ,

, , ..., , .
N N f

i N N f

t t t t t

q q q q q q
−

=     =

= =

A cubic spline fuction ()S t to be determined is a

piecewise continuous function that sastisfies the

folowing conditions:

1. () ()
k

S t S t= is a cubic polynomial on each

segment
1

[,]
k k

t t t
+

 with 0,1,2,..., 1k N= −

.

2. ()
k k

S t q= , 0,1,2,..., .k N=

3. (), ()& ()S t S t S t is continuous over the

inteval
0 1

[,]=[0,]
N f

t t t t
+

 , ()S t is

continuous to the second order derivative.

We write the N segments of the cubic spline ()S t

function as follows:

2 3() () () ()
k k k k k k k k
S t a b t t c t t d t t= + − + − + − ,

1
[,]
k k

t t t
+

 , 0,1,2,..., 1k N= − ,

where 4N coefficients , , ,
k k k k
a b c d need to be

determined based on the continuity conditions of the

spline at the control points.

From the continuity conditions at the control

points, we obtain:

1 1

() , 0,1,2,..., 1,

() , 0,1,2,..., 1,
k k k

k k k

S t q k N

S t q k N
+ +

= = −

= = −

along with the continuity conditions for the first and

second derivatives:

1 1 1
() (), 0,1,2,..., 2,
k k k k
S t S t k N

+ + +
= = −

1 1 1
() (), 0,1,2,..., 2.
k k k k
S t S t k N

+ + +
= = −

These continuity conditions provide a total of

4 2N − equations. However, to fully define the

system, two additional equations are needed. Here, a

clamped spline is used, meaning the two additional

equations are:

0 0 1
() 0, () 0

N N
S t S t

−
= =

The determination of the polynomial coefficients

()
k
S t is detailed in reference 0.

Applying the above interpolation method to the

four Euler parameters, we obtain four corresponding

spline functions:
0 1 2 3

[(), (), (), ()]t t t t    . These

functions are continuous up to the second derivative

and ensure that they pass through the control points.

However, at time instances outside the control

points, the sum of the squares of these four parameters

may no longer be equal to one. Therefore,

normalization is required using the following formula:

2 2 2 2

0 1 2 3

() ()
() ,

() () () ()

i i
i

t t
t

Zt t t t

 


   
= =

+ + +

 0,1,2, 3i =

And we obtain the derivative of Euler parameters:

 0 0 1 1 2 2 3 3
()[]

() i i
i

t
t

Z Z Z

         


+ + +
= − .

4. Numerical Simulation

In this section, two numerical simulations are

performed. The first case involves point-to-point

interpolation, while the second case considers

orientation interpolation through a set of intermediate

orientations.

Interpolation of direction change from start

direction to end direction

The position and orientation at the initial and

final points are given by:

r0 = [0.50; 0.00; 0.00]; % m

R0 = [-0.4330 0.2746 0.8585

 -0.2500 0.8785 -0.4071

 -0.8660 -0.3909 -0.3117]

0 =[0.5324 0.0076 0.8098 -0.2464]T

r1 = [0.00; 0.50; 0.50]; % m

R1 = [-0.4330 0.8716 -0.2298

 0.2500 0.3611 0.8984

 0.8660 0.3316 -0.3743]

1 =[0.3721 -0.3808 -0.7363 -0.4176]T

Orientation motion planning is carried out in a

time interval T = 2s, cubic polynomial is used:

2 3

2 3

3 2
, 0

()
1,

t t t T
s t T T

T t


−  

= 
 


The interpolation results are presented in Fig. 1

to Fig. 5. The Euler parameters and their derivatives

vary smoothly over time, Fig. 1 and Fig. 2. The angular

velocity increases from 0, reaches its maximum value

at t = 1 s, and then decreases back to 0 at t = 2 s,

Fig. 3. The object's orientation, represented by a

moving frame, is shown as it transitions along a

JST: Smart Systems and Devices

Volume 35, Issue 2, May 2025, 035-042

40

straight-line path and an arc connecting the initial and

final points, Fig. 4 and Fig. 5.

Fig. 1. Euler parameters over time

Fig. 2. Derivatives of Euler parameters over time

Fig. 3. Angular velocity in the fixed frame

Fig. 4. Orientation change along the straight-line

trajectory

From these results, it can be concluded that the

proposed Euler parameter interpolation method is

applicable for orientation motion planning of objects

in space.

Fig. 5. Orientation change along the circular trajectory

Interpolation of orientation through a set of

intermediate orientations

In this simulation, the object moves along a

helical path:

 () [0.5cos , 0.5sin , 0.2] , mTt t t t =r .

while its orientation must pass through the following

intermediate orientations defined by Euler parameters:

0 =[0.7071 0 0.6124 -0.3536]T

1 =[0.8457 -0.0363 0.3141 -0.4300]T

2 =[0.9808 0 0.1951 0]T

3 =[0.8140 0.2614 -0.0700 0.5139]T

4 =[0.4305 0.5610 0.0923 0.7011]T

corresponding to the time instances:

T = [0 0.50 1.00 1.50 2.00]s

Fig. 6. Euler parameters over time passing through the

control points (circular markers)

JST: Smart Systems and Devices

Volume 35, Issue 2, May 2025, 035-042

41

The simulation results for orientation

interpolation through control points are shown in

Fig. 6 to Fig. 9. Fig. 6 shows that four Euler

parameters smoothly transition through the

intermediate orientations while maintaining unit norm

throughout the interpolation process. The time

derivatives of the Euler parameters and the angular

velocity of the object are also smooth functions,

ensuring that the initial and final values are 0, Fig. 7

and Fig. 8. On Fig. 9, the object's orientation,

represented by a moving coordinate frame, is

visualized as it follows the helical trajectory. Fig. 1 and

Fig. 6 also show the norm of Euler parameters being

unit during the motion time.

Fig. 7. Time derivatives of Euler parameters

Fig. 8. Components of the object's angular velocity in

the fixed coordinate system

Fig. 9. Orientation change along the helical trajectory

5. Conclusion

This paper presents the orientation motion

planning of a spatial rigid body using Euler

parameters. The Euler parameters are interpolated

using cubic spline functions, ensuring smoothness up

to the second order derivative while passing through

intermediate poses. The unit norm condition of the

Euler parameters is maintained by normalizing the

spline functions. Using Euler parameters to describe

the orientation of the rigid body avoids the kinematic

singularities associated with Euler angles. The

effectiveness of the proposed method is demonstrated

through numerical simulations. The algorithms

presented in this paper provide interpolation tools for

orientation planning that are accurate, easy to

implement. The interpolation method proposed in this

paper fully satisfies the motion planning problem in

which the object is required to move through given

intermediate orientations. The proposed approach will

be applied to end-effector motion planning for robotic

manipulators in future research.

Acknowledgment

This work was supported in part by the National

Program: Support for research, development, and

technology application of industry 4.0 (KC-4.0/19-25),

under the grant for the project: Research, design and

manufacture of Cobot applied in industry and some

other fields with human-robot interaction (code:

KC-4.0-35/19-35).

References

[1] Nguyen Van Khang, and Chu Anh My, Fundamentals

of Industrial Robots, Ha Noi, Vietnam: Education

Publishing House, 2023. (In Vietnamese: Nguyễn Văn

Khang; Chu Anh Mỹ: Cơ sở robot công nghiệp,

Nhà xuất bản Giáo dục Việt Nam, 2023).

[2] Nguyen Quang Hoang, Foundations of Robotics -

Mechanics and Control, Bachkhoa Publishing House,

2023. (In Vietnamese: Nguyễn Quang Hoàng: Cơ sở

robotics - Cơ học và Điều khiển, Nhà xuất bản Bách

khoa Hà Nội, 2023).

[3] Luigi Biagiotti, and Claudio Melchiorri, Trajectory

Planning for Automatic Machines and Robots, Berlin,

Germany: Springer Science & Business Media, 2008.

https://doi.org/10.1007/978-3-540-85629-0

[4] Ricardo Campa, Karla Camarillo, and Lina Arias,

Kinematic modeling and control of robot manipulators

via unit quaternions in application to a spherical wrist,

Proceedings of the 45th IEEE Conference on Decision

& Control, San Diego, CA, USA, Dec. 13-15, 2006.

https://doi.org/10.1109/CDC.2006.377155

[5] Nguyen Van Khang, Dynamics of Multi-body

Systems, Ha Noi, Vietnam: Science and Technology

Publishing House, 2017. (In Vietnamese: Nguyễn Văn

Khang: Động lực học hệ nhiều vật, Nhà xuất bản

Khoa học và Kỹ thuật, 2017).

JST: Smart Systems and Devices

Volume 35, Issue 2, May 2025, 035-042

42

[6] John J Craig, Introduction to Robotics: Mechanics and

Control, UK: Pearson/Prentice Hall, 2005.

[7] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and

Giuseppe Oriolo, Robotics: Modelling, Planning and

Control, London, UK: Springer Science & Business

Media, 2010.

https://doi.org/10.1007/978-1-84628-642-1

[8] Spong M. W., Hutchinson S., and Vidyasagar M.,

Robot Modeling and Control, New York, USA: John

Wiley & Sons, 2006.

[9] O. A. Bauchau, S. Han, Interpolation of rotation and

motion, Multibody System Dynamics, vol. 31,

pp. 339-370, Mar. 2014.

 https://doi.org/10.1007/s11044-013-9365-8

[10] G. Kang and F. C. Park, Cubic spline algorithms for

orientation interpolation, International Journal

Numerical Methods in Engineering, vol. 46, iss. 1,

pp. 45-64, Jul. 1999.

[11] G. M. Nielson, -Quaternion splines for the smooth

interpolation of orientations, in IEEE Transactions on

Visualization and Computer Graphics, vol. 10, no. 2,

pp. 224-229, Mar - Apr. 2004.

 https://doi.org/10.1109/TVCG.2004.1260774

[12] David Eberly: Quaternion Algebra and Calculus,

Geometric Tools, Redmond WA 98052, Last

Modified: Aug. 18, 2010.

[13] Matthias Neubauer and Andreas Müller, Smooth

orientation path planning with quaternions using

B-splines, IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2015.

[14] A. H. Barr, B. Currin, S. Gabriel, J. F. Hughes, Smooth

interpolation of orientations with angular velocity

constraints using quaternions, in SIGGRAPH

’92 proceedings of the 19th annual conference on

computer graphics and interactive techniques,

New York, pp. 313, Jul. 1992.

 https://doi.org/10.1145/133994.134086

 [15] Andrea Tagliavini and Corrado Guarino Lo Bianco,

A smooth orientation planner for trajectories in the

cartesian space, in IEEE Robotics and Automation

Letters, vol. 8, iss. 5, pp. 2606-2613, May 2023.

 https://doi.org/10.1109/LRA.2023.3256921

