

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 001-009

1

Evaluation of the Scalability and Performance of
the Open Source Serverless Computing Platforms

Nguyen Tai Hung*

School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Ha Noi, Vietnam
*Correspoding author email: hung.nguyentai@hust.edu.vn

Abstract

The most powerful cloud computing service model currently being developed is the Serverless computing model.
This model brings scalability and cost optimization in the process of deploying applications on cloud
infrastructure. The application will be divided into functions that run a specific logic and those functions will be
deployed as independent units on the Serverless computing platform. One of the strongest points of deploying
applications running on the Serverless computing platform is its scalability and good processing performance.
Scalability is demonstrated through the process of recognizing the actual usage needs of the function, from which
the controllers in the Serverless computing platform will calculate and coordinate resources in the cloud
environment appropriately, ensuring both service availability and saving idle resources. The performance of
functions deployed on the Serverless computing platform mainly comes from the computing and storage capacity
provided by the infrastructure, but the Serverless platforms also participate in supporting the process of optimizing
the operating flow to minimize processing time and return response results to requests from the function caller.
In this paper, we will build an experimental model with the two most popular open source Serverless computing
platforms in the cloud computing development community, OpenFaaS and Knative. The purpose of this work is
to compare and evaluate the scalability and performance in the process of operating applications on the open
source Serverless computing platform. These two platforms rely on two different parameters to decide on the
number of function instances.

Keywords: Serverless, cloud, OpenFaaS, Knative.

1. Introduction

Cloud*computing service providers divide into
many different service provision models to increase
the choice for their customers. Therefore, software
developers will base on the characteristics of the
architecture they are building to decide which service
model to use to be most suitable and save costs and
resources.

Fig. 1. Comparison of cloud computing service
delivery models

Fig. 1 [1] illustrates the comparison between
different cloud models which give the division of
responsibility and roles between the vendor and the

ISSN: 2734-9373
https://doi.org/10.51316/jst.179.ssad.2025.35.1.1
Received: Aug 2, 2024; revised: Aug 22, 2024;
accepted: Sep 4, 2024.

customers at various levels. While On-premise,
Infastructure as a Service (IaaS), Platform as a Service
(PaaS) and Software as a Service (SaaS) are traditional
cloud based software deployment models, Function as
a Service (FaaS) is the new one that proposed recently.

Serverless cloud computing, also known as
"FaaS", is a new and exciting emerging model for
deploying cloud applications, largely due to the recent
shift in application architecture that enterprises are
deploying to run on containers and build on the
micro-services model [2]. Serverless is a cloud-native
development model that allows developers to build,
run, and deploy applications without the effort of
managing and monitoring servers. Serverless still uses
servers to run the developer's application, but the
underlying infrastructure to provide resources for the
server to run is abstracted or hidden from the
developer's application development process.

From Fig. 2, it can be observed that when the
system scale is expanded to meet the increasing
demand from users, the Serverless model has
optimized the use of resources very well and it is
significantly more economical than building and
deploying a separate server. The resources that are
really needed during the running of the application or
service of the tenant are allocated and the cost will only

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 001-009

2

be calculated on that amount of resources. In addition,
when the demand decreases, the idle resources that are
not really involved in the running of the application
will be recovered to cut costs.

Fig. 2. The cost benefits of Serverless model over
traditional server deployments

In more details, FaaS is a cloud computing
service delivery model that allows users to execute
their code in response to event calls. This service frees
software developers from the complex cloud
infrastructure management often associated with
building and launching microservices applications [3].
Publishing a software application or web application
on the internet often requires the provisioning and
management of a physical or virtual server and the
management of an operating system and web server.
With the advent of FaaS, the key components of the
cloud infrastructure such as physical hardware, virtual
machines, operating systems, and web servers are
automatically managed by the cloud service provider.
Thanks to this, software developers only need to focus
entirely on the individual functions of their application
source code. In the FaaS model, functions are deployed
and run on the cloud platform and are triggered by
events or requests from users. FaaS focuses on running
individual functions in isolation and independently,
each function performing a specific job. When an
event or request is triggered, the FaaS system
automatically deploys an instance of the corresponding
function and executes it. When the job is completed,
the function instance is deleted and the resources are
released.

Serverless model supposedly inherit some
superior characteristics compared to other traditional
cloud computing models, typically:

1. Elasticity: With FaaS, developers can focus on
writing logic code for each individual function instead
of building and managing the entire application. They
can take advantage of these functions to handle events
or requests from different sources automatically and
flexibly.

2. Automatic scaling: The FaaS model
automatically expands and shrinks the number of
function instances based on actual requests. When an
event arrives, the system will automatically deploy and
run the necessary function instances to handle the

request, and then automatically reduce the number of
instances when no longer needed.

3. Scalability: FaaS provides automatic
horizontal scaling for functions. Functions can be
deployed across multiple server nodes to meet high
demand, while taking advantage of the automatic
scalability of the FaaS platform.

However, there’re little analysis details and
evaluation of Key Performance Indicators (KPIs) of
the Serverless platform in the condition of real
deployment given the fact that there’re currently
plenty of frameworks and platforms, both commercial
and open sources, in the market and all claims of their
superior. That’s why on this work we have setup a
Test-bed in our lab to test and compare the two main
factors of the FaaS platform, namely the Scalability
and Performance. We first will define the KPI
parameters set and then setup an experimental
environment to measure them in the high load
conditions.

The contributions of this work are as the follows:

1) Proposition of a benchmarking frame work
and methodology to measures scalability and
performance KPIs of the (open sources)
Serverless platforms;

2) First ever work done on comparison of the
Serverless platforms on two very crucial
perspectives of Scalability and Performance

The rest of this paper is organized as follows.
Section II addresses related works. Section III presents
our methodology and setup for benchmarking the
scalability and performance KPIs between the two
most popular Serverless platforms: Knative and
OpenFaaS. Section IV discusses the experimental
results and evaluations. Finally, Section V concludes
the work.

2. Related Works

To deploy any cloud computing service model, it
is necessary to have a data processing centre
(Data-Center) including hardware devices that
provides huge computing and storage capacity such as
CPU, RAM, Storage, Switch, Router, ... Data centers
always ensure timely and continuous provision of
necessary resources for the platforms running above.
In addition, cloud computing service providers also
build distributed data centers located in different
regions,unning independently and separately from
each other to create redundancy and multi-region.

Choosing to use Serverless services between
open source platforms or between service providers
depends on many factors such as: project nature,
popular requirements, platform popularity and support
from the user community. Currently, the choice of
Serverless service technology from service providers

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 001-009

3

is much more popular than open source Serverless
services because it provides more advanced features as
well as a richer accompanying cloud computing
service ecosystem. Serverless computing services of
cloud computing service providers such as AWS,
Google Cloud Platform, Microsoft Azure can be
integrated with many other auxiliary services to link
into a complete system such as event notification
service, distributed database storage and management
service, big data analysis, etc. However, the closed
architecture of commercial Serverless computing
platforms brings many limitations to software
developers. To study and better understand how a
Serverless computing platform works, our work will
focus on popular open source Serverless computing
architectures in the development community.

Among the popular open source Serverless
computing platforms in the community [3], the three
most advanced and still updated platforms are
Knative [4], OpenFaaS [5], and OpenWhisk [6]. All
three platforms run Serverless functions in a separate
Docker container to isolate processes from each other.
In addition, Knative and OpenFaaS require a container
orchestrator to manage the networking and lifecycle of
containers, while OpenWhisk does not need to be
deployed on a container orchestrator. Knative is an
open source project managed by the Cloud Native
Computing Foundation (CNCF). It provides a platform
for building and deploying Serverless applications on
Kubernetes. Knative combines technologies such as
Kubernetes, Istio, and Tekton to provide Serverless
application management and scalability. It supports
autoscaling, continuous deployment, and event
management. OpenWhisk is an open source project of
the Apache Software Foundation (ASF). It is a
Serverless computing platform built on Kubernetes
and is multi-language capable. The expansion and
contraction of functions are managed directly by the
OpenWhisk orchestrator. Finally, OpenFaaS with its
powerful and flexible integration with Docker and
Kubernetes, provides a command-line interface (CLI)
that makes it easy for system administrators to develop
and deploy functions on this platform. Software
developers only need to provide the logic, source code,
and dependencies of the function, while CLI handles
the steps in the process of packaging the function into
a Docker container and managing the lifecycle of this
container through the Pod object in Kubernetes.

OpenFaaS is an open source Serverless platform
(Fig. 3) built on Kubernetes. It allows application
developers to easily deploy and manage functions
flexibly without having to worry about the underlying
infrastructure or maintain or operate the system. With
OpenFaaS, application developers can write source
code for small, single functions, and then OpenFaaS
Operators are responsible for packaging them into
Docker containers and deploying them to OpenFaaS.
OpenFaaS will automatically manage the deployment

and launch process of functions, automatically scaling
up or down resources according to actual needs.
OpenFaaS helps developers easily deploy event-driven
functions and build applications in a microservice
architecture for Kubernetes without having to
configure and install complex systems. In addition to
packaging source code or binary files, existing
libraries in Docker, OpenFaaS also supports automatic
creation of endpoints for each function so that users
can easily send service requests to each function, and
also makes it easy to monitor the status of the function,
thereby makes decisions about expanding or shrinking
copies of the function.

Fig. 3. Overall architecture of the OpenFaaS platform

Knative is an open source project of (CNCF, the
largest organization in the field of cloud computing,
developed on the Kubernetes platform. Knative
provides a framework and a set of tools for building
and operating Serverless computing applications on
Kubernetes. The main goal of Knative is to help
developers build and deploy Serverless applications
easily and flexibly. It provides resource management,
automatic scaling, application version management,
and event handling capabilities. Knative helps create a
reliable and scalable Serverless environment on the
Kubernetes infrastructure. Knative's architecture
consists of two main components: Knative Serving and
Knative Eventing. Knative Serving is the component
responsible for managing the deployment and running
of service functions on the Kubernetes platform. It
provides automatic scaling and load balancing based
on workload and incoming requests. Knative Serving
(Fig. 3) uses the concept of revision to manage
application versions and helps route requests to
specific versions [7]. It also supports concepts such as
route and configuration to manage application routing
and configuration. Knative is the best integrated
Serverless computing platform with K8S today.
Thanks to the high management and customization
capabilities that the K8S ecosystem brings, it will be
very meaningful for Knative to operate the application
developer's functions in the most stable way. Knative
has built controllers according to K8S standards along
with defining many custom resources (Custom
Resource Definition - CRD) that interact with K8S
core resources to take advantage of the scalability,

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 001-009

4

scaling of the number of Pods executing functions or
the intelligent load balancing capabilities that K8S has
available. The Knative Serving architecture also
defines a set of custom resource objects (CRDs),
which are used to identify and control the flow of
function requests sent to each specific instance, or in
other words, coordinate the entire process of handling
request traffic to the system. The main CRDs of
Knative Serving integrated into K8S include services,
routes, configurations, and revisions.

Fig. 4. Block diagram of components in Knative
Serving

From the block diagram in Fig. 4, it can be seen
that the Service object has a management and
coordination role for other objects in Knative Serving.
Service is the basic object for deploying Serverless
functions in Knative. A Service represents a specific
version of the application and defines how the
application will be deployed and scaled [4]. The
Service is connected to a container image or a builder
tool to create an execution environment for the
application. Route is the object that defines how to
reach and route requests to specific versions of the
Service. It provides a simple mechanism for managing
application versions, distributing traffic according to
the configuration to exactly that version.
Configuration is a resource for configuring the
properties of a Service [7]. It allows the user to define
how the Service will behave, the parameters
configured in Configuration include the function
version number, environment configuration, network
configuration, and many other properties. Revision is
a representation of a specific version of a Service. Each
time a Service is deployed or updated, a new Revision
is created [7]. The Revision includes all the
information and resources required to deploy the
application. The Service's controller keeps track of the
state of the Configuration and Route it owns, reflecting
their state and conditions as those of the Service itself.
The Configuration's Ready conditions are exposed
through the Service's "ConfigurationsReady"

condition. The Route's Ready conditions are exposed
through the Service's "RoutesReady" condition.

OpenWhisk is another open source integration
platform for building Serverless computing
architectures. It allows software or web developers to
run code without having to worry about infrastructure
management, automatically scale, and pay based on
actual resource usage. OpenWhisk is developed by the
Apache Software Foundation and supports multiple
programming languages, including Node.js, Python,
Java, Swift, and Go. It helps developers build and
deploy applications and services flexibly and
efficiently. More about the OpenWhisk can be found
on [3, 6].

Peer work on the OpenLambda platform
presents an analysis of the scaling advantages of
serverless computing, as well as a performance
analysis of various container transitions [8]. Other
performance analyses have studied the effect of
language runtime and VPC (Virtual Private Cloud)
impact on AWS (Amazon Web Services) Lambda start
times [9], and measured the potential of AWS Lambda
for embarrassingly parallel high performance
scientific computing [10]. Serverless computing has
proved a good fit for IoT applications, intersecting
with the edge/fog computing infrastructure
conversation. There are ongoing efforts to integrate
serverless computing into a "hierarchy of datacenters"
to empower the foreseen proliferation of IoT devices
[11]. AWS has recently joined this field with their
Lambda@Edge [12] product, which allows application
developers to place limited Lambda functions in edge
nodes. AWS has been pursuing other expansions of
serverless computing as well, including
Greengrass [13], which provides a single
programming model across IoT and Lambda
functions. Serverless computing allows application
developers to decompose large applications into small
functions, allowing application components to scale
individually, but this presents a new problem in the
coherent management of a large array of functions.
AWS recently introduced Step Functions [16], which
allows for easier organization and visualization of
function interaction.

Our investigation results also show that even
though with many Serverless platforms as mentioned,
there are none of project that focus on evaluation of
their performance and scalability, until recently. That
motivated us on proceeding with this work to deeply
investigate their performance KPIs in order to prove
that Serverless (or FaaS) is more scalable than those of
the traditional cloud computing models.

3. Proposition of Methodology to Investigate the
Scalability and Performance of Open Source
Serverless Platforms

On this section, we will focus on presenting the
design and implementation process of methodology to

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 001-009

5

investigate the scalability and performance of open
source Serverless computing architectures. The
deployment of Serverless computing platforms will be
carried out on the Kubernetes container orchestration
platform built from the OpenStack virtualization. We
will then measure system parameters to evaluate the
scalability or resource recovery of applications
running on the Serverless computing platform as well
as the performance during request processing. The
measurement parameters will be focused on the
processor consumption for purpose of easy
monitoring.

3.1. Proposed Evaluation Methodology

In the actual operation of service functions, the
processing needs from external sources are
unpredictable, monitoring the load and manually
configuring the resizing of the functions are very
laborious and not feasible. Therefore, we have to make
our effort to build controllers (based on the open
source projects) with coordination objects and tools to
collect and measure system metrics to automate the
appropriate resizing work to meet the required load
while saving resources to optimize operating costs.

The scalability of each Serverless computing
platform is different. Both OpenFaaS and Knative
have the ability to automatically change the size of the
service function based on the amount of load required
to process or can be based on the resources needed to
process requests such as CPU, RAM. However, the
ability to automatically adapt based on the resources
needed to process the request depends on a controller
of the K8S platform, which is the controller that
changes the number of Pods vertically. This controller
will monitor the resource consumption parameters of
the Pods containing the logic of the execution function
such as CPU or RAM. If the consumption of these
resources exceeds the pre-configured limit, the
controller will send a request to change the number of
Pods running the function and redirect the request to a
new Pod for processing. In the scope of this project,
we will try to measure the ability to automatically
expand and resize of the Serverless computing model,
and thus we will only consider input request load to the
platform. Base on its ability to automatically expand
and resize in accordance of the growing of the demand
load into the system, OpenFaaS will refer to the
parameter of the average request rate sent to the
OpenFaaS Gateway, while Knative will refer to the
parameter showing the number of requests sent to an
entity containing the processing function at the same
time. The average request rate may be higher or lower
than the number of concurrent requests sent to the

function depending on whether the time spent
processing a function call is high or low respectively.

In this work, we aim to evaluate and compare the
scalability of OpenFaaS and Knative, we will measure
the responsiveness of these two platforms with
different request load scenarios. To ensure objectivity
and fairness, we will choose the function call elements
to be completely identical and the configuration to
automatically change the number of functions is also
the same. We choose to use a common function
containing the logic to process incoming requests. To
simplify and suit the testing context in this project, we
choose a function that prints the content of the
incoming request ("echo" function in Linux operating
system). For example, if the incoming request has the
content "Hello-world", the function will process this
request and return the result on the terminal as
"Hello-world". The source code of the function is
written in the Golang and function calls are sent via the
HTTP with the POST method. The HTTP request
generator and function request dispatcher chosen is
"hey" which is an open source tool used to measure the
performance of systems serving requests over the
HTTP. The request dispatch scenario is as follows:
Metrics such as request thread time sent to the
function, number of concurrent simulated request
dispatchers, maximum number of concurrent requests,
request content are exactly the same on both platforms.
The internal configurations of OpenFaaS (Fig. 5) and
Knative (Fig. 6) are set with the same configuration
parameters such as minimum and maximum number of
function running entities, computing resources
provided to each entity, number of concurrently
increased or decreased entities. In addition, the request
dispatch rate limit of OpenFaaS is set to 10 requests
and the request dispatch limit to Knative's concurrent
function processing entity is also set to 10 requests.

In the Knative platform, the main component that
control the process of auto-scaling or rollback is the
Autoscaler. The Autoscaler is responsible for adjusting
the maximum scaling rate and settings related to the
smallest and largest number of Pods on a given
revision. The maximum scaling rate is the rate at which
the Autoscaler allows the current number of instances
to increase or decrease during each scaling trigger.
Additionally, the Autoscaler decides when incoming
requests should be routed to the Pod running the
function instead of to the Activator, which makes
sense in scenarios where the Pod count is increased
from 0 or reduced to 0. Requests cached by the
Activator will send a trigger signal to the Autoscaler,
which will then update the number of Pod replicas
specified in the Deployment of a given revision.

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 001-009

6

Fig. 5. Operational flow during OpenFaaS
auto-scaling or rollback

Fig. 7. The scenario on which the platform to recall all
Pods to zero

Fig. 6. Key components involved in implementing the
auto-scaling or rollback of Knative

Fig. 8. The scenario on which the platform to initiate
new Pods from zero

When the system is running in a stable state, the

Autoscaler continuously scans the currently running
instance Pods to adjust the scale of the instance
continuously. The Autoscaler will monitor the values
collected from the Pods to decide whether to scale
up/down the instance. As requests come into the
system, the collected values will change and the
Autoscaler will request the deployment of the instance
to follow a specific number of Pod replicas. This
means that the Autoscaler will adjust the number of
Pods running the function that exists in the current
instance to meet the increasing request load, ensuring
that the system is always stable and follows the defined
scale. Next, the Scalable Kubernetes Service SKS
component continuously monitors changes in the scale
of the instance through a private Service, from which
it updates the public Service accordingly.

In the scenario that need to rollback or initiate
new Pod the Autoscaler and Activator components
will process through several steps as depicted on
Fig. 7 and Fig. 8 respectively.

In this section, we already clarify the
methodology for evaluating the scalability and
performance of Serverless computing platforms by
outlining a step-by-step process for building a

real-world test model for the OpenFaaS and Knative
platforms. Next section will focus on analyzing the
flow and operations of the components inside the
OpenFaaS and Knative computing architectures to
administrating the platform scalability and
performance to meet the changing needs of users.

4. Testbed and Performance Evaluation

Follow the proposed methodology on section 3,
we have designed and implemented the Test-bed to run
and to measure the scalability and performance KPIs
of the open source Serverless computing architectures.
The Test-bed building is illustrated on the Fig. 9.

Fig. 9. The Test-bed model

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 001-009

7

The image above shows the overall architecture
and technologies we use to implement the Serverless
computing platform in the experiment. To provide
computing resources (CPU, RAM) and storage
resources (Storage) for the above layers, we use a
physical server hardware infrastructure at the FPT
Cloud data center. The server virtualization tool is
OpenStack to create virtual machines that will run the
Kubernetes components. The K8S cluster is built from
3 virtual machines including 1 management machine
(master node) and 2 servers (worker nodes) configured
according to the parameters below:

- Master node: 2 core CPU, 4 GB RAM, 40GB
SSD. Ubuntu OS 20.04.4 LTS

- Worker node: 2 core CPU, 4 GB RAM,
100GB SSD. Ubuntu OS 20.04.4 LTS

After setting up the K8s cluster, we have
deployed the OpenFaaS and Knative platforms on it
using Helm tool, as illustrated on the Fig. 10 and
Fig. 11 respectively.

Fig. 10. Deployment diagram of system components of
OpenFaaS platform

Fig. 11. Deployment diagram of system components of
OpenFaaS platform

The major testing results for several scenarios are
shown following.

4.1 Processing Performance without Pod Running
the Function

The go-echo function has been deployed to both
Serverless computing platforms. According to the
configuration presented above, this function allows all
Pods to be reclaimed to 0, which means that when no
requests are sent after a period of idle time, the
function won’t be instantiated in the Pods. When the
function is newly initialized and has not received any
processing requests, it will not create a Pod to run the
function. At this time, there are no active Pods on the
OpenFaaS-fn and Knative-fn namespaces. We will
then send a processing request to the go-echo function
on OpenFaaS and Knative to compare the successful
response time and how long it takes when there are no
Pods running the function. The tool used to send HTTP
requests to call the function is Postman with the POST
method through the URL provided by OpenFaaS and
Knative when creating the function.

Table 1. Comparison of the time to successfully
process the request when no Pod is running the
function

Function call No. OpenFaaS (s) Knative (s)
1 6.23 2.33
2 6.12 2.55
3 6.27 2.21
4 6.09 2.48
5 6.21 2.12
6 6.12 2.69
7 6.05 2.21
8 6.34 2.88
9 6.12 2.57
10 6.05 2.44
Average 6.16 2.45

Under exactly the same conditions, with the same

request content, we examined 10 function calls to
OpenFaaS and Knative when there was no Pod running
the function. From Table 1, it can be seen that the
request processing time under the condition of no Pod
running the function from the Knative platform is
much better. The processing time and response time
for OpenFaaS requests is nearly 3 times larger than that
of Knative. The reason why OpenFaaS's request
processing time is longer is because of the
initialization time and configuration settings for the
Pod running the function to process OpenFaaS
requests take more time. The initialization process of
the first Pod running the function in the Knative
platform is completed faster because the architecture
of this platform takes advantage of many coordination
APIs provided by K8S, the Pod creation process in
Knative is more optimized. The above survey shows
that the feature of automatically reclaiming all Pods to
0 on Knative has better performance, requests sent to

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 001-009

8

functions when there is no Pod running the active
function are responded faster on Knative, which
contributes to improving the quality of user
experience.

4.2 Elasticity in the Case of Larger Traffic Demand

To simulate the actual operational environment,
I chose the open-source traffic generation tool hey
[16]. Hey allows generating traffic loads and testing
the performance KPIs for web applications. It supports
sending a lot of concurrent HTTP requests and
collecting back information about response time,
statistics and errors from the server. I use hey to fire
requests to functions in both OpenFaaS and Knative in
a period of 5 minutes and the number of concurrent
connections sending requests are 100 connections.

The Fig. 12 shows the process of continuously
sending traffic load to the system for intervals of
5 minutes, the number of Pods increases steadily and
reaches a maximum of 8 Pods before we stop sending
the traffic. The input throughput through the Gateway
is stable at more than 1000 requests per second. It is
found that increasing the number of Pods does not help
improve the throughput through the Gateway, the
number of Pods running the function increases slowly
but does not affect the ability to receive requests, does
not cause congestion at the Gateway. When the
Gateway does not receive any more requests,
OpenFaaS immediately reclaims the resources of the
Pods running the function and brings the number of
Pods to 0 to save resources.

The test scenario is similar to OpenFaaS, but the
function in Knative changes the number of Pods
running the function continuously. Fig. 13 shows that
Knative immediately creates as many Pods as possible
to handle the initial incoming requests. After the Pods
are successfully initialized and participate in handling
the requests, the number of simultaneous requests on
each Pod decreases, Knative proceeds to collect the
actual parameters to update the number of Pods
running the function. Compared to OpenFaaS, Knative
is more sensitive to the input load, the number of Pods
is changed in a short period of time, when the Pod is
revoked to 0, Knative will also gradually reduce the
number of Pods to 1 Pod and then wait a short time
before revoking all Pods to 0 to ensure that no more
requests are sent to the function. After this comparison
scenario, we can see that Knative's ability to adapt to
input load is better than OpenFaaS, the number of Pods
changes continuously to ensure that Pods do not have
to handle a number of simultaneous requests
exceeding the set threshold. However, OpenFaaS's
stability is higher than Knative, this platform will
expand the number of Pods only when really necessary
and only increase 1 Pod after each change, this will not
take up too much of the system's computing resources,
causing conflicts and resource contention with other
functions or being deployed.

Fig. 12. OpenFaaS's process of automatically changing
the number of Pods running functions according to the
input traffic load

Fig. 13. Knative's process of automatically changing
the number of Pods running functions according to the
input traffic load

Even though on this testing we focus on
measuring of RAM/CPU usages and number of Pods
needed upon traffic to the Serverless platform
increased, however some other performance metrics
may also important like the cold start times. When our
servers don't run all the time in the Serverless setup,
they have a cold start time associated that is required
by the infrastructure to initialize resources and boot up
instances when the customer or client request arrives
or an event occurs. This boot up time is not good for
latency-sensitive use cases and is what developers
contemplate when considering Serverless model for
their service architectures. But that might not be an
issue for services that are not latency-sensitive and
want to leverage the upsides of Serverless architecture.

Not all Serverless implementations have the
same cold start time. Factors that influences it are the
choice of runtime, configuration settings and whether
the function is a part of a virtual private cloud or not.
While some cold starts may take a few seconds, others
can be much quicker. On future paper, we may setup
and conduct the tests to measure this metric under
various scenarios and configurations but for now, this
paper only focuses on measuring the scalability of the
platform other than performance detailed metrics.

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 001-009

9

5. Conclusion

Applications built on Micro-service architecture
are increasingly popular and effective. Serverless
cloud computing platforms have emerged to support
the deployment and operation of these applications by
dividing the source code into small independent units
called functions and deploying them on Serverless
computing platforms. Open source serverless
computing platforms are developed by the community
to create a FaaS model. The strengths of these
platforms are a large support community, integration
with many infrastructures and the ability to expand and
customize the source code freely without depending on
the supplier. The content of this paper provides the
main concepts of cloud computing service provision
models and outlines the advantages and disadvantages
of the Serverless computing model. We have designed
the methodology and setup the theoretical basis to
analyse and to measure the scalability and
performance KPIs of the open source Serverless
computing platforms. Finally, we successfully
designed and built a real test model for the two most
popular Serverless platform, namely OpenFaaS and
Knative, created a test scenario to compare and
evaluate the elasticity of the platform in condition of
high traffic load input and measured the processing
performance of the function. The overall evaluation
results show that the function processing performance
before the Pod running the function of Knative is 3
times faster than OpenFaas. Knative platform scales
more flexibly with load demands and performs better
in handling function requests than OpenFaaS platform
under the same test conditions.

Recognizing that the request processing
performance of OpenFaaS is limited. The reasons are
the facts that requests going through the Gateway are
not routed to the correct Pods with enough computing
resources (the Gateway does not have the ability to
balance the load). That’s why for future research, we
will propose a solution to create a Load Balancer
Service integrated into the OpenFaaS Gateway
component to provide the ability to coordinate the
appropriate load to the Pods running the function. In
addition, it is necessary to design more copies for the
OpenFaaS Gateway component to increase the load
capacity, avoiding the situation where incoming
requests are congested here, causing the request flow
to be interrupted.

References
[1] Cloud team. PaaS vs IaaS vs SaaS, IBM. [Online].

Available:
https://www.ibm.com/topics/iaas-paas-saas, Accessed on:
June, 2023.

[2] Development center. What is Serverless, Redhat.
[Online]. Available:
https://www.redhat.com/en/topics/cloud-native-apps/what-
is-Serverless, Accessed on: April 2023.

[3] J. Li, S. G. Kulkarni, K. Ramakrishnan, and D. Li,
Understanding open source Serverless platforms:
Design considerations and performance, Proceedings
of the 5th international workshop on Serverless
computing, 2019, pp. 37-42.
https://doi.org/10.1145/3366623.3368139

[4] Documentation team. Knative docs, Knative Forum.
[Online]. Available:
https://knative.dev/docs, Accessed on: August. 2024.

[5] Documentation team. OpenFaaS docs, OpenFaaS
forum. [Online]. Available:
https://docs.openfaas.com, Accessed on: Feb. 2024.

[6] Documentation team. OpenWhisk docs. [Online].
Available:
https://github.com/apache/openwhisk, Accessed on: Sept.
2024

[7] S. K. Mohanty, G. Premsankar, M. Di Francesco et al.,
An evaluation of open source Serverless computing
frameworks, 2018 IEEE International Conference on
Cloud Computing Technology and Science
(CloudCom), Nicosia, Cyprus, Dec. 10-13, 2018.
https://doi.org/10.1109/CloudCom2018.2018.00033

[8] S. Hendrickson, S. Sturdevant, T. Harter,
V. Venkataramani, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, Serverless computation with
openlambda, in Proceedings of the 8th USENIX
Conference on Hot Topics in Cloud Computing, ser.
HotCloud’16. Berkeley, CA, USA: USENIX
Association, 2016, pp. 33-39.

[9] R. Vojta, AWS journey: API Gateway & Lambda &
VPC performance. [Online]. Available:
https://docs.aws.amazon.com/apigateway/latest/develope
rguide/rest-api-optimize.html, Accessed on June. 2023.

[10] E. Jonas, Microservices and Teraflops. 2016, [Online].
Available:
http://ericjonas.com/pywren.html, Accessed on May.
2023.

[11] E. d. Lara, C. S. Gomes, S. Langridge, S. H. Mortazavi,
and M. Roodi, Poster abstract: Hierarchical serverless
computing for the mobile edge, 2016 IEEE/ACM
Symposium on Edge Computing (SEC), Oct. 27-28, 2016.
https://doi.org/10.1109/SEC.2016.37

[12] Amazon Web Services, AWS Lambda@Edge, 2017
[Online]. Available:
http://docs.aws.amazon.com/lambda/latest/dg/lambda-
edge.html. Accessed on: June. 2024

[13] AWS Greengrass, 2017 [Online]. Available:
https://aws.amazon.com/greengrass, Accessed on: Feb.
2023.

[14] Documentation team. Knative community. [Online].
Available:
https://github.com/knative, Accessed on: March. 2024.

[15] Stefanprodan. Grafana for FaaS. [Online]. Available:
https://github.com/stefanprodan/faas-grafana, Accessed
on: Feb. 2023.

[16] Documentation team. Hey - an HTTP traffic
generation tool. [Online] Available:
https://github.com/rakyll/hey, Accessed on: May. 2023

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 001-009

10

	1. Introduction
	2. Related Works
	3. Proposition of Methodology to Investigate the Scalability and Performance of Open Source Serverless Platforms
	4. Testbed and Performance Evaluation
	4.1 Processing Performance without Pod Running the Function
	4.2 Elasticity in the Case of Larger Traffic Demand

	5. Conclusion

