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Abstract 

The article presents a practical approach for implementing traditional Model Predictive Control (MPC) on a 
rotary inverted pendulum, a highly nonlinear and inherently unstable system. The study begins with the 
development of a mathematical model of the pendulum, followed by the application of a predictive controller 
to this model. The proposed algorithm is subsequently validated on an experimental platform, the Quanser 
QUBE-Servo2. The paper emphasizes the advantages of MPC, particularly its ability to incorporate system 
constraints and effectively manage nonlinear dynamics, thus making it a widely adopted strategy in industrial 
applications. Nevertheless, it also addresses the inherent challenges of MPC implementation, notably the 
construction of accurate system models and the computational burden associated with solving complex 
optimization problems. The control objective is to maintain the pendulum in its upright equilibrium position. 
The study evaluates the effectiveness of MPC with and without uncertainty compensation by analyzing key 
performance metrics, including response time, settling time, overshoot, and steady-state error, through both 
simulations and experiments. The results illustrate the comparative benefits and limitations of the uncertainty-
compensated MPC algorithm relative to the traditional MPC controller. 
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1. Introduction1 

The rotary inverted pendulum is a nonlinear, 

unstable system lacking an actuator [1] and is 

commonly used to test control algorithms. Research on 

the inverted pendulum system can verify the 

effectiveness of control theories such as nonlinear 

control, stabilization control, and trajectory tracking 

control [2-4]. 

Beyond its academic significance, the inverted 

pendulum has found numerous practical applications. 

In the field of robotics, it serves as the foundation for 

the development of self-balancing platforms, such as 

the Segway and similar personal transporters [5]. In 

control systems education, it is widely adopted as an 

instructional tool to demonstrate fundamental concepts 

such as stability, feedback, and control design [6]. In 

aerospace engineering, the principles derived from 

inverted pendulum dynamics contribute to the 

stabilization of rockets and spacecraft during launch 

and flight [7]. Furthermore, this system has been 

leveraged in the development of rehabilitation devices 

aimed at enhancing balance and gait recovery [8], and 

to trajectory planning and dynamic control in 

simulation-based environments using MPC techniques 

[9]. In recent years, methods of controlling the inverted 

pendulum have garnered widespread interest, 
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including PID control [2], adaptive control [10], fuzzy 

control [11], and sliding mode control [12]. 

Model Predictive Control (MPC) has been 

developed since the 1960s and has experienced 

significant growth and industrial adoption in recent 

years [13]. MPC is among the most popular advanced 

control techniques in industry due to its ability to 

systematically incorporate constraints into the control 

algorithm, a feature typically absents in classical 

control methods. It is the most widely used control 

strategy in process industries because its formulation 

inherently addresses optimal control problems [14], 

the control of stochastic processes, systems with time 

delays, and tracking of predefined setpoint trajectories. 

Furthermore, MPC offers the advantage of effectively 

handling processes with bounded control signals, 

system constraints, and nonlinear behaviors commonly 

encountered in industrial applications, particularly in 

complex nonlinear systems. 

The most challenging issue in applying MPC lies 

in constructing an accurate model and solving the 

associated optimization problem. For nonlinear 

systems, this task becomes even more difficult due to 

the challenges in developing a precise model that 

accurately captures the system's characteristics, as well 

as the complexity of the optimization algorithms 

involved. These algorithms often require extensive 
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computations and prolonged execution times, 

particularly because they must solve non-convex 

optimization problems [15, 16]. 

The control objective in this study is to 

continuously maintain the pendulum in the upright 

position. For practical comparison, in addition to 

implementing the conventional MPC algorithm, this 

paper also applies MPC with uncertainty 

compensation. The performance comparison is based 

on key indicators, including response time, settling 

time, overshoot, and steady-state error. The obtained 

simulation results visually demonstrate the advantages 

and limitations of the uncertainty-compensated MPC 

algorithm compared to the traditional MPC controller. 

The remainder of this paper is organized as 

follows. Section 2 presents the development of a   

quasi-realistic inverted pendulum model. Section 3 

provides the theoretical background related to MPC. 

Section 4 discusses the numerical simulations and the 

obtained results. Finally, Section 5 concludes the paper 

and outlines potential directions for future research. 

2. Rotary Inverted Pendulum Modeling 

The rotary pendulum module consists of a flat 

arm equipped with a sensor at one end, with the sensor 

shaft aligned along the longitudinal axis of the arm. A 

fixture is provided to attach the pendulum to the sensor 

shaft. The opposite end of the arm is designed to be 

horizontally rotating arm with a pendulum at the end. 

The inverted pendulum made by QUANSER 

Company is shown in Fig. 1. [17] 

 

Fig. 1. Quanser QUBE-Servo2  

 

2.1. Nonlinear Model 

The nonlinear dynamics of the rotary inverted 

pendulum system are derived using the                      

Euler-Lagrange method, which is a classical and 

widely adopted approach for mechanical system 

modeling. The system consists of a motor-actuated 

rotating arm with a pendulum attached at its end, 

forming a coupled nonlinear electromechanical 

system.  

The Euler-Lagrange equations for the two 

coordinates α , θ are as follows: 

{

𝜕

𝜕𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜃
= 𝑇𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑏𝑟�̇�

𝜕

𝜕𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝛼
= −𝑏𝑝�̇�

 

     

 (1) 

 

Following the derivation proposed by Åström 

and Furuta [18] and the technical specifications from 

Quanser [17], the nonlinear equations of motion are 

obtained as: 

 (𝐽𝑟 +𝑚𝑝𝑟
2 +𝑚𝑝𝐿

2 −𝑚𝑝𝐿
2 cos(𝛼)2)�̈� −

𝑚𝑝𝐿𝑟. cos(𝛼) �̈� + 2𝑚𝑝𝐿
2. sin(𝛼) cos(𝛼) �̇��̇� +

𝑚𝑝𝐿𝑟. sin(𝛼) 𝛼
2̇ = 𝑇𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑏𝑟�̇� 

−𝑚𝑝𝐿𝑟. cos(𝛼) �̈� + (𝐽𝑝 +𝑚𝑝𝐿
2)�̈� −

𝑚𝑝𝐿
2. sin(𝛼) cos(𝛼) �̇�2 −𝑚𝑝𝑔𝐿𝑠𝑖𝑛(𝛼) =

−𝑏𝑝�̇�  

 

 

(2) 

 

Alternatively, this system can be expressed in 

parametric form for compactness: 

(𝑎 + 𝑏 − 𝑏𝑐𝑜𝑠(𝛼)2)�̈�

−𝑐. cos(𝛼) �̈� + 2𝑏. sin(𝛼) cos(𝛼) �̇��̇�

+𝑐. sin(𝛼)�̇�2 = 𝑇𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑏𝑟�̇�

−𝑐. cos(𝛼) �̈� + 𝑑�̈� −

𝑏. sin(𝛼) cos(𝛼) 𝜃2̇ − 𝑒. sin(𝛼) = −𝑏𝑝�̇�

 

 

 

(3) 

 

with the following parameter definitions: 

𝑎 = 𝐽𝑟 +𝑚𝑝𝑟
2       𝑏 = 𝑚𝑝𝐿 

2        𝑐 = 𝑚𝑝𝐿𝑟 

𝑑 = 𝐽𝑝 +𝑚𝑝𝐿
2        𝑒 = 𝑚𝑝𝑔𝐿 

The motor torque is described by: 

𝐿 Distance from the pivot point to the center 

of mass of the pendulum 

r Length of the rotary arm 

𝑚𝑝 Mass of the pendulum 

𝑚𝑟 Mass of the rotary arm 

𝜃 Deviation angle of the rotary arm 

𝛼 Deviation angle of the pendulum 

𝐽𝑝 Moment of inertia of the pendulum about 

the pivot 

𝐾𝑡  Motor torque constant 

𝐾𝑚 Motor back electromotive force (EMF) 

constant 

𝑅𝑚 Motor armature resistance 

𝐽𝑟 Moment of inertia of the rotary arm about 

its axis 

𝑏𝑟 Equivalent mechanical friction coefficient 

of the rotary arm 

 



  

JST: Smart Systems and Devices 

Volume 35, Issue 2, May 2025, 062-069 

64 

2.2. Linear Model 

Assuming small deviations, where 𝜃 ≈ 0, 𝛼 ≈ 0, 

�̇� ≈ 0, �̇� ≈ 0 and applying the approximations: 

sin(𝛼) ≈ 𝛼 , cos(𝛼) ≈ 1, 𝛼2 = 0,�̇�2 ≈ 0, �̇�2 ≈ 0, 

 �̇��̇� ≈ 0, the linearized differential equations 

describing the system are obtained as follows: 

(𝐽𝑟 +𝑚𝑝𝑟
2)�̈� − 𝑚𝑝𝑙𝑟�̈� = 𝑇𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑏𝑟�̇�  

−𝑚𝑝𝑙𝑟�̈� + (𝐽𝑝 +𝑚𝑝𝑙
2)�̈� = 𝑚𝑝𝑔𝑙𝛼 − 𝑏𝑝�̇�  

 (4) 

 

Rewrite the system in state-space model form: 

{
�̇� = 𝑨𝒙 + 𝑩𝒖

𝒚 = 𝑪𝒙 + 𝑫𝒖 
 (5) 

 

in which 𝒙  is vector of state variables (𝑛 × 1), 𝒖  is 

vector input signals (𝑟 × 1), 𝒚 is output signals 

(𝑚 × 1), 𝑨 is system matrix (𝑛 × 𝑛), 𝑩 is input matrix 

(𝑛 × 𝑟), 𝑪 is output matrix (𝑚 × 𝑛), 𝑫 is the state 

transition matrix (𝑚 × 𝑟) 

State variable vector and the output vector are defined 

respectively as follows: 

𝒙 = [

𝑥1
𝑥2
𝑥3
𝑥4

] = [

𝜃
𝛼
�̇�
�̇�

] 

𝒚 = [
𝑥1
𝑥2
] = [

𝜃
𝛼
] 

The control signal is the voltage applied to the motor: 

𝒖 = 𝑉𝑚 

The matrices 𝑨,𝑩, 𝑪, 𝑫 in (5) are respectively: 

𝑨 =

[
 
 
 
 
 
 
 
0 0 1 0
0 0 0 1

0
𝑒𝑎

𝑎𝑑 − 𝑐2

−𝑐 (𝑏𝑟 +
𝑘𝑡𝑘𝑚
𝑅𝑚

)

𝑎𝑑 − 𝑐2
−𝑏𝑝𝑎

𝑎𝑑 − 𝑐2

0
𝑒𝑐

𝑎𝑑 − 𝑐2

−𝑑 (𝑏𝑟 +
𝑘𝑡𝑘𝑚
𝑅𝑚

)

𝑎𝑑 − 𝑐2
−𝑏𝑝𝑐

𝑎𝑑 − 𝑐2]
 
 
 
 
 
 
 

 

𝑩 =

[
 
 
 
 
 
 
 

0
0

𝑐.

𝑘𝑡
𝑅𝑚

𝑎𝑑 − 𝑐2

𝑑.

𝑘𝑡
𝑅𝑚

𝑎𝑑 − 𝑐2 ]
 
 
 
 
 
 
 

 

𝑪 = [
1 0 0 0
0 1 0 0

] 

𝑫 = [
0
0
] 

In this paper, the nonlinear model offers a 

comprehensive depiction of the rotary inverted 

pendulum’s dynamics and is critical for simulation 

validation. However, the MPC controller is designed 

using the linearized model around the upright 

equilibrium point, which simplifies computation while 

preserving accuracy within the small-angle 

approximation range. This combination facilitates 

real-time implementation and effective control design. 

3. Model Predictive Control 

The design of a MPC generally involves three 

main steps [1] as follow: 

Step 1. Predicting the future behavior of the 

system: At each time step, future outputs are predicted 

over a finite horizon N using a system model. The 

predictions output depend on past and current         

input-output data and the future control sequence. 

Step 2. Optimizing the future control signals: 

Future control actions are determined by minimizing a 

cost function, typically a weighted quadratic function 

of the predicted tracking error and control effort, 

subject to system constraints. 

Step 3. Applying and updating the control: Only 

the first control action is applied. At the next step, new 

measurements are obtained and the optimization 

problem is solved again, allowing continuous model 

updating and disturbance rejection. 

We focus on predictive control based on a      

state-space model. Compared to the transfer function 

approach, this method is more suitable for 

implementation in multivariable systems. The 

predictive control strategy based on the state-space 

model is formulated as follows: 

     {
𝒙𝒌+𝟏 = 𝑨𝒙𝒌 + 𝑩𝒖𝒌

𝒚𝒌 = 𝑪𝒙𝒌
                   (6) 

Step 1. The predictive model, corresponding to a 

prediction window of length N, is given by: 

 𝒚𝑘+1 = 𝑪𝒙𝑘+1 = 𝑪. (𝑨𝒙𝑘 + 𝑩𝒖𝒌) =

𝑪𝑨𝒙𝑘 + 𝑪𝑩𝒖𝑘  

𝒚𝑘+2 = 𝑪𝒙𝑘+2 = 𝑪. (𝑨𝒙𝑘+1 +𝑩𝒖𝑘+1) =

𝑪. (𝑨. (𝑨𝒙𝑘 + 𝑩𝒖𝑘) + 𝑩𝒖𝑘+1) = 𝑪𝑨
𝟐𝒙𝑘 +

𝑪𝑨𝑩 𝒖𝑘 + 𝑪𝑩𝒖𝑘+1  

⋮ 

𝒚𝑘+𝑁 = 𝑪𝑨
𝑁𝒙𝑘 + 𝑪𝑨

𝑁−1𝑩𝒖𝑘 +

𝑪𝑨𝑁−2𝑩𝒖𝑘+1 +⋯+ 𝑪𝑩𝒖𝑘+𝑁−1  

 

 

 

 

 (7) 

 

where: 

- Input signals  

𝒖𝑘 = (𝑢𝑘(1), 𝑢𝑘(2), … , 𝑢𝑘(𝑚))
𝑇
 

- State signals  

𝒙𝑘 = (𝑥𝑘(1), 𝑥𝑘(2), … , 𝑥𝑘(𝑚))
𝑇

 

- Output signals  
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𝒚𝑘 = (𝑦𝑘(1), 𝑦𝑘(2), … , 𝑦𝑘(𝑚))
𝑇
 

- 𝑘 is discrete time index 

The future output signals 𝒚𝑘+1, … , 𝒚𝑘+𝑁 are 

stacked into a vector 

�̂� = (
𝒚𝑘+1
𝒚𝑘+2
…

𝒚𝑘+𝑁

) = (
𝑪𝑨
𝑪𝑨𝟐…
𝑪𝑨𝑵

)𝒙𝑘 +

(

𝑪𝑩
𝑪𝑨𝑩
⋮

𝑪𝑨𝑵−𝟏𝑩

𝟎
𝑪𝑩
⋮

𝑪𝑨𝑵−𝟐𝑩

…
…
⋮
…

𝟎
𝟎
⋮
𝑪𝑩

)(

𝒖𝑘
𝒖𝑘+1
⋮

𝒖𝑘+𝑁−1

)  

 

 

 (8) 

 

Define: 

𝑬 =

(

 
 𝑪𝑨
𝑪𝑨𝟐

…
𝑪𝑨𝑵)

 
 
;  𝑭 = (

𝑪𝑩
𝑪𝑨𝑩
⋮

𝑪𝑨𝑵−𝟏𝑩

  

𝟎
𝑪𝑩
⋮

𝑪𝑨𝑵−𝟐𝑩

  

…
…
⋮
…

   

𝟎
𝟎
⋮
𝑪𝑩

) 

𝝆 = (

𝒖𝑘
𝒖𝑘+1
⋮

𝒖𝑘+𝑁−1

) 

Thus, the predicted future output is: �̂� = 𝑬𝒙𝑘 + 𝑭𝝆 

Step 2. Let the setpoints within the prediction 

window be denoted as: 

�̂� = (

𝒘𝒌+𝟏
𝒘𝒌+𝟐
⋮

𝒘𝒌+𝑵

) 

Consider the quadratic objective function: 

 𝑱 = (�̂� − �̂�)
𝑻

𝑸(�̂� − �̂�) + 𝝆𝑻𝑹𝝆        (9) 

where Q and R are positive definite symmetric 

matrices. 

Substituting  �̂� = 𝑬𝒙𝒌 + 𝑭𝝆 into the objective 

function, we have: 

𝑱 = (�̂� − 𝑬𝒙𝒌 − 𝑭𝝆)
𝑇

𝑸(�̂� − 𝑬𝒙𝒌 − 𝑭𝝆) + 𝝆
𝑇𝑹𝝆 

= 𝝆𝑇(𝑭𝑇𝑸𝑭 + 𝑹)𝝆 − 𝟐 [(�̂� − 𝑬𝒙𝒌)
𝑻
𝑸𝑭] 𝝆 + (�̂� −

𝑬𝒙𝒌)
𝑻
𝑸(�̂� − 𝑬𝒙𝒌)    

The optimal control input sequence 𝝆∗ that 

minimizes J is: 

𝝆∗ = (𝑭𝑻𝑸𝑭 + 𝑹)−𝟏 [(�̂� − 𝑬𝒙𝒌)
𝑻
𝑸𝑭]

𝑻

 
(10) 

 

Step 3. The actual control input at time step k is 

extracted as: 

𝒖𝑘 = [𝐼, 0, … ,0]𝝆
∗ (11) 

 

Noting that the MPC method relies heavily on the 

mathematical model of the system, it is important to 

recognize that there is no guarantee the model fully 

captures the system’s true dynamics. Consequently, 

the control performance might not meet the original 

design specifications. Even if the initial performance 

is temporarily achieved because the model accurately 

represents the system at that time, external 

environmental factors, material fatigue, and wear 

during operation can degrade the model’s accuracy. 

This degradation leads to a gradual decline in system 

performance over time. To address this issue, we 

introduce an additional adaptive control problem. 

The system under consideration is described by: 

�̇� = 𝒇(𝒙) + 𝑯(𝒙)(𝒖 + 𝒅) (12) 

 

where: 

- 𝒅 is the uncertain component 

- 𝑯(𝒙) is an invertible matrix 

The objective is to design a controller that 

stabilizes the system. 

We apply a method to estimate the uncertain 

component at the current time 𝑡𝑘 for the equivalent 

system: 

�̇� = 𝑨𝒙 + 𝑯(𝒙)(𝒖 + �̂�) 

where: 

- �̂� = 𝑯(𝒙)
−1
[𝑓(𝒙) − 𝑨𝒙 + 𝒅] 

and A is a Hurwitz matrix chosen arbitrarily. 

It is evident that if  𝒖 = −�̂� then 𝒙 → 0. The 

remaining task is to determine d.  

At each current time instant, after applying the 

compensation 𝒖 = −�̂� ∗(𝑡𝑘−1) the system evolves as: 

�̇�(𝑡𝑘) = 𝑨𝒙(𝑡𝑘) + 𝑯(𝒙(𝑡𝑘)) [−�̂� 
∗(𝑡𝑘−1) + �̂�(𝑡𝑘)] 

Using the Euler approximation: 

�̇�(𝑡𝑘) =
𝒙(𝑡𝑘) − 𝒙(𝑡𝑘−1)

𝜏
 

= 𝑨𝒙(𝑡𝑘) + 𝑯(𝒙(𝑡𝑘)) [−�̂�
∗(𝑡𝑘−1) + �̂�(𝑡𝑘)]  

Taking the difference between the two sides leads to: 

 𝑒 = 𝑨𝒙(𝑡𝑘) + 𝑯(𝒙(𝑡𝑘)) [−�̂�
∗(𝑡𝑘−1) +

�̂�(𝑡𝑘)] −
𝒙(𝑡𝑘)−𝒙(𝑡𝑘−1)

𝜏
= 𝑯(𝒙(𝑡𝑘)) 𝒅(𝑡𝑘) +

𝝃 

 

(13) 

 

 



  

JST: Smart Systems and Devices 

Volume 35, Issue 2, May 2025, 062-069 

66 

where: 

𝝃 = 𝑨𝒙(𝑡𝑘) + 𝑯(𝑥(𝑡𝑘)) (�̂�
∗(𝑡𝑘−1)) −

𝒙(𝑡𝑘)−𝒙(𝑡𝑘−1)

𝜏
  

Then determine 𝑑(𝑡𝑘) according to the 

optimization criterion. 

𝒅∗(𝑡𝑘  ) = argmin
𝑑(𝑡𝑘)

||𝑒||
2

= argmin
𝑑(𝑡𝑘)

[𝑯 (𝒙(𝑡𝑘)) �̂�(𝑡𝑘)

+ 𝜉]
𝑇
[𝑯 (𝒙(𝑡𝑘)) �̂�(𝑡𝑘) + 𝝃]

= argmin
𝑑(𝑡𝑘)

�̂�𝑇(𝑡𝑘)𝑯(𝒙(𝑡𝑘))
𝑇
𝑯(𝒙(𝑡𝑘)) �̂�(𝑡𝑘)

+ 2𝝃𝑻𝑯(𝒙(𝑡𝑘)) �̂�(𝑡𝑘) + 𝝃
𝑻𝝃

=  −(𝑯(𝒙(𝑡𝑘))
𝑇
𝑯(𝑥(𝑡𝑘)))

−1

𝑯(𝒙(𝑡𝑘))
𝑇
𝝃 

 

 

 

 

 

 (14) 

 

Combining this with the MPC controller, the 

control structure diagram is illustrated in Fig. 2. 

 

Fig. 2. The control structure diagram 

 

The compensated control input is: 

𝐮 = 𝒗 − �̂� 
Thus, the system dynamics become: 

�̇� = 𝑓(𝒙) + 𝑯(𝒙)(𝒗 − �̂� + 𝒅) 

The uncertain component 𝒅 is estimated by 

piecewise constant form �̂�: 

- �̂�(𝑡) = �̂�𝑘−1 with 𝑘𝜏 ≤ 𝑡 ≤ (𝑘 + 1)𝜏  

- 𝒅(𝑡) = 𝒅𝑘   

The control input v(t) is also held constant over 

each sampling interval: 

𝒗(𝒕) = 𝒗𝒌 with 𝑘𝜏 ≤ 𝑡 ≤ (𝑘 + 1)𝜏  

where τ is the sampling period. 

Assumption  �̂�𝑘−1 = 𝒅𝑘 and applying to the 

rotary inverted pendulum system. 

The linear differential equations describing the 

system of the rotary inverted pendulum:  

(𝐽𝑟 +𝑚𝑝𝑟
2)�̈� − 𝑚𝑝𝐿𝑟�̈� = 𝑇𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑏𝑟�̇� 

−𝑚𝑝𝐿𝑟�̈� + (𝐽𝑝 +𝑚𝑝𝐿
2)�̈� = 𝑚𝑝𝑔𝑙𝛼 − 𝑏𝑝�̇� 

where: 𝑇𝑜𝑢𝑡𝑝𝑢𝑡 =
𝐾𝑡(𝑉𝑚−𝐾𝑚�̇�)

𝑅𝑚
 

For a simple pendulum, the two coefficients 

𝑏𝑟  and 𝑏𝑝 are difficult to measure and can change over 

time, so we include the variations of these coefficients 

𝑏𝑟 , 𝑏𝑝 in the uncertain component 𝑑. 

The system state-space model becomes: 

�̇� = 𝑨𝒙 + 𝑯(𝐮 + 𝒅) 

The state matrix A and input matrix H are constructed 

as follows: 

�̇� = [

𝜃
𝛼
�̇�
�̇�

] =

[
 
 
 
 
 
0 0 1 0
0 0 0 1

0
𝑒𝑎

𝑎𝑑−𝑐2

−𝑐(
𝑘𝑡𝑘𝑚

𝑅𝑚
)

𝑎𝑑−𝑐2
0

0
𝑒𝑐

𝑎𝑑−𝑐2

−𝑑(
𝑘𝑡𝑘𝑚

𝑅𝑚
)

𝑎𝑑−𝑐2
0]
 
 
 
 
 

⏟                
𝐴

𝒙 +

[
 
 
 
 

0 0
0 0

−
𝑐

𝑎𝑑−𝑐2
�̇� −

𝑎

𝑎𝑑−𝑐2
�̇�

−
𝑑

𝑎𝑑−𝑐2
�̇� −

𝑐

𝑎𝑑−𝑐2
�̇�]
 
 
 
 

[
𝑏𝑟
𝑏𝑝
] +

[
 
 
 
 
 

0
0

𝑐.

𝑘𝑡

𝑅𝑚

𝑎𝑑−𝑐2

𝑑.

𝑘𝑡

𝑅𝑚

𝑎𝑑−𝑐2 ]
 
 
 
 
 

⏟      
𝐻

𝒖   

 

 

 

 

 

 

(15) 

 

Assuming that matrix H is of full rank, the disturbance 

vector �̂� can be estimated as: 

�̂� = 𝑝𝑖𝑛𝑣(𝑯)

[
 
 
 
 

0 0
0 0

−
𝑐

𝑎𝑑−𝑐2
�̇� −

𝑎

𝑎𝑑−𝑐2
�̇�

−
𝑑

𝑎𝑑−𝑐2
�̇� −

𝑐

𝑎𝑑−𝑐2
�̇�]
 
 
 
 

 [
𝑏𝑟
𝑏𝑝
] 

 

 

(16) 

 

where 𝑝𝑖𝑛𝑣(𝑯) denotes the pseudo-inverse of H. 

To design a MPC, the continuous-time system is 

discretized using a sampling time τ. The discretized 

model is obtained as: 

�̇� =
𝒙𝑘+1 − 𝒙𝑘

𝜏
 = 𝑨𝑥𝑘 +𝑯(𝒗𝑘 − 𝒅𝑘−1

∗ + 𝒅𝑘) 

Rearranging gives: 

𝒙𝑘+1 = 𝑨. 𝜏. 𝒙 + 𝑯. 𝜏. (𝒗𝑘 − 𝒅𝑘−1
∗ + 𝒅𝑘) 

Assuming that the disturbance estimate at the previous 

step is approximately equal to the current disturbance,  

𝒅𝑘−1
∗ ≈ 𝒅𝑘, the system simplifies to: 

𝒙𝑘+1 = 𝑨. 𝜏. 𝒙 + 𝑯. 𝜏. 𝒗𝑘 

Set 𝑨𝟏 = 𝑨. 𝜏, 𝑩𝟏 = 𝑯. 𝜏,  

Thus, the discretized system becomes: 

𝒙𝑘+1 = 𝑨𝟏. 𝒙 +  𝑩𝟏. 𝒗𝑘 

Applying the theory of two types of MPC, 

namely the MPC without an integral component and 

the MPC with an integral component, we obtain: 

• For MPC without an integral component: 
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𝒗
𝑘
= [𝐼, 0,… ,0](𝑭𝑇 + 𝑭𝑹)−1 [(�̂� − 𝑬𝒙𝒌)

𝑇
𝑸𝑭]

𝑇
 

(17) 

 

For MPC with an integral component:  

𝒗𝑘 = [𝐼, 0, … ,0](𝑭
𝑇 + 𝑭𝑹)−1 [(�̂� − 𝑬𝒙𝒌)

𝑇
𝑸𝑭]

𝑇
+

           𝒗𝑘−1  

(18) 

 

To support the formulation of disturbance 

estimation, previous studies such as Subramanian et al. 

[14] and Krener [11] have proposed robust and 

adaptive MPC frameworks capable of handling 

modeling uncertainties effectively. These approaches 

form the theoretical foundation for the uncertainty 

compensation technique employed in this work. 

Furthermore, the changing control law at each 

sampling instant necessitates a careful analysis of the 

closed-loop system stability under MPC. Stability can 

be preserved through recursive feasibility and the 

construction of a common quadratic Lyapunov 

function, as discussed in [1, 14]. However, modeling 

errors due to linearization and inaccuracies in 

disturbance estimation may still introduce degradation 

in performance and potential instability. These 

limitations highlight the importance of future 

developments in robust and adaptive MPC strategies 

tailored to systems with high nonlinearity and 

uncertainty. 

4. Simulations and Discussions 

To ensure that the simulation and experimental 

validation closely reflects the physical system, the 

parameters of the rotary inverted pendulum used in this 

study are based on the QUBE-Servo 2 platform from 

Quanser. The system parameters are: 

Lp = 0.129 m ; L=Lp/2; r= 0.085 ; mp=0.024 kg; 

mr=0.095 kg ; Jp=3,3282.10−5𝐾𝑔𝑚2; 

Kt= 0.042 𝑁𝑚/𝐴; Km=0.042 𝑉𝑠/𝑟𝑎𝑑;Rm=8.4 (𝛺); 
𝑏𝑝 = 0.05𝑁𝑚𝑠/𝑟𝑎𝑑; 𝐽𝑟 = 5,7198.10

−5𝐾𝑔𝑚2;   
 𝑏𝑟 = 0.0015𝑁𝑚𝑠/𝑟𝑎𝑑. 
       As mentioned before, the control performance of 

the proposed MPC with uncertainty compensation will 

be verified through simulation and compared with 

traditional MPC. 

4.1. Simulation 

a) Standard MPC  

Based on the selected control signal in (11), the 

parameters are chosen as follows:                                      

𝑇 = 0.02, 𝑁 = 50, 𝑞1 = 1000, 𝑞2 = 5, 𝑅 = 𝐼𝑁×𝑁. 

Fig. 3 to Fig. 5 collectively demonstrate the 

performance of the predictive controller. The 

predictive controller stabilizes the pendulum in the 

upright position and effectively returns the arm to its 

original position. 𝒅 

 
Fig. 3. Simulated rotary arm angle (Standard MPC) 

 

 
Fig. 4. Simulated pendulum angle (Standard MPC) 

 

 
 

Fig. 5. Simulated control signal (Standard MPC) 

 

The settling time of the pendulum and the arm depends 

significantly on the parameters T, Q, R, N. 

The sampling period T is chosen within the limits 

of the Quanser QUBE-Servo2 experiment. However, 

if the sampling period T is too small, the discrete model 

deviates significantly from the actual pendulum 

model. 

The prediction window N is selected to be as 

large as possible within the computational limits of 

MATLAB Simulink. A larger window N increases 

computation time, while a smaller window increases 
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the settling time and reduces the accuracy of the arm's 

tracking to its original position. 

• As q1, q2 increase, the pendulum angle tracks more 

quickly, but the control signal becomes larger. 

• As R increases, the control signal decreases; 

however, it takes longer for the system to stabilize. 

Quantitative analysis shows that increasing q₁ 

and q₂ in matrix Q accelerates the pendulum’s response 

but results in larger control efforts. Conversely, 

increasing R reduces the control signal magnitude but 

slows system stabilization. The sampling period T is 

chosen based on hardware constraints from the 

Quanser QUBE-Servo2. A too-small T leads to 

discrete model mismatch, while a large T reduces 

control precision.  

b) Predictive Controller with Two Outputs and an 

Integral Component 

Based on the control law presented in (18), the 

parameters are selected as:                                                      

𝑇 = 0.02,𝑁 = 50, 𝑞1 = 1000, 𝑞2 = 5, 𝑅 = 𝐼𝑁×𝑁. 

Fig. 6 to Fig. 8 illustrate the system response 

using the predictive controller with two outputs and an 

integral component. The rotary arm and pendulum 

achieve comparable settling times to the basic MPC. 

The inclusion of the integral term helps reduce    

steady-state error, improving long-term accuracy.  

As shown in Fig. 8, the control signal exhibits 

stronger chattering, reflecting the increased control 

effort required by this enhanced configuration. 

 

Fig. 6. Simulated rotary arm angle (MPC + Integral) 

 

Fig. 7.  Simulated pendulum angle (MPC + Integral) 

 

Fig. 8. Simulated control signal (MPC + Integral) 

 

c) MPC and compensation for uncertainty 

Based on the control law presented in (17), the 

parameters are selected as:                                                    

          𝑇 = 0.02, 𝑁 = 50, 𝑞1 = 10000, 𝑞2 = 3000,  

𝑅 = 100 × 𝐼𝑁×𝑁. 

Fig. 9 to Fig. 12 demonstrate the effect of 

uncertainty compensation in the predictive controllers. 

For the predictive controller with two outputs and 

uncertainty compensation, the pendulum has similar 

settling time in comparision with cases (a) and (b). 

Inspite of that, the settling time for the arm to return is 

shorter. The parameters T, Q, R, N are chosen similar 

to cases (a) and (b). However, while the control signal 

is slightly smaller, chattering occurs. After about 2s, 

the estimated uncertainty approximation error is 

approximately 0. 

 

Fig. 9. Simulated rotary arm angle (MPC + 

Uncertainty Compensation) 

 
Fig. 10. Simulated pendulum angle (MPC + 

Uncertainty Compensation) 
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Fig. 11. Simulated control signal (MPC + Uncertainty 

Compensation) 

 

 

Fig. 12. Estimated uncertainty component (MPC + 

Uncertainty Compensation) 

 
4.2. Experimental with Quanser QUBE-Servo2 

a) Standard MPC and Swingup 

Choose   𝑇 = 0.02, 𝑁 = 50, 𝑞1 = 1000, 𝑞2 = 300,   
𝑅 = 𝐼𝑁×𝑁 

Fig. 13 to Fig. 15 present experimental results with the 

standard MPC and swing-up control.  

 

    
Fig. 13. Experimental rotary arm angle (Standard MPC 

+ Swing-up) 

 

Fig. 14. Experimental pendulum angle (Standard MPC 

+ Swing-up) 

 

 
Fig. 15. Experimental control signal (Standard MPC + 

Swing-up) 

 

Looking at Fig. 14 and Fig. 15, after combining 

the predictive controller with the swing-up controller, 

we observe that the settling time for the pendulum to 

maintain stability in the upright position is 3.8 seconds. 

However, the pendulum arm oscillates sinusoidally 

with an amplitude ranging from approximately                

-1.5 to 0 degrees, which differs from the simulation 

results. This discrepancy is due to remaining model 

errors and the lack of optimization for the parameters 

T, Q, R, N in the controller. The chattering control 

signal affects the actuator. 

b) Predictive controller with two outputs and an 

integral component 

Choose 𝑇 = 0.02, 𝑁 = 50, 𝑞1  =  10000,   𝑞2  =

3000, 𝑅 = 100 × 𝐼𝑁×𝑁 

Fig. 16 to Fig. 18 show experimental data from 

the predictive controller with two outputs and an 

integral term. The rotary arm angle deviates from the 

desired position by approximately -1.5°, indicating 

reduced tracking performance. The control signal 

exhibits stronger chattering compared to the normal 

MPC.  
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Fig. 16. Experimental rotary arm angle (MPC + 

Integral) 

 
Fig. 17. Experimental pendulum angle (MPC + 

Integral) 

 

 
Fig. 18. Experimental control signal (MPC + Integral) 

 

c) Predictive Controller with Two Outputs + 

Uncertainty Compensation 

Selected parameters: 

𝑇 = 0.02, 𝑁 = 50, 𝑞1 = 10000, 𝑞2 = 3000, 
𝑅 = 100 × 𝐼𝑁×𝑁 

Fig. 19 to Fig. 21 demonstrate the performance of 

the predictive controller with uncertainty 

compensation in the experiment. The settling time for 

the pendulum is similar to that of the two predictive 

controllers mentioned above, but the settling time for 

the arm and its return to the reference position is 

slightly longer compared to the two predictive 

controllers. 

 

Fig. 19. Experimental rotary arm angle (MPC + 

Uncertainty Compensation) 

 
Fig. 20. Experimental pendulum angle (MPC                  

+ Uncertainty Compensation) 

 

 

Fig. 21. Experimental control signal (MPC + 

Uncertainty Compensation) 

 

The parameters q1 and q2, selected through 

testing, are significantly larger than those chosen in the 

simulation (the reason for this discrepancy has not yet 

been identified). The control signal also exhibits 

chattering, which affects the actuator mechanism. The 

predictive controller with uncertainty compensation 
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brings the pendulum to the balanced position the 

fastest. 

The larger Q, the faster the tracking error 

decreases, but the control signal also becomes larger. 

• The larger R is chosen, the smaller the control signal. 

• The larger N is chosen, the faster the tracking error 

decreases, but at the cost of increased computational 

complexity. 

The simulation and experimental results (Table 

1) demonstrate the effectiveness of MPC in stabilizing 

the inverted pendulum. The standard MPC controller 

successfully maintains the pendulum upright, with 

settling time dependent on tuning parameters such as 

T, Q, R, and N. Increasing q1 and q2 lead to faster 

tracking but results in a larger control signal. The 

introduction of uncertainty compensation improves 

system performance by reducing steady-state error and 

enhancing response time 

Table 1. Simulation and Experiment of control design 

method 

Controller 

 

MPC 

normal 

Predictive 

controller 

with two 

outputs and 

an integral 

component 

Predictive 

Controller with 

Two Outputs + 

Uncertainty 

Compensation 

Pendulum 

angle (SIM) 
≈ 0° ≈ 0° ≈ 0° 

Pendulum 

angle (EXP) 
≈ 0° ≈ 0° ≈ 0° 

Rotary arm 

angle (SIM) 

≈ 0° ≈ 0° ≈ 0° 

Rotary arm 

angle (EXP) 
−1.5°~0° ≈ −1.5° ≈ 0 

Settling time 

for the 

pendulum 

(SIM) 

1.6 𝑠 1.6 𝑠 1.6 𝑠 

Settling time 

for the 

pendulum 

(EXP) 

3.4 𝑠 3 𝑠 2.8 𝑠 

Settling time 

for the rotary 

arm 

2.3 𝑠 2.3 𝑠 1.6 𝑠 

Settling time 

for rotary arm 

(EXP) 

3.4 𝑠 3.8 𝑠 3.7 𝑠 

 

However, chattering in the control signal is 

observed, affecting actuator performance. 

Experimental validation using Quanser QUBE-Servo2 

confirms the discrepancies between simulations and 

real-world implementation due to model inaccuracies. 

The combination of MPC with a swing-up controller 

leads to sinusoidal oscillations, highlighting the need 

for further parameter optimization. Despite challenges 

in real-time computation and model precision, MPC 

remains a robust strategy for controlling nonlinear and 

unstable systems. 

5. Conclusions 

MPC is shown to be an effective control strategy 

for the rotary inverted pendulum, capable of 

maintaining stability and handling nonlinear 

dynamics. Constructing accurate mathematical models 

and solving complex optimization problems are 

significant challenges in applying MPC, especially for 

nonlinear systems. Incorporating uncertainty 

compensation into MPC improves control 

performance by enhancing response time and reducing 

steady-state error, though it may introduce chattering 

in the control signal. Simulation and experimental 

results using the Quanser QUBE Servo2 validate the 

proposed control strategies. However, some 

discrepancies, such as oscillations in the pendulum 

arm, indicate the need for further optimization. Future 

research should focus on refining control parameters 

and exploring adaptive control methods to address 

model inaccuracies over time. 
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