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Abstract 

Accurate solar power forecasting is crucial for optimizing grid operations and balancing energy supply and 
demand. Due to the high variability of solar radiation, advanced machine learning methods are needed to 
enhance forecasting accuracy. This study compares three models: Extreme Gradient Boosting (XGBoost), 
Light Gradient Boosting Machine (LightGBM), and a single-hidden-layer Bidirectional Gated Recurrent Unit 
(BiGRU). XGBoost and LightGBM are decision tree-based boosting models known for fast training and high 
accuracy, while BiGRU is a recurrent neural network designed for time-series data but prone to overfitting. 
Experimental results show that XGBoost and LightGBM train significantly faster and achieve lower errors 
(Normalized Mean Absolute Percentage Error-NMAPE is lower than 5%), demonstrating superior 
generalization. In contrast, BiGRU exhibits overfitting with NMAPE equal to 23.986% and Root Mean Squared 
Error (RMSE) equal to 18,763.12 kW on June 30, 2021. Notably, on December 31, 2021, XGBoost and 
LightGBM closely followed actual power generation trends, whereas BiGRU struggled to capture variations, 
further indicating its generalization issues. The findings highlight XGBoost and LightGBM as more suitable 
models for solar power forecasting, providing valuable insights for researchers and engineers in power grid 
management. 
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1. Introduction* 

Solar power generation forecasting is essential 

for managing and operating renewable energy systems 

[1]. As the share of renewable energy sources in the 

power supply structure increases, ensuring stability 

and optimizing energy distribution become critical 

requirements [2]. Despite being a clean and abundant 

energy source, solar power is highly variable, as it 

depends on weather factors such as solar radiation 

levels, temperature, humidity, and seasonal changes 

[3]. This instability can cause imbalances between 

electricity supply and demand, reduce power grid 

efficiency, and increase the risk of local power 

shortages. Therefore, an accurate solar power 

forecasting system can help system operators make 

informed decisions regarding resource allocation, 

reduce operational costs, and enhance the reliability of 

the power system. 

Traditional forecasting methods, such as linear 

regression and ARIMA models, are simple and easy to 

implement but are often ineffective when applied to 

systems with high variability and non-linearity. In 

recent years, modern machine learning algorithms 
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have demonstrated superior forecasting capabilities 

due to their ability to learn and extract complex 

relationships between input features. Among these, 

decision tree-based boosting techniques such as 

Extreme Gradient Boosting (XGBoost) and Light 

Gradient Boosting Machine (LightGBM) [4], as well 

as deep learning models such as Bidirectional Gated 

Recurrent Unit (BiGRU), are expected to significantly 

improve solar power forecasting accuracy. 

This study selects and compares three forecasting 

models: XGBoost, LightGBM, and BiGRU (1 hidden 

layer). XGBoost and LightGBM are boosting models 

based on decision trees, known for their efficient data 

processing, fast training speed, and good 

generalization ability [4]. Meanwhile, BiGRU  is a 

variant of the Gated Recurrent Unit (GRU), which can 

better capture time-series relationships in data but 

requires more computational resources and is 

susceptible to overfitting if not properly optimized. 

Recent studies have highlighted the effectiveness 

of XGBoost and LightGBM in solar power 

forecasting, particularly due to their fast training speed 

and high accuracy. Unlike conventional machine 
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learning models, XGBoost optimizes training by 

employing parallel computation and regularization 

techniques, reducing overfitting and improving 

generalization. Similarly, LightGBM introduces 

histogram-based feature selection and Gradient-based 

One-Side Sampling (GOSS), making it even faster 

than XGBoost while maintaining comparable accuracy 

[5]. These characteristics make both models              

well-suited for renewable energy forecasting, where 

rapid computation and adaptability to fluctuating 

weather conditions are crucial. 

While XGBoost and LightGBM provide high 

accuracy with fast processing speeds, deep learning 

models like BiGRU take a different approach by 

capturing sequential dependencies in time-series data. 

BiGRU utilizes a bidirectional structure, allowing it to 

learn both past and future temporal relationships, 

However, this design also significantly increases the 

number of trainable parameters, leading to higher 

memory consumption and greater sensitivity to noise. 

BiGRU is often prone to overfitting, particularly when 

dealing with highly variable datasets. The challenge 

lies in balancing short-term fluctuations with            

long-term trends, where excessive reliance on 

historical data can introduce noise and reduce the 

model’s generalization ability [6]. This limitation 

suggests that BiGRU requires careful optimization, 

including appropriate data size selection and 

regularization techniques, to be effectively applied in 

dynamic forecasting. 

Given these observations, this study aims to 

compare XGBoost, LightGBM, and BiGRU in the 

context of solar power forecasting, evaluating their 

performance in terms of forecast accuracy, training 

time, and generalization ability. The findings will 

provide insights into the suitability of machine 

learning and deep learning models for renewable 

energy forecasting, helping researchers and industry 

professionals select the most efficient and reliable 

forecasting approach. 

The main contributions of this paper include 

verification of the execution time of decision tree 

algorithms (XGBoost, LightGBM) and the overfitting 

limitations of RNN (Recurrent Neural Networks) 

algorithms (BiGRU). The remainder of this paper is 

organized as follows: Section 2 provides the research 

methodology of research with selected algorithms; 

Section 3 presents the experimental results, analysis 

and discussion; and finally, Section 4 concludes the 

paper with a summary of the key points and 

suggestions for future research. 

2. Methodology and Forecasting Models 

2.1. XGBoost and LightGBM Model 

XGBoost and LightGBM [5, 7] are built on the 

Gradient Boosting principle, employing an iterative 

learning approach where decision trees are trained 

sequentially to minimize residual errors from previous 

iterations. Specifically, each new tree in the model 

learns from the residual errors of the preceding model 

to optimize overall accuracy. This process continues 

until an optimal number of trees is reached or until the 

error reduction stabilizes. Finally, predictions from all 

trees are aggregated using weighted averaging or 

majority voting to produce the final output. The use of 

XGBoost and LightGBM improves training speed and 

generalization ability compared to traditional Gradient 

Boosting, thanks to improvements such as memory 

optimization, tree pruning techniques,              

histogram-based splitting, and more efficient support 

for large data processing. The workflow of XGBoost 

and LightGBM based on Gradient Boosting is shown 

in Fig. 1 below. 

 

Fig. 1. The working process of XGBoost and 

LightGBM is based on Gradient Boosting 

 

Both XGBoost and LightGBM offer advantages 

over traditional Gradient Boosting due to their 

enhancements as following: 

a) XGBoost optimizes training with Gradient 

Descent Boosted Trees, where each tree is 

updated based on residual errors [7]: 

- It uses shrinkage (learning rate) to prevent 

overfitting. 

- It employs column sampling to reduce 

correlation between trees. 

- It supports pruning to eliminate unimportant 

branches. 



  

JST: Smart Systems and Devices 

Volume 35, Issue 2, May 2025, 054-061 
 

56 

 

b) LightGBM improves Gradient Boosting by [5] 

following properties: 

- GOSS (Gradient-based One-Side Sampling): 

Prioritizing samples with higher gradient values 

for training, increasing efficiency without losing 

accuracy. 

- Histogram-based Splitting: Faster branch 

splitting compared to scanning the entire dataset. 

- Leaf-wise Growth Strategy: Growing trees by 

optimizing the most beneficial leaf rather than 

level-wise splitting like XGBoost, improving 

training speed. 

2.2. BiGRU Model  

BiGRU [8] is a variant of RNNs designed for 

time-series data processing by capturing information 

in both directions: from past to present and vice versa. 

This model uses gating mechanisms to retain relevant 

information and discard unnecessary data, enhancing 

memory retention compared to traditional RNNs. In 

the solar power forecasting problem, BiGRU can 

effectively capture time trends and complex 

relationships between input factors. The choice of a 

BiGRU model with a single hidden layer is based on a 

balance between training time and accuracy. 

Specifically, a single-layer BiGRU typically trains 

faster than a two-layer BiGRU because it has fewer 

parameters to optimize [9]. This helps reduce 

computational resources and processing time, which is 

especially important when working with large datasets 

or real-time applications. 

At the same time, a single hidden layer still 

allows the model to capture important features in      

time-series data, ensuring the necessary accuracy for 

solar power forecasting. However, it is important to 

note that an overly complex model can lead to 

overfitting, while a model that is too simple may not 

have enough capacity to learn complex data patterns. 

Therefore, choosing a single-layer BiGRU is 

considered a reasonable solution, ensuring both 

efficiency and accuracy in forecasting. The structure 

of the single-layer BiGRU model is presented in Fig. 2 

below [10]. 

The 1-hidden-layer BiGRU model combines two 

GRUs in both forward and reverse directions. Each 

GRU consists of update gates and reset gates, which 

are defined through specific mathematical formulas as 

follows [11]: 

- The reset gate (rt) is calculated as follows:  

𝑟𝑡 = 𝜎(𝑊𝑥𝑟𝑥𝑡 + 𝑊ℎ𝑟ℎ𝑡−1 + 𝑏𝑟)      (1) 

- The update gate (zt) is calculated as follows:  

𝑧𝑡 = 𝜎(𝑊𝑥𝑡𝑥𝑡 + 𝑊ℎ𝑧ℎ𝑡−1 + 𝑏𝑧)      (2) 

- The candidate memory content (ℎ̃𝑡) is updated as:  

h̃t = tanh(Wxhxt + W[rj ⊙ ht-1])    (3) 

- The hidden state at time step t (ht) is updated as:  

ht = (1-zt) ⊙ ht-1 + zt ⊙ h̃t     (4) 

In these fomulations: σ is sigmoid function, tanh is 

hyperbolic tangent function, Wxr, Whr, Whz, Wxt, Wxh are 

weight matrices corresponding to the input, hidden 

state, and the reset and update gates, W is a temporary 

weight after element-wise multiplication, br, bz are bias 

vectors for the reset and update gates,  xt is the input 

feature vector at time step t, ht−1 is the hidden state 

from the previous time step, ht is the hidden state at 

time step t, and ⊙ represents the Hadamard product 

(element-wise multiplication). 

 

Fig. 2. Structure of BiGRU model (single hidden layer) 
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The BiGRU architecture used in this study 

consists of one hidden layer with 64 units in both 

forward and backward directions, resulting in a total of 

128 hidden states. The model uses the 'tanh' activation 

function, the 'adam' optimizer, and the mean squared 

error (MSE) as the loss function, dropout rate of 0.1. 

The model was trained for 30 epochs with a batch size 

of 32. 

2.3. Algorithm Diagram Comparing Three Models 

XGBoost, LightGBM and BiGRU in Forecasting 

Solar Power Generation Capacity 

The diagram below illustrates the solar power 

generation forecasting process, encompassing steps 

from collecting and preprocessing historical weather 

and power data, to training and evaluating forecasting 

models such as XGBoost, LightGBM, and BiGRU. 

Subsequently, forecasted weather data is applied to 

estimate power generation, and finally, the forecast 

results are analyzed to assess the performance of these 

models. 

Steps to perform the process: 

Step 1: Collect Historical Data 

The historical data was sampled every 5-minute. 

This high resolution frequency was selected to better 

capture short-term fluctuations in solar power 

generation, while maintaining acceptable 

computational efficiency after aggregation and 

normalization steps. 

Historical weather and solar power output data 

were gathered from January 1, 2022, to December 31, 

2022, for subsequent model training and evaluation. 

This dataset includes factors affecting power 

generation, such as sunlight intensity, ambient 

temperature, panel temperature, and the actual 

electricity produced by the system. 

Step 2: Preprocess the Data 

Before building models, ensure the data is clean 

and ready: 

- Handle Missing Data: Fill in missing values 

using methods like interpolation or by using the 

average value. 

- Remove Outliers: Eliminate unusual data points 

using the Interquartile Range (IQR) method, 

which helps identify and remove values that are 

significantly different from others. 

- Normalize Data: Scale the data to a standard 

range using MinMaxScaler, which adjusts all 

values to be between 0 and 1. 

- Split the Data: Divide the dataset into two parts: 

70% for training the model and 30% for testing 

and evaluating its performance. 

Step 3: Train Forecasting Models 

Choose three models to predict solar power 

output: LightGBM, XGBoost, and BiGRU. Training 

and fine-tuning of each model are conducted using the 

preprocessed data to optimize their key parameters. 

Each model was assessed by analyzing its training time 

and prediction performance on the test data, aiming to 

ensure its ability to generalize to unseen data. 

 

 

Fig. 3. Solar power generation forecasting process           
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Step 4: Forecast Using Specific Day's Weather 

After training, we evaluate the forecasting 

models under different seasonal conditions using 

weather data on June 30, 2021 (summer), and 

December 31, 2021 (winter). For each of these days, 

the input consists of 288 weather data points, 

corresponding to 5-minute intervals throughout the     

24 hours.  These dates were chosen to represent peak 

solar generation in summer and reduced solar 

generation in winter, allowing for a comprehensive 

analysis of model performance across varying weather 

conditions. 

Step 5: Generate Predictions 

Each model (LightGBM, XGBoost, BiGRU) 

makes its own prediction of power generation based on 

the June 30, 2021, and December 31, 2021 weather 

data. The time taken for each prediction and the results 

were recorded to compare the accuracy. 

Step 6: Analyze and Evaluate Results 

The predictions from all three models were 

compared to assess their performance. Use metrics like 

Normalized Mean Absolute Percentage Error 

(NMAPE), Root Mean Squared Error (RMSE), and 

Normalized Root Mean Squared Error (NRMSE). This 

comparison helps determine which model is the most 

accurate and suitable for forecasting solar power 

generation. 

2.4. Errors Used to Evaluate Model Performance 

To assess the performance of solar power 

forecasting models, three key metrics are used: 

NMAPE, RMSE, and NRMSE. 

NMAPE is chosen because it represents the 

average percentage error relative to actual values. It 

helps evaluate model accuracy without being affected 

by the scale of the data [12].  

𝑁𝑀𝐴𝑃𝐸 =
100

𝑛
∑

|�̂�𝑖 − 𝑦𝑖|

𝑦𝑛𝑜𝑚𝑖𝑛𝑎𝑙

𝑛

𝑖=1

   (5) 

 

where: �̂�i is the predicted power (kW), 𝑦𝑖  is the actual 

power (kW), n is the number of data points, ynominal is 

the total installed capacity of the plant (kW). 

RMSE measures the average squared difference 

between actual and predicted values, providing insight 

into how much the predicted values deviate from 

reality. This metric is particularly useful for 

identifying large forecasting errors since RMSE gives 

greater weight to larger errors compared to MAE 

(Mean Absolute Error) . 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

         (6) 

where: �̂�𝑖  is the predicted power (kW), 𝑦𝑖 is the actual 

power (kW), n is the number of data points. 

NRMSE is the normalized version of RMSE, 

which adjusts the squared error difference between 

actual and predicted values to a standard range [12]. 

𝑁𝑅𝑀𝑆𝐸 =
√1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑦𝑛𝑜𝑚𝑖𝑛𝑎𝑙

× 100 

 

 (7) 

where: �̂�𝑖  is the predicted power (kW), 𝑦𝑖 is the actual 

power (kW), n is the number of data points, ynominal is 

the total installed capacity of the plant (kW) 

Combining these metrics ensures a 

comprehensive evaluation of model performance: 

NMAPE reflects overall accuracy, while RMSE, 

NRMSE helps detect large errors, allowing for the 

identification of the most suitable model for real-world 

applications. 

2.5. Parameters of the Forecasting Models 

Parameters of the XGBoost Model 

Table 1 presents the key parameters used in 

training XGBoost model. These parameters were 

selected based on empirical studies to balance model 

complexity, prevent overfitting, and optimize 

predictive performance. 

Table 1. Parameters of the XGBoost Model 

learning_rate 0.1 

max_depth 8 

n_estimators 150 

Min_child_weight 1 

Gamma 0 

subsample 1 

colsample_bytree 1 

Parameters of the LightGBM Model 

Table 2 presents the key parameters used in 

training LightGBM model. The parameter choices aim 

to improve computational efficiency while 

maintaining high accuracy and strong generalization 

capability. 

 

 



  

JST: Smart Systems and Devices 

Volume 35, Issue 2, May 2025, 054-061 
 

59 

 

Table 2. Parameters of the LightGBM Model 

Learning_rate 0.1 

Max_depth 8 

Num_leaves 31 

Min_child_samples 20 

reg_alpha 0 

reg_lambda 0 

Colsample_bytree 1 

Parameters of the BiGRU Model 

Table 3 presents the key parameters used in 

training BiGRU model. The selected parameters are 

configured to capture temporal dependencies in the 

data while balancing model complexity during 

training. 

Table 3: Parameters of the BiGRU Model 

Optimization algorithm adam 

Activation function tanh 

Loss function MSE 

Epochs 30 

Batch sizes 64 

 

3. Results and Discussion 

To assess the accuracy and performance of solar 

power generation forecasting models, Table 4 presents 

the forecasting results of XGBoost, LightGBM, and 

BiGRU on the test set, including error metrics and 

execution time. 

The results in Table 4 highlight significant 

differences in execution time and forecast accuracy 

among XGBoost, LightGBM, and BiGRU for solar 

power generation forecasting. Among them, 

LightGBM performs the best, with the fastest training 

time (0.705 seconds) and the lowest error rates 

(NMAPE equal to 1.004%, RMSE equal to          

1373.27 kW, NRMSE equal to 2.77%), proving that it 

is both accurate and stable. XGBoost also gives good 

results, with NMAPE equal to 1.012% and RMSE 

equal to 1397.28 kW, which are slightly higher than 

LightGBM, but it takes more time to train                  

(2.15 seconds). On the other hand, BiGRU has the 

worst performance, taking a very long time to train 

(819.32 seconds, over 380 times longer than XGBoost 

and more than 1160 times longer than LightGBM). It 

also has much higher errors (NMAPE equal to 1.685%, 

RMSE equal to 2253.68 kW, NRMSE equal to 4.55%), 

showing that it does not generalize well and may be 

overfitting. 

 To analyze the performance of the forecasting 

models under different seasonal conditions, we 

evaluate their predictions on two distinct weather 

datasets: June 30, 2021 (summer), and December 31, 

2021 (winter). Table 5 presents the forecast results of 

the XGBoost, LightGBM, and BiGRU models on 

these datasets, allowing for a comparative assessment 

of their accuracy and robustness across varying solar 

radiation levels. 

The forecasting results of XGBoost, LightGBM, 

and BiGRU for solar power generation on June 30, 

2021, as shown in Table 5, reveal clear differences in 

execution time and accuracy. Among the three models, 

XGBoost has the highest accuracy, with               

NMAPE equal to 1.964%, RMSE equal to        

1804.775 kW, and NRMSE equal to 3.646%, showing 

stable predictions and the lowest error rates. 

LightGBM has the fastest processing speed           

(0.705 seconds), achieving NMAPE equal to 2.051%, 

RMSE equal to 1714.571 kW, and NRMSE equal to 

3.463%. Its accuracy is slightly lower than that of 

XGBoost, but it still provides highly reliable 

predictions. On the other hand, BiGRU performs the 

worst, with a very high NMAPE (23.986%), RMSE 

equal to 18713.62 kW, NRMSE equal to 37.805%, and 

an execution time of 33.406 seconds, which is much 

longer than the two Gradient Boosting models 

(XGBoost and LightGBM). These results indicate that 

BiGRU fails to provide accurate forecasts and is likely 

affected by overfitting.

 

Table 4. Forecast results on the test set of three models XGBoost, LightGBM and BiGRU 

Models Training time (s) NMAPE (%) RMSE (kW) NRMSE (%) 

XGBoost 2.15 1.012 1397.28 2.82 

LightGBM 0.705 1.004 1373.27 2.77 

BiGRU 819.32 1.685 2253.68 4.55 
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Table 5. Forecast results on the test set of three models XGBoost, LightGBM and BiGRU on the weather dataset 

of June 30, 2021 and December 31, 2021 

Day Models 

Forecast 

execution time 

(s) 

NMAPE (%) RMSE (kW) NRMSE (%) 

June 30, 

2021 

XGBoost 1.212 1.964 1804.775 3.646 

LightGBM 0.705 2.051 1714.571 3.463 

BiGRU 33.406 23.986 18713.62 37.805 

December 

31, 2021 

XGBoost 1.112 0.64 506.301 1.022 

LightGBM 0.716 0.85 659.16 1.331 

BiGRU 32.641 1.023 881.189 1.78 

 Also from Table 5, the forecast for December 31, 

2021 with the XGBoost model achieved the best 

performance on December 31, 2021, with the lowest 

error (NMAPE equal to 0.64%, RMSE equal to 

506.301 kW) and the fastest execution time             

(1.112 seconds). LightGBM also performed well, 

although its error was slightly higher (NMAPE equal 

to 0.85%, RMSE equal to 659.16 kW). BiGRU had a 

similar level of error (NMAPE equal to 1.023%, 

RMSE equawwwwwwwwwww2l to 881.189 kW), but 

its execution time (32.641 seconds) was significantly 

longer. 

 

 

Fig. 4. Forecasted with Actual Power Generation (●) 

for XGBoost (■), LightGBM (▲), and BiGRU (◆) on 

June 30, 2021 and December 31, 2021 

 

 From Fig. 4, we can see that the forecast curves 

of LightGBM (▲-upward-pointing triangles) and 

XGBoost (■-squares) closely follow the actual power 

curve (●-circles), especially during the rising and 

falling power phases, showing that both models have 

good forecasting ability. XGBoost has a smoother 

curve compared to LightGBM, while LightGBM 

reacts more sensitively to small variations. This 

suggests that XGBoost may generalize better in some 

cases. The forecasted curve of BiGRU (◆-diamonds) 

is almost flat at zero, failing to reflect the actual power 

output, which indicates that the model does not 

provide accurate predictions. This could be a sign of 

overfitting issues. LightGBM shows large fluctuations 

at peak power levels, possibly because the model 

overreacts to the training data. XGBoost is smoother 

but still has some small errors in high-power regions. 

BiGRU fails to capture trends, making it less practical 

for solar power forecasting.  

 Fig. 4 also compares the power generation 

forecasts of XGBoost, LightGBM, and BiGRU on 

December 31, 2021. XGBoost and LightGBM closely 

follow the actual trend, showing their ability to capture 

fluctuations in power generation. However, 

LightGBM exhibits slightly higher variability. In 

contrast, BiGRU fails to follow the trend, producing 

almost flat predictions, which suggests poor 

adaptability to real changes in power generation and 

the risk of overfitting. Although BiGRU shows signs 

of overfitting, this is not reflected in error metrics like 

RMSE or NMAPE. This is because these metrics 

mainly measure the average difference between actual 

and predicted values but do not assess how well the 

model captures trends. BiGRU may have memorized 

patterns from the training data too much, leading to 

forecasts that lack variation and appear flat. This 

makes the average error seem low, even though the 

model does not correctly reflect real power 

fluctuations. Additionally, when actual power 

generation is low, the absolute error can be small, 

reducing the impact of overfitting on metrics like 

NMAPE. However, by observing the chart, it is clear 

that BiGRU does not respond quickly enough to 

changes, resulting in inaccurate forecasts during 

periods of rapid power fluctuations. 

4. Conclusion 

The comparison of XGBoost, LightGBM, and 

BiGRU in solar power generation forecasting 
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highlights significant differences in execution time, 

accuracy, and generalization ability. XGBoost and 

LightGBM both achieve low errors in NMAPE, 

RMSE, and NRMSE, proving their accuracy and 

stability in forecasting. LightGBM consistently 

outperforms in speed, completing predictions faster 

than other models, while XGBoost provides slightly 

higher accuracy but requires more computation time. 

In contrast, BiGRU performs the worst, with 

significantly higher errors and an extremely long 

execution time, requiring far more computing 

resources without delivering the expected accuracy. 

The model also struggles with generalization, as seen 

from its high NMAPE (23.986%) and RMSE 

(18763.12 kW) when tested on independent data on 

June 30, 2021, reinforcing concerns about overfitting. 

When forecasting on December 31, 2021, although 

BiGRU shows signs of overfitting, this is not fully 

reflected in RMSE and NMAPE, as these metrics 

focus on average error rather than trend accuracy. 

BiGRU's predictions are overly smooth, failing to 

capture real power fluctuations. This makes the error 

appear low despite poor adaptability to rapid changes. 

When power generation is low, absolute errors are also 

small, further masking overfitting. However, the 

comparison chart reveals BiGRU's limitations in 

tracking variations in power output. 

Additionally, XGBoost and LightGBM 

significantly outperform BiGRU in both training and 

forecasting efficiency. LightGBM achieves the lowest 

error NMAPE, and RMSE is followed closely by 

XGBoost. Meanwhile, BiGRU requires over 380 times 

longer than XGBoost and 1160 times longer than 

LightGBM to train, yet fails to improve accuracy. This 

reaffirms the comparative advantage of XGBoost and 

LightGBM in both accuracy and robustness. 

In summary, XGBoost and LightGBM are both 

strong candidates for solar power forecasting, offering 

fast processing and high accuracy. Among them, 

LightGBM stands out as the best choice due to its 

superior speed and slightly better accuracy. 

Conversely, BiGRU demonstrates limitations in this 

case, with its long execution time, higher forecasting 

errors, and signs of overfitting. However, its 

performance might improve with further optimization, 

regularization techniques, or different datasets, 

suggesting that its applicability depends on specific 

conditions. 
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