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Abstract 

Many engineering applications require smooth orientation planning, i.e., interpolating the orientation of a rigid 
body so that its motion is smooth through intermediate poses. This smooth motion ensures for instance the 
continuity of the control torques. There are several ways to represent the orientation of a rigid body, so there 
are also different ways to plan motion for orientation. Each way has its advantages and disadvantages. In 
general, the problem of motion planning for the orientation has been less studied due to its complexity 
compared to motion planning for the endpoint. This paper presents the motion planning for the orientation 
using Euler parameters when the initial and final directions, and a set of intermediate directions are known. 
First, the Euler parameters are interpolated using cubic splines, and then they are normalized. Numerical 
simulations are carried out to validate the effectiveness of the proposed method. The proposed algorithms 
presented here preserve the fundamental properties of the interpolated rotation. The algorithms presented in 
this paper provide interpolation tools for rotation that are accurate, easy to implement. 

Keywords: Euler’s parameters, orientation motion planning, cubic splines, numerical simulation. 

 

1. Introduction 

In many engineering applications, such as 

satellite attitude control, multi-body dynamics, and 

robot motion control in the workspace, it is necessary 

not only to interpolate the trajectory of a point of the 

body but also to interpolate its orientation or plan a 

smooth rotational motion for the body. The trajectory 

planning of a point in space can be carried out 

independently for its three coordinates using 

interpolation methods. This problem has been 

thoroughly addressed in various studies [1, 3]. There 

are several approaches to motion planning for a point 

moving from an initial position to a final position, such 

as using cubic, quintic, or higher-order polynomials, 

harmonic functions, or designing trajectories based on 

velocity profiles in the form of triangular or 

trapezoidal shapes [2-8]. However, orientation motion 

planning is more complex and depends on the choice 

of parameters used to describe the orientation. 

Different from point representation, there are 

several ways to describe the orientation of a body in 

space, such as the direction cosine matrix with nine 

elements, the Euler angles with three variables, the 

rotation axis and rotation angle, or the Euler 

parameters with 4 variables. As we know, the 

minimum number of parameters describing the 

orientation is three, so when planning a motion for an 
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orientation with more than three parameters, we need 

to pay attention to the constraints between them. 

Using the direction cosine matrix is an intuitive 

description and convenient for coordinate 

transformation. Using Euler angles is convenient for 

representing component rotations and calculating 

angular velocities in terms of their derivatives. With 

this minimal set of parameters, we can plan the motion 

for each Euler angle. However, it is difficult for the 

kinematic differential equation when the body passes 

through or nears singular poses.  

Some authors have used the direction cosine 

matrix to plan the motion for the direction [9, 10] 

Accordingly, the cosine matrix is calculated only by 

the sum of the direction cosine matrices at the nodes 

with the weights being the shape functions of time. The 

interpolation matrix is guaranteed by the direction 

cosine matrices at the nodes thanks to the shape 

function. However, the orthogonality of the direction 

cosine matrix outside the nodes is difficult to ensure. 

Theoretically, it is possible to approximate the 

interpolation matrix to an orthogonal matrix. However, 

this is not easy to do and will also incur costs in terms 

of computation time and memory space. 

In [10] authors expoilted a class of spline 

algorithms for generating orientation trajectories that 

approximately minimize angular acceleration.               
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A twice-differentiable curve is constructed based on 

the rotation matrix that interpolates a given ordered set 

of rotation matrices at specified knot times. In this 

work, rotation matrices are parametrized by the unit 

quaternion, canonical co-ordinate, and                   

Cayley-Rodrigues representations. 

If Euler angles are chosen to describe orientation, 

functions can be used to simultaneously interpolate all 

three Euler angles. However, analytical singularities 

often occur with Euler angles when the rotation axes 

of two successive rotations coincide. If Euler 

parameters or unit quaternions are used, interpolating 

these parameters is relatively challenging, as it 

requires maintaining that their modulus is equal to one. 

Some methods have been developed for 

quaternion interpolation [9-11, 13-15]. In [11] authors 

use ν-quaternion splines for interpolation, in which an 

iterative method is applied to determine the parameters 

appearing in the interpolation method. In [12] authors 

use the spherical linear interpolation for connecting 

two consecutive orientations described by two 

quaternions. However, with this method, the angular 

velocity of the object is not continuous at the control 

points.  

To avoid singularities caused by the choice of 

orientation parameters for the rigid body, this paper 

selects Euler parameters or unit quaternions to 

describe the orientation of the rigid body. The 

interpolation method employs cubic spline functions to 

smoothly interpolate the Euler parameters, which are 

then normalized to ensure their magnitude remains 

unitary for describing the object's orientation. The 

proposed orientation planning over time ensures 

smooth transitions of the body from the initial 

direction to the final direction. Numerical simulations 

are conducted to verify the effectiveness of the 

proposed method. 

The remainder of this paper is structured as 

follows: Section 2 presents the orientation kinematics 

of the rigid body, including Euler angles and Euler 

parameters, to clarify the singularities when using 

Euler angles and the advantages of Euler parameters. 

Section 3 discusses orientation motion interpolation 

using Euler parameters. Section 4 presents numerical 

simulation results. Finally, a conclusion is provided in 

the last section. 

2. Orientation Kinematics of a Rigid Body 

There are several approaches to representing the 

orientation of a rigid body in space. For a free rigid 

body, the minimum number of parameters required to 

describe its orientation is three. When the number of 

orientation parameters exceeds three, the number of 

constraint equations must be equal to the number of 

parameters minus three. Below are some common 

methods for representing the orientation of a rigid 

body in space: 

-  Euler angles, Cardan angles, Roll-Pitch-Yaw 

angles (three independent angles), 

-  Direction cosine matrix with 9 elements, defined 

by the special orthogonal group SO(3), 

-  Axis/angle (, u), with the constraint uTu = 1, 

-  Euler parameters or unit quaternions:  = [, T]T, 

with the constraint T = 2 + T = 1. 

A 3×3 direction cosine matrix consists of 9 real 

numbers, with six constraint equations. Since the 

rotation matrix has six redundant parameters, this 

representation is computationally expensive. 

Moreover, using orientation errors in the form of a 

rotation matrix for control loops is not straightforward. 

2.1 Euler Angles and Their Limitations 

With three Euler angles, the orientation of a body 

in space is determined by three consecutive rotations 

around three axes in a specific sequence. However, this 

representation contains singularities. For example, 

with the three Euler angles [, , ] rotating 

sequentially  around the current axes in the z-x-z 

sequence, the direction cosine matrix is given as 

follows: 

 

0 1 2 ,
( ) ( ) ( ) { }

z x z i j
r

c c s c s c s s c c s s

s c c c s s s c c c c s

s s s c c

  

           

           

    

= =

 − − −
 

= + − + − 
 
 

R R R R

 

When the element 
33
r  of the drection cosine matrix is 

different from 1, using inverse trigonometric 

functions, the Euler angles can be determined. 

However, when 
33

1r = , so  = 0 or 
33

1r = − , so           

 = , the angles  and  become indeterminate, and 

only their sum or difference can be computed. 

The angular velocity of a rigid body characterizes 

the rate of change of its orientation in a reference 

system. The relationship between angular velocity and 

the direction cosine matrix is expressed by the 

following equation: 

    
(0) T= RR                                        (1) 

where 
(0)  is the skew-symmetric matrix 

corresponding to the angular velocity vector 
(0)  in the 

fixed coordinate system. 

With three z-x-z Euler angles [ , , ]T  =q , we have: 

 
(0) ( )=Q q q    (2) 

  
1 (0)( )−=q Q q   (3) 

 



JST: Smart Systems and Devices 

Volume 35, Issue 2, May 2025, 035-042 

37 

 

where 

 

0 sin sincos

0 sin cos sin

1 0 cos

 

  



 
 

= − 
 
 

Q   

and 

 1

sin cos cos cos
1

sin sin
cos sin 0

sin cos
0

sin sin

   

 
 

 

 

−

 
− 
 

=  
 −
 
 

Q . 

It is clear that when  = 0 or  = , matrix 
1−Q  becomes 

indeterminate, and it is impossible to determine q  

from the angular velocity of the object.   

2.2. Euler Parameters and Unit Quaternion  

The axis/angle parameters and quaternion have 

four parameters, allowing them to represent global 

orientation without singularities. The axis/angle 

parameters consist of a unit rotation axis and a 

corresponding rotation angle. Euler's finite rotation 

theorem states that any rotation around a single axis 

can encompass all rotations around intersecting axes. 

A unit quaternion is used to describe orientation 

in this paper. Its parameters consist of a scalar and a 

three-dimensional vector. The following equation 

represents the relationship between the unit quaternion 

and the axis/angle parameters: 

 cos( / 2), sin( / 2)  = = u ,         (4) 

where  s a real number representing the rotation 

angle, and u is a unit vector indicating the direction of 

the rotation axis.  

A quaternion  consists of a pair comprising a 

real part  and a vector part 
1 2 3
i j k   = + + : 

 
1 2 3
i j k    = + = + + +  .           (5) 

For a unit quaternion, the following constraint 

must hold: 

 2 2 2 2 2

1 2 3
1T    + = + + + =  .           (6) 

With the Euler parameters, [ , ]T T=  , the 

rotation matrix is determined by the following 

equation 0: 

 
2

3
( , ) ( ) 2 ( )

( , ) ( , )

T T

T

S  

 

= − + +

=

R I

E G

    

 
 (7) 

with 

 3 4

3

( ) ( , )

( )S R



 

=

 = + 
 

E E

I

 

− 
           (8) 

and 

3 4

3

( ) ( , )

( ) R



 

=

 = − 
 

G G

I S

 

− 
, 

where ( )S   is the skew-symmetric matrix 

corresponding to the three-element vector  : 

3 2

3 1

2 1

0

( ) 0

0

 

 

 

 −
 

= = − 
 −
 

S   . 

The detailed expression of the direction cosine matrix 

is written as follows:     

2 2

1 1 2 3 1 3 2
2 2

1 2 3 2 2 3 1
2 2

1 3 2 2 3 1 3

( , )

2( ) 1 2( ) 2( )

2( ) 2( ) 1 2( )

2( ) 2( ) 2( ) 1

( )



       

       

       

 + − − +
 

= + + − − 
 − + + −  

=

R

R





 

From (7) it is noted that ( , ) ( , ) = − −R R  , 

meaning that each direction cosine matrix maps to two 

unit quaternions: 

  R  . 

If we wants to compute the unit quaternion 

corresponding to a given rotation matrix { }
ij
r=R , 

one of the solutions to this inverse problem is given as 

follows: 

11 22 33

1
1,

2
r r r = + + +  

32 23 11 22 33

13 31 22 33 11

21 12 33 11 22

sgn( ) 1
1

sgn( ) 1
2

sgn( ) 1

r r r r r

r r r r r

r r r r r

 − − − +
 
 = − − − +
 

− − − + 
 

 . (9) 

Where sgn( ) 1x =  with 0x   and sgn( ) 1x = −  

with 0x  . In (9), we set 0  , so that it corresponds 

to the rotation angle [ , ]   − , ensuring that all 

possible rotation angles can be described. Moreover, 

unlike the case of computing the rotation angle and 

axis from the direction cosine matrix, no singularities 

occur in (9). 

In the case where the orientation of the rigid body 

changes over time, we need to establish the 

relationship between the time derivative of the Euler 

parameters [ , ]T T=   and the angular velocity of 
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the rigid body in the fixed coordinate system 
(0) 3R . This relationship is given by the quaternion 

propagation as follows: 

 
(0)1

( )
2

T= E   (10) 

where (0)   is the angular velocity vector of the object 

expressed in the fixed coordinate system.  

It can be shown that 
3

( ) ( )T =E E I  [5]. The 

rows of the matrix ( )E   are mutually orthogonal and 

also orthogonal to  , hence ( ) =E 0  , and can be 

solved from (10) as: 

 (0) 2 ( )= E   . (11)  

3. Orientation Motion Planning   

3.1. Point-to-Point Orientation Motion Planning 

The minimum requirement for an object is the 

ability to move from the initial pose {p0, R0} or         

{p0, 0} to the specified final pose {pf, Rf} or {pf, f}. 

The movement process must be smooth. Therefore, 

trajectory planning algorithms must be developed to 

generate smooth and appropriate trajectories [3]. Now, 

consider the possibility of finding a path between a 

given set of points in the workspace using interpolation 

curves: 

 
0

( ) ( , , )
f

t f t=     

to ensure its norm is equal to 1. 

The simplest solution is to use spherical linear 

interpolation, where the interpolation function is 

chosen as follows [12]:   

 
0
sin[(1 ) ] sin[ ]

( ) ,
sin

f
t t

t
 



− +
=
 

   (12) 

with 0 1t   and the acute angle  between two 

quaternion corresponding to two Euler parameters.  

The above formula ensures that the Euler 

parameters vary continuously from the initial value to 

the final value, and ensures that its norm is equal to the 

unit. However, it is not possible to impose its 

derivative to match the desired angular velocity at the 

initial and final times. 

The interpolation scheme proposed in this paper 

is as follows: 

 
0 0

0 0

( )( )
( )

( )( )
f

f

s t
t

s t

+ −
=

+ −

  


  
  (13) 

With ( )s t  is a polynomial of order 3, 5,…. or any other 

continuously smooth function that satisfies 

 
(0) 0, (0) 0,

( ) 1, ( ) 0.
f f

s s

s t s t

= =

= =
 (14) 

Let 
0 0

( ) ( )( )
f

t s t= + −z    , we have: 

0
( ) ( )( )

f
t s t= −z   .  

Let  

 
0 0

( ) ( )( ) ( ) ( )T

f
v t s t t t= + − = z z   ,  

we can calculate: 

 
( ) ( )

( )
( ) ( )

T

T

t t
v t

t t
=
z z

z z
. 

From this, the Euler parameters and their time 

derivatives can be determined as follows: 

 
( )

( )
( )

t
t
v t

=
z

  (15) 

and  

 
2

( ) ( ) ( ) ( )
( )

( )

t v t t v t
t

v t

−
=
z z

   (16) 

Thus, with a smooth function ( )s t  satisfying    

(14), we can construct the orientation trajectory for the 

object using Euler parameters. The smooth function 

( )s t  can be cubic polynomials, higher-order 

polynomials, or even harmonic functions and cycloid 

paths,…  

3.2. Orientation Motion Planning through 

Intermediate Poses 

Problem Statement: Given a set of orientations to 

be passed through: 

 
0 1

{ , , , }
N

R R R  or 
0 1

{ , , , }
N

     

corresponding to specific time instances: 

 
0 1

{0 }
N f

t t t t=    =  

with initial and final angular velocities set to zero: 

 0
( ) ( )

f
t t= = 0  . 

It is necessary to interpolate and construct 

continuous functions ( ), 0
f

t t t   such that: 

( ) , 0,1,...,
k k
t k N= =  . 

First, we construct a spline curve passing through 

a  set of 1N +  control points 
i
q  and the 

corresponding time sequence: 
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0 1

0 1 1

0 ..... ,

, , ..., , .
N N f

i N N f

t t t t t

q q q q q q
−

=     =

= =
 

A cubic spline fuction ( )S t  to be determined is a 

piecewise continuous function that sastisfies the 

folowing conditions: 

1. ( ) ( )
k

S t S t=  is a cubic polynomial on each 

segment 
1

[ , ]
k k

t t t
+

  with 0,1,2,..., 1k N= −

. 

2. ( )
k k

S t q= , 0,1,2,..., .k N=  

3. ( ), ( )& ( )S t S t S t  is continuous over the 

inteval 
0 1

[ , ]=[0, ]
N f

t t t t
+

 , ( )S t  is 

continuous  to the second order derivative. 

We write the N segments of the cubic spline ( )S t  

function as follows: 

2 3( ) ( ) ( ) ( )
k k k k k k k k
S t a b t t c t t d t t= + − + − + − ,  

1
[ , ]
k k

t t t
+

 , 0,1,2,..., 1k N= − , 

where 4N  coefficients , , ,
k k k k
a b c d  need to be 

determined based on the continuity conditions of the 

spline at the control points. 

From the continuity conditions at the control 

points, we obtain: 

1 1

( ) , 0,1,2,..., 1,

( ) , 0,1,2,..., 1,
k k k

k k k

S t q k N

S t q k N
+ +

= = −

= = −
 

along with the continuity conditions for the first and 

second derivatives: 

1 1 1
( ) ( ), 0,1,2,..., 2,
k k k k
S t S t k N

+ + +
= = −  

1 1 1
( ) ( ), 0,1,2,..., 2.
k k k k
S t S t k N

+ + +
= = −  

These continuity conditions provide a total of

4 2N −  equations. However, to fully define the 

system, two additional equations are needed. Here, a 

clamped spline is used, meaning the two additional 

equations are: 

 
0 0 1
( ) 0, ( ) 0

N N
S t S t

−
= =  

The determination of the polynomial coefficients

( )
k
S t  is detailed in reference 0. 

Applying the above interpolation method to the 

four Euler parameters, we obtain four corresponding 

spline functions: 
0 1 2 3

[ ( ), ( ), ( ), ( )]t t t t    . These 

functions are continuous up to the second derivative 

and ensure that they pass through the control points.  

 

However, at time instances outside the control 

points, the sum of the squares of these four parameters 

may no longer be equal to one. Therefore, 

normalization is required using the following formula: 

2 2 2 2

0 1 2 3

( ) ( )
( ) ,

( ) ( ) ( ) ( )

i i
i

t t
t

Zt t t t

 


   
= =

+ + +
 

       0,1,2, 3i =  

And we obtain the derivative of Euler parameters: 

 0 0 1 1 2 2 3 3
( )[ ]

( ) i i
i

t
t

Z Z Z

         


+ + +
= − . 

4. Numerical Simulation  

In this section, two numerical simulations are 

performed. The first case involves point-to-point 

interpolation, while the second case considers 

orientation interpolation through a set of intermediate 

orientations. 

Interpolation of direction change from start 

direction to end direction   

The position and orientation at the initial and 

final points are given by: 

r0 = [0.50; 0.00; 0.00]; % m 

R0 = [-0.4330    0.2746    0.8585 

      -0.2500    0.8785   -0.4071 

      -0.8660   -0.3909   -0.3117] 

0 =[0.5324 0.0076 0.8098 -0.2464]T 

r1 = [0.00; 0.50; 0.50]; % m 

R1 = [-0.4330   0.8716   -0.2298 

      0.2500    0.3611    0.8984 

      0.8660    0.3316   -0.3743] 

1 =[0.3721 -0.3808 -0.7363  -0.4176]T 

Orientation motion planning is carried out in a 

time interval T = 2s, cubic polynomial is used: 

 

2 3

2 3

3 2
, 0

( )
1,

t t t T
s t T T

T t


−  

= 
 


 

The interpolation results are presented in Fig. 1 

to Fig. 5. The Euler parameters and their derivatives 

vary smoothly over time, Fig. 1 and Fig. 2. The angular 

velocity increases from 0, reaches its maximum value 

at t = 1 s, and then decreases back to 0 at t = 2 s,           

Fig. 3. The object's orientation, represented by a 

moving frame, is shown as it transitions along a 
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straight-line path and an arc connecting the initial and 

final points, Fig. 4 and Fig. 5.  

 

Fig. 1.  Euler parameters over time 

 

 

Fig. 2.  Derivatives of Euler parameters over time  

 

 

Fig. 3. Angular velocity in the fixed frame   

 

 

Fig. 4. Orientation change along the straight-line 

trajectory 

From these results, it can be concluded that the 

proposed Euler parameter interpolation method is 

applicable for orientation motion planning of objects 

in space.  

 

 

Fig. 5. Orientation change along the circular trajectory 

 

Interpolation of orientation through a set of 

intermediate orientations 

In this simulation, the object moves along a 

helical path: 

 ( ) [0.5cos ,  0.5sin ,  0.2 ] , mTt t t t =r . 

while its orientation must pass through the following 

intermediate orientations defined by Euler parameters:  

0 =[0.7071  0       0.6124 -0.3536]T 

1 =[0.8457 -0.0363  0.3141 -0.4300]T 

2 =[0.9808  0       0.1951  0 ]T 

3 =[0.8140  0.2614 -0.0700  0.5139]T 

4 =[0.4305  0.5610  0.0923  0.7011]T  

corresponding to the time instances:  

T = [0  0.50   1.00  1.50  2.00]s 

 

 

Fig. 6. Euler parameters over time passing through the 

control points (circular markers) 
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The simulation results for orientation 

interpolation through control points are shown in     

Fig. 6 to Fig.  9. Fig. 6 shows that four Euler 

parameters smoothly transition through the 

intermediate orientations while maintaining unit norm 

throughout the interpolation process. The time 

derivatives of the Euler parameters and the angular 

velocity of the object are also smooth functions, 

ensuring that the initial and final values are 0, Fig. 7 

and Fig. 8. On Fig. 9, the object's orientation, 

represented by a moving coordinate frame, is 

visualized as it follows the helical trajectory. Fig. 1 and 

Fig. 6 also show the norm of Euler parameters being 

unit during the motion time. 

 

Fig. 7. Time derivatives of Euler parameters 

 

  

Fig. 8. Components of the object's angular velocity in 

the fixed coordinate system 

 

  

Fig. 9.   Orientation change along the helical trajectory 

5. Conclusion  

This paper presents the orientation motion 

planning of a spatial rigid body using Euler 

parameters. The Euler parameters are interpolated 

using cubic spline functions, ensuring smoothness up 

to the second order derivative while passing through 

intermediate poses. The unit norm condition of the 

Euler parameters is maintained by normalizing the 

spline functions. Using Euler parameters to describe 

the orientation of the rigid body avoids the kinematic 

singularities associated with Euler angles. The 

effectiveness of the proposed method is demonstrated 

through numerical simulations. The algorithms 

presented in this paper provide interpolation tools for 

orientation planning that are accurate, easy to 

implement. The interpolation method proposed in this 

paper fully satisfies the motion planning problem in 

which the object is required to move through given 

intermediate orientations. The proposed approach will 

be applied to end-effector motion planning for robotic 

manipulators in future research. 
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