

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 010-019

10

Vietnamese Sign Language Alphabet Recognition
Using Deep Learning and Mediapipe Methods

Tran Anh Vu1, Phung Van Kien1, Hoang Quang Huy 1*, Pham Thi Viet Huong2

1Hanoi University of Science and Technology, Ha Noi, Vietnam
2International School, Vietnam National Unviersity, Ha Noi, Vietnam

*Corresponding author email: huy.hoangquang@hust.edu.vn

Abstract

Sign language serves as a vital communication method for individuals with hearing impairments, relying on
hand movements and gestures to convey meaning. For centuries, it has enabled interaction for people with
hearing and speech disabilities. However, despite its historical significance, many individuals in society
struggle to interpret these signs, creating a communication barrier with the deaf and mute community. This
paper proposes a deep learning-based system specifically designed to recognize Vietnamese Sign Language
(VSL) gestures. The dataset developed includes 23 alphabet signs and 2 accent marks unique to VSL, with
22 of the alphabet signs resembling those in English. The proposed system achieves an accuracy exceeding
91% on the raw dataset and 95% on the processed dataset.

Keywords: Vietnamese Sign Language, Mediapipe, keypoint, image processing, deep learning.

1. Introduction*

Sign language, a visual mode of communication,
comprises hand signals, gestures, facial expressions,
and body language. Evidence suggests that sign
language has been a widely used communication
method for people with hearing impairments since at
least the fourth century BC [1]. However, a large
portion of the general population is not familiar with
sign language, making it difficult for individuals
relying on this form of communication to interact
without the help of an interpreter.

Sign language recognition has therefore been a
topic of research for many years. Vietnamese Sign
Language (VSL), though influenced by American Sign
Language (ASL), includes several unique gestures not
found in ASL [2]. Moreover, the lack of a publicly
available VSL dataset has limited the number of
studies dedicated to recognizing it. To address this gap,
we constructed a VSL dataset by recording hand
gesture videos using mobile phone cameras and
applying data processing techniques to extract still
images.

Gesture recognition (GR) can be categorized into
two types: static gestures and dynamic gestures [3].
Static gestures are represented by single images, while
dynamic gestures require a sequence of images for
recognition. Feature extraction is a critical phase in
pattern recognition, particularly in static gesture
recognition, where the visual elements of an image
serve as the most reliable indicators for classification
[4].

 * ISSN 2734-9373

https://doi.org/10.51316/jst.179.ssad.2025.35.1.2
Received: Oct 12, 2024 ; revised: Oct 31, 2024
accepted: Oct 31, 2024

This paper leverages the constructed dataset to
develop a deep learning-based system for recognizing
VSL Alphabet. The proposed approach achieves an
accuracy rate of approximately 92-96%.

2. Relate Works

Different machine learning techniques such as
K-nearest neighbours (KNN), Random Forest [5],
Support Vector Machine (SVM) [6], have been used to
classify the data into alphabets and words. As a result
of the recent progress of computers, deep learning-
based methods have been extensively investigated in
the vision-based approach. A Convolutional Neural
Networks (CNN) based hand gesture recognition
system was proposed in [4]. To increase the system's
robustness, skin modelling, hand positioning, and
orientation calibration were added. Dataset photos
were registered using the Xbox Kinect camera. The
research in [7] further suggested complex neural
networks like CNN and stacked denoising auto
encoder that are more effective in learning complex
hand motions with fewer errors. The 24 hand motions
in Moeslund's database were recognized using deep
learning. Recognition has been accomplished in [8]
using both standard feature extraction approaches and
CNN. Sign colour images were processed with an
experimental hybrid discrete wavelet transform Gabor
filter by the authors. The authors evaluated a variety of
classifiers, including the Random Forest, K-Nearest
Neighbours, and Support Vector Machine, for their
performance. Then, a CNN was applied to get an
accuracy of 97.01%.

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 010-019

11

From what was mentioned above, convolution
neural networks have proven its effectiveness in
classifying hand gestures. After some re-testing
experiments, we decide to choose convolution neural
networks for our own dataset.

The current trend in gesture recognition (GR)
research can be divided into two main approaches. The
first involves the use of hand-worn or sensor-based
devices. In this method, electronic gloves equipped
with sensors are utilized to capture gesture data, which
is then analyzed and categorized [9, 10]. While this
approach is more robust and accurate, its practicality
is limited by the need for specialized equipment. The
second approach relies on vision-based techniques.
Here, the process begins with capturing gesture
postures or images using a camera. These images are
subsequently processed using various image
processing techniques, such as segmentation,
matching, recognition, and classification [11, 12].
Owing to the minimal requirement for specialized
hardware, this approach has attracted considerable
attention from researchers [7].

In the second category, some GR approaches
include different algorithms such as: an edge-oriented
histogram-based method [13], combination of the
histogram of oriented gradients (HOG) and the scale-
invariant feature transform (SIFT) based method [14],
deep learning-based methods [15-17], and the scale-
invariant feature transform (SIFT) based method [6].
For static gesture identification, an edge-oriented
histogram was used in [13]. Sign language alphabets'
edge histogram counts were used as features, in
addition to that, a multiclass SVM classifier was
applied and attained an overall accuracy of 93.75%.
Using the HOG and SIFT algorithms, Gupta et al. [14]
can recognize hand gestures. They combined the HOG
and SIFT characteristics for categorization into a
single array. The classification process makes use of a
typical KNN classifier. For double-handed gestures,
179 of the 200 movements were successfully
classified, and 59 of the 60 gestures were correctly
classified for single-handed motions.

Traditional feature extraction methods often fail
to retain critical information that could enhance object
classification. The K-Nearest Neighbors (KNN)
algorithm, while straightforward, is inherently
memory-intensive and becomes impractical for
classifiers operating on large-scale datasets due to its
reliance on storing and referencing the entire training
data without learning underlying patterns. Current
approaches predominantly focus on extracting basic
and simplified features, often relying on image
transformation algorithms to optimize model
performance. Alternatively, some methods prioritize
developing proprietary datasets with improved
prerocessing strategies to enhance classification
accuracy.

In the context of VSL, available datasets remain
relatively limited, as shown in Table 1, and the use of
bone diagrams has not been widely explored in recent
VSL recognition research. A bone diagram is a
representation of the hand by connecting keypoints
(landmarks) on the hand, similar to how bones are
connected at the joints. Therefore, in this paper, we
propose a novel approach to address this issue by
utilizing bone diagram to recognize signs. Our focus is
on the preprocessing phase to ensure clean and reliable
data. By leveraging OpenCV and Mediapipe to process
raw data, we handle challenging backgrounds and
extract hand images into keypoints. Finally, the
keypoints are fed into the classification model for
recognition.

Table 1. A summary about some datasets

Authors Dataset Contents

Hassene Ben
Amara [2]

20BN-
JESTER

Video sequences of
27 hand gestures
represented for
pre-defined hand
gestures

A.H. Vo, [5] VSL-
WRF

Two dataset contains
total 27 Vietnamese
words from the topic
of relative family
topic

O.K.
Oyedotun and
A. Khashman
[10]

PRIMA
24 different static
hand gestures of
Latin alphabets

S. Nagarajan
and T.
Subashini [11]

ASL
Alphabet

Self-captured of
24 static hand
gestures of American
sign language

We collected data from 35 trained individuals,
totaling approximately 200 minutes across 875 videos,
which corresponds to nearly 358,000 image samples.
This extensive dataset is expected to enhance the
model's ability to accurately recognize image samples.
3. Proposed Method

The proposed method comprises three main
stages: (1) Data collecting, (2) Image Rre-processing,
and (3) Model Training for classification. The deep
learning model is based on a CNN, as detailed in [5].
The workflow is illustrated in the block diagram
shown in Fig. 1.

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 010-019

12

Fig. 1. Block Diagram of the Proposed Study

3.1. Data Collecting

3.1.1. A comparison between ASL and VSL

In this study, we build our own VSL dataset. In
order to do that, we consider the differences between
VSL and ASL.

Fig. 2. American Sign Language Alphabet [18]

Fig. 3. Vietnamese sign language alphabet [18]

ASL alphabet consists of 26 characters: “A, B, C,
D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V,
W, X, Y, Z”. 24 of them can be described as a static
hand pose, except for J and Z need to be described as
a dynamic hand motion [18].

Meanwhile, VSL alphabet is quite different to
any sign language alphabet. VSL has some additional
accent marks and lack of some common characters of
Latin alphabet. The standard of VSL was introduced
by Vietnamese Ministry of Education and
Training [19].

As shown in Fig. 2 and Fig. 3, we can see that
according to Vietnamese standard, there are 22 letters
of VSL that are similar to ASL, 11 of them have the
same hand pose including “A, B, C, G, L, O, P, Q, U,
V, Y”. The remaining 11 letters, including “D, E, H,
K, M, N, R, S, T, X” have different shapes.

Apart from 22 similar letters, VSL removes
4 letters of ASL (“F, J, W, Z”) and has a unique letter
Đ (D with stroke - dyet). Moreover, VSL also has
3 additional accent marks: “ ^ ” (the circumflex), “ ˘ ”
(the breve), and “ ’ ” (the horn). Those marks create
11 single vowels in Vietnamese by the formula in the
5th row of Fig. 3. Vietnamese also has 5 tonal symbols
in the 6th row of Fig. 3: “ ` ” (deep), “ ´ ” (sharp), “ ̉”
(asking), “ ˜ ” (tumbling) and “ ̣” (heavy). The
differences between VSL and ASL are summarized in
Fig. 4.

D Đ E

F H J

K M N

R S T

W X Z

^ ˘ ’

Fig 4 A comparision of differential symbols between
ASL (left, 5 first rows) and VSL (right, 5 first rows;
6-7th row VSL only)

Data Collecting Image
Pre-processing

Model Training Result

a b c d e f g

h i j k l m

n o p q r s

t u v w x y z

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 010-019

13

In VSL standard, there are 23 letters using static
hand pose to describe. Two of additional accent marks
(the circumflex and the horn) also use static hand pose,
while the breve and 5 tonal symbols require hand
motion to describe. In this study, we will consider only
23 static letters with 2 static additional accent marks,
the other dynamic symbols will not be mentioned.

3.1.2. Data collecting

In this phase, we collected gesture images by
photographing 35 participants, both male and female,
aged 18 to 30. All participants were trained in the VSL
standard and performed all 25 static symbols of the
Vietnamese alphabet.

To capture their performances, we used various
types of smartphone cameras to record videos of up to
20 minutes each. These videos were saved in MP4 and
MOV formats with RGB encoding. The recordings
employed different frame rates, including 24 FPS,
30 FPS, 60 FPS, and 120 FPS, to ensure diversity in
the dataset.

To introduce variation in environmental conditions,
we utilized multiple backgrounds with varying
contrast and brightness levels. Additionally,
participants positioned their hands at different
distances from their bodies. Fig. 5 provides examples
of these conditions. The dataset includes images from
30 individuals for training and 5 individuals for
testing.

Fig. 5. Examples of hand images from our dataset

The data was captured under diverse conditions,
including varying backgrounds, brightness levels,
contrast settings, and distances between the hands and
the body. This variability ensures that the dataset is
robust and representative of real-world scenarios,
helping the model generalize better during recognition
tasks.

3.2. Data Pre-Processing

3.2.1. Video and image processing

 In related works, techniques such as
thresholding or binary mapping are often employed to
segment the region of interest (ROI) or isolate hands
in images [20]. Additionally, some methods simplify

the process by converting images to grayscale [20]. In
this paper, we introduce a novel preprocessing method
that uses hand keypoints. Our approach detects
21 keypoints (hand landmarks) and reconstructs the
hand shape by connecting these keypoints. This
method leverages the OpenCV library [21] for image
processing and the MediaPipe library [22] for hand
detection and landmark extraction.

MediaPipe is highly effective for motion tracking
and precise hand and finger recognition, thanks to its
integration of machine learning (ML) models trained
on extensive datasets by Google. By leveraging ML,
the library can accurately estimate 21 hand landmarks
with 3D coordinates from a single image. Furthermore,
MediaPipe's efficient analytical framework enables
faster and lighter processing, making it ideal for real-
time applications on mobile devices.

The MediaPipe framework employs a palm
detection model designed to enhance real-time
usability on mobile platforms by utilizing a one-shot
detector technique. For hand detection, MediaPipe
uses two model variants: a reduced model and a full
model, tailored to detect hands of varying sizes with
magnifications of up to approximately 20x. Moreover,
the model incorporates additional contextual
information about the arm and the human body,
enhancing contrast and improving hand recognition
accuracy.

The detection process starts by identifying the
palm region, which acts as the basis for detecting other
parts of the hand. Each image is marked with 21 hand
landmarks in 3D coordinates, later projected to 2D
coordinates while omitting depth information. This
training approach ensures high accuracy and
robustness across diverse conditions, making
MediaPipe well-suited for reliable hand recognition in
real-time applications.

Fig. 6. 21 hand landmarks (keypoints)

Algorithm 1: Auto brightness and contrast balance
method

1. input = image with size 512*512

2. input range = max(Input) - min(Input)

3. alpha = 255 / Input range

4. beta = -min(input) * alpha

5. output = alpha * input + beta

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 010-019

14

Before using the MediaPipe library to detect
hands with 21 keypoints, we implemented a
preprocessing algorithm to adjust brightness and
contrast. This step improves the robustness of the
MediaPipe library, ensuring it performs consistently
and reliably under various background conditions.

Initially, the OpenCV library was utilized to
process each frame of the video. A brightness and
contrast balancing algorithm was applied to each
frame to ensure consistent illumination. Following the
preprocessing step, the MediaPipe library was
employed to detect the hands within the image. The
region of interest (ROI), which contained the hand,
was then cropped into a square bounding box and
resized to 512×512 pixels.

Next, the resized image was reprocessed using
the MediaPipe library to extract the 21 hand keypoints.
These keypoints were used to reconstruct an image
consisting solely of the detected hand markers and the
connections between them (representing joints and
bones). The reconstructed image was placed on a
smooth white background to minimize visual noise
and emphasize the hand structure. This approach
significantly improved the contrast of the hand against
the background and reduced interference from image
noise.

Finally, to optimize data size and prepare for
further processing, the pixel intensity values of the
reconstructed image were normalized from the range
[0.255] to [0.1]

Algorithm 2: Pre-processing algorithm of proposed
method (8 steps)

Input: Images of various sizes extracted from videos.

Step 1: Apply an automatic brightness and contrast
balance method.

Step 2: Use MediaPipe to detect the hand.

Step 3: Crop the region of interest (ROI) into a square
bounding box around the hand.

Step 4: Resize the cropped image to (512, 512).

Step 5: Normalize a copy of the resized image to the
range (0, 1).

Step 6: Use MediaPipe to detect hand joints in the
resized image.

Step 7: Draw the detected joints on a (512, 512) white
background image using the coordinates from Step 6,
and use this as the bone diagram image.

Step 8: Normalize the bone diagram image to the range
(0, 1).

A

B

C

D

Đ

E

G

H

I

K

L

M

N

O

P

Q

R

S

T

U

V

X

Y

^

’

Fig. 7. A sample hand image alphabet of VSL after
step 3

A

B

C

D

Đ

E

G

H

I

K

L

M

N

O

P

Q

R

S

T

U

V

X

Y

^

’

Fig. 8. A sample bone diagram alphabet of VSL after
step 6

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 010-019

15

Fig. 9. Structure of the dataset, organized into two
categories: "hand data" and "bone data"

After preprocessing the data, we obtained two
related datasets, which we refer to as "hand data" and
"bone data" (Fig. 9).

The "hand data" corresponds to the dataset 1
obtained after step 4, while the "bone data" refers to
the dataset 2 generated after step 8. Each dataset
includes a training set and a test set. The training set
consists of approximately 270,000 images from
30 participants, while the test set contains nearly
85,000 images from 5 other participants. As a result,
the "bone data" is significantly smaller in size
compared to the "hand data.".

3.2.2. Data visualization

An additional step was taken to verify the
suitability of our new data for use as a dataset in the
machine learning process. By visualizing and
evaluating the dataset, we assessed it based on several
criteria: balanced class distribution, sufficient size, and
an appropriate train-test ratio, as illustrated in Fig. 10,
Fig. 11, Fig. 12.

The results indicate that our new dataset has
balanced class sizes, with approximately
10,000 images in each training class folder and around
3,000 images in each test class folder. The train-test
ratio of approximately 4:1 is considered typical for a
machine learning dataset, ensuring a solid foundation
for training and evaluation.

3.3. Deep Learning-Based Classification

3.3.1. Convolution neural network

CNN is one of the most used deep learning
methods to analyse visual imagery. CNN involves less
pre-processing compared to other image classification
algorithms. The network learns the filters that are
normally hand-engineered in other systems. The use of
CNN reduces the images into a format that is easier to
process while preserving features that are essential for
making accurate predictions. There are four types of
operations in a CNN: convolution, pooling, flattening,
and fully connected layers [23] The convolution layer
usually captures low-level features such as colour,
edges, and gradient orientation. The pooling layer

decreases the spatial dimension of the convolved
feature. This operation reduces the required
computational time for dealing with the data through
dimensionality alleviation. Furthermore, it has the
advantage of maintaining dominant features that are
positionally and rotationally invariant during the
model training process. After the input image has been
processed the higher-level features may be used for
classification. Therefore, the image is flattened into a
1-D vector. In CNN, the flattened output is supplied to
a fully connected layer. After training, using SoftMax
classification, the model can provide probabilities of
prediction of objects in the image. Backpropagation is
used to train the network. In this study, the system is
implemented by using PyTorch library on GPU Zotac
Gaming GeForce RTX 3090Ti.

Fig. 10. Size of classes on training set of hand and
bone data

Fig. 11. Size of classes on testing set of hand and bone
data

Fig. 12. Train-test ratio of hand data and bone data

Dataset

hand data
• Training Set: 273000 images
• Testing Set: 85000 images

bone data
• Training Set: 273000 images
• Testing Set: 85000 images

0
2000
4000
6000
8000

10000
12000
14000
16000

B C D Đ E G H I K L MN O P Q R S T U V X Y ^ ̉

Hand data Bone data

0

1000

2000

3000

4000

5000

6000

A B C D Đ E G H I K L MN O P Q R S T U V X Y ^ ̉

Hand data Bone data

76%

24%

Training
Testing

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 010-019

16

3.3.2. The structure of the proposed convolutional
neural network

The CNN model designed in our study consists
of multiple layers. Fig. 13 illustrates the proposed
structure of the CNN which consists of an input layer
to input the images with 64 × 64 × 3 dimensions; this
represents the size of the sign language frames that are
taken as input into the system. The feature extraction
part comprises three convolutional layers (Conv1,
Conv2, Conv3). The convolution filter dimensions in
each layer are 3 × 3. The batch normalization is 32 for
ConvNet1, 64 for ConvNet2 and 128 for ConvNet3.
Each convolution operation is followed by rectified
linear units (ReLU). After ReLU, MaxPooling is
applied. Pooling aims to prevent the loss of valuable
information when the feature is represented. After the
convolutional stage, flattening is applied for the
classification stage. The classification stage is
implemented with fully connected layers followed by
a ReLU activation function and one SoftMax output
layer.

Fig. 13. Architecture of the proposed CNN model

3.4. Experimental Results

 Since the proposed network is the simplified
version of CNN, we calculate the loss of method by
cross entropy loss function of PyTorch.

The training process was conducted using two
distinct datasets: hand data and bone data (Table 3).
Each dataset was used to train a separate model,
denoted as Model I (Table 4) and Model II (Table 5),
respectively. The models were evaluated using the
cross-entropy loss function, a standard measure for
classification tasks. Training was performed over 500
epochs, with an initial learning rate set to 0.001

Table 3. Result of testing model

Model
Criteria

Model I Model II

Sensitivity 0.9838 0.9634

Specificity 0.9970 0.9985

Precision 0.9244 0.9665

F1-score 0.9205 0.9637

Mean Accuracy 0.9208 0.9637

Table 4. Result of testing Model I on single label

 Pre Rec F1 Support
A 0.95 0.96 0.95 2620
B 0.96 0.98 0.97 4910
C 0.87 0.98 0.92 2632
D 0.87 0.87 0.87 1746
Đ 0.93 0.94 0.94 3102
E 0.94 0.93 0.94 2754
G 0.94 0.98 0.96 2842
H 0.65 0.97 0.78 2480
I 0.8 0.97 0.88 2647
K 1 0.85 0.92 2468
L 1 0.92 0.96 3892
N 0.97 0.93 0.95 1913
M 0.98 0.98 0.98 3706
O 0.92 0.86 0.89 3776
P 0.96 0.99 0.97 2958
Q 0.96 0.99 0.97 2584
R 0.98 0.98 0.98 3372
S 0.81 0.91 0.86 3527
T 0.96 0.83 0.89 5628
U 1 0.92 0.96 2586
V 0.88 0.98 0.93 4342
X 1 0.72 0.84 3474
Y 0.93 0.97 0.95 2557
^ 0.89 0.82 0.85 3050
’ 0.99 0.86 0.92 3959

Table 5. Result of testing Model II on single label

 Pre Rec F1 Support
A 0.98 0.95 0.97 2620
B 1 0.99 1 4910
C 0.98 0.99 0.99 2632
D 0.91 0.96 0.93 1746
Đ 0.99 0.91 0.95 3102
E 0.98 0.91 0.94 2754
G 0.99 1 1 2842
H 0.93 0.98 0.95 2480
I 0.97 0.97 0.97 2647
K 0.95 0.94 0.95 2468
L 1 0.95 0.97 3892
N 1 1 1 1913
M 1 0.99 0.99 3706
O 0.93 0.99 0.96 3776
P 0.99 0.96 0.97 2958
Q 1 1 1 2584
R 0.98 0.99 0.99 3372
S 0.98 1 0.99 3527
T 0.99 0.99 0.99 5628
U 0.98 1 0.99 2586
V 0.94 0.96 0.95 4342
X 0.99 0.77 0.86 3474
Y 0.97 0.98 0.98 2557
^ 0.96 0.91 0.93 3050
’ 0.79 0.98 0.88 3959

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 010-019

17

Predicted

Fig. 15. Confusion matrix of trained model on test set of bone data

Fig. 14. Confusion matrix of trained model on test set of hand data

A
B
C
D
Đ
E
G
H
I
K
L
M
N
O
P
Q
R
S
T
U
V
X
Y
^
’

A B C D Đ E G H I K L M N O P Q R S T U V X Y ^ ’

Predicted

A
B
C
D
Đ
E
G
H
I
K
L
M
N
O
P
Q
R
S
T
U
V
X
Y
^
’

A B C D Đ E G H I K L M N O P Q R S T U V X Y ^ ’

G
round truth

G
round truth

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 010-019

18

The learning rate decay was triggered when the
training loss remained constant for two consecutive
epochs, with the minimum learning rate capped at
0.0001. This adaptive reduction mechanism aimed to
facilitate smoother convergence of the models.

Throughout the training process, the training loss
of both Model I and Model II exhibited significant
fluctuations in the initial epochs. However, the losses
progressively decreased, reaching their minimum
values around the 50th epoch. This reduction in
training loss suggests that the models effectively
learned the underlying features of the datasets.
Notably, while the reduction in training loss indicated
improved optimization, a slight decrease in training
accuracy was observed, potentially signaling the onset
of overfitting or challenges in further generalization.

Despite achieving accurate predictions in the
majority of cases, the models demonstrated occasional
failures. Upon detailed examination, these
misclassifications were primarily attributed to
alphabet similarities and the presence of difficult-to-
recognize characters, which posed challenges for the
model to distinguish effectively.

To evaluate the performance of the two trained
models and validate our observations, we utilized the
testing datasets of hand data and bone data to test
Model I and Model II, respectively. The evaluation
results are summarized in Tables 3, Table 4, and
Table 5, and further illustrated by two confusion
matrices in Fig. 14 and Fig. 15. The models were
assessed using standard performance metrics,
including sensitivity, specificity, precision, F1-score,
and mean accuracy.

The evaluation results indicate that Model II
outperformed Model I in terms of specificity,
precision, F1-score, and mean accuracy. However,
Model I achieved higher sensitivity compared to
Model II. Additionally, the training time per epoch and
response time per sample for Model II were observed
to be lower than those of Model I, highlighting the
computational efficiency of Model II.

4. Conclusion

Sign language serves as a vital communication
tool for individuals with hearing and speech
impairments. As such, sign language recognition plays
a crucial role by capturing sign language videos and
accurately interpreting the gestures. This paper focuses
on VSL recognition, utilizing various local features
and techniques for hand gesture identification.

The study centers on the development of a VSL
recognition system capable of handling complex
backgrounds, leveraging deep learning techniques.
Specifically, the research utilizes a CNN model. The
proposed methods were evaluated using a VSL dataset
that includes the Vietnamese alphabet, incorporating
unique characters such as “đ”, “’”, and “^” with

diverse samples collected from a large group of
signers.

Experimental results demonstrate the
effectiveness of the model, particularly when a novel
pre-processing technique was applied prior to
inputting data into the model. In particular, hand
images were transformed into diagrams of hand
shapes, marked with key points. Additionally, the pre-
processing step proved useful in removing redundant
background information, thereby improving the
accuracy of the VSL recognition system. Future work
will involve expanding the dataset and refining the pre-
processing steps to enhance the recognition method,
ultimately aiming to achieve higher accuracy.

Acknowledgments

This research is funded by Hanoi University of
Science and Technology (HUST) under project
number T2023-PC-028.

References
[1] R. J. Ruben, Sign language: Its history and

contribution to the understanding of the biological
nature of language, Acta Oto-Laryngologica, vol. 125,
iss. 5, pp. 464-467, 2005.
https://doi.org/10.1080/00016480510026287

[2] K. Emmorey, J. S. Reilly, and J. S. Reilly, Language,
Gesture, and Space, New York, Psychology Press,
2013, 464 pp.
https://doi.org/10.4324/9780203773413

[3] G. Plouffe and A.-M. Cretu, Static and dynamic hand
gesture recognition in depth data using dynamic time
warping, IEEE Transactions on Instrumentation and
Measurement, vol. 65, iss. 2, pp. 305-316, Nov. 2015.
https://doi.org/10.1109/TIM.2015.2498560

[4] S. Shah, A. Kotia, K. Nisar, A. Udeshi and P. P. M.
Chawan, A vision based hand gesture recognition
system using convolutional neural networks,
International Research Journal of Engineering and
dnhTechnology (IRJET), vol. 06, no. 04, Apr. 2019.

[5] A. Vo, B. N. Thiem and V. H. Pham, Deep Learning
for Vietnamese sign language recognition in video
sequence, International Journal of Machine Learning
and Computing, vol. 9, no. 4, Aug. 2019.
https://doi.org/10.18178/ijmlc.2019.9.4.823

[6] Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu, Y. Zhou,
K. Meng, C. Sun, Q. He, W. Fan, E. Fan, Z. Lin, X.
Tan, W. Deng, J. Yang and J. Chen, Sign-to-speech
translation using machine-learning-assisted
stretchable sensor arrays, Nature Electronics,
pp. 571-578, Jun. 2020.
https://doi.org/10.1038/s41928-020-0428-6

[7] Oyedotun, O.K., & Khashman, Deep learning in
vision-based static hand gesture recognition, Neural
Computing and Applications, vol. 28, iss. 12,
pp. 3941-3951, Dec. 2017.
https://doi.org/10.1007/s00521-016-2294-8

[8] D. Golekar, R. Bula, R. Hole, S. Katare and P. S.
Parab, Sign language recognition using Python and

JST: Smart Systems and Devices

Volume 35, Issue 1, January 2025, 010-019

19

opencv, International Research Journal of
Modernization in Engineering Technology and
Science , vol. 04, iss. 02, pp. 1179-1183, Feb. 2022.

[9] Wang, H., Ru, B., Miao, X., Gao, Q., Habib, M., Liu,
L., et al., MEMS devicesbased hand gesture
recognition via wearable computing, Micromachines,
vol. 14, iss. 5, Apr. 2023.
https://doi.org/10.3390/mi14050947

[10] Wang, S., Wang, A., Ran, M., Liu, L., Peng, Y., Liu,
M., et al, Hand gesture recognition framework using a
lie group based spatio-temporal recurrent network with
multiple hand-worn motion sensors, Information
Sciences, vol. 606, pp. 722-74, Aug. 2022.
https://doi.org/10.1016/j.ins.2022.05.085

[11] Al-Shamayleh, A. S., Ahmad, R., Abushariah, M. A.
M., Alam, K. A., & Jomhari,A systematic literature
review on vision based gesture recognition
techniques, Multimedia Tools Applications, vol. 77,
pp. 28121-28184, Apr. 2018.
https://doi.org/10.1007/s11042-018-5971-z

[12] Rahman, M. M., Uzzaman, A., & Aktaruzzaman, M.,
Developing a real-time touchless human-computer
interaction using hand gesture recognition, in IEEE CS
BDC summer symposium. IEEE, Bangladesh,
Jun. 2023.

[13] F. R. Cordeiro, S. Chevtchenko, R. F. Vale and V.
Macario, A convolutional neural network with feature
fusion for real-time hand posture recognition, Applied
Soft Computing, vol. 73, pp. 748-766, Nov. 2018.
https://doi.org/10.1016/j.asoc.2018.09.010

[14] P. Rathi, R. K. Gupta, S. Agarwal, A. Shukla and R.
Tiwari, Sign language recognition using ResNet50
deep neural network architecture, in 5th International
Conference on Next Generation Computing
Technologies, Feb. 2020.
https://doi.org/10.2139/ssrn.3545064

[15] P. Bhatia and A. Wadhawan, Deep learning-based sign
language recognition system for static signs, Neural

Computing and Applications, vol. 32, pp. 7957-7968,
Jan. 2020.
https://doi.org/10.1007/s00521-019-04691-y

[16] H. B. D. Nguyen and H. N. Do, Deep learning for
american sign language fingerspelling recognition
system in 2019 26th International Conference on
Telecommunications (ICT), Hanoi, Vietnam, 2019,
pp. 314-318.
https://doi.org/10.1109/ICT.2019.8798856

[17] Bowen Shi, Diane Brentari, Greg Shakhnarovich,
Karen Livescu; Fingerspelling detection in American
Sign Language in 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pp. 4166-4175, Jun. 2021
https://doi.org/10.1109/CVPR46437.2021.00415

[18] Costello, Elaine, American Sign Language Dictionary,
Random House Reference, 2nd ed., 2008.

[19] Vietnamese Ministry of Education and Training,
Promulgate regulations on national standards on sign
language for people with disabilities, 2020.

[20] S. Chandran, Color image to grayscale image
conversion, Conference on Computer Engineering and
Applications (ICCEA), 2010 Second International
Conference, vol. 2, Apr. 2010.

[21] N. Mahamkali and V. Ayyasamy, OpenCV for
computer vision applications, Conference:
Proceedings of National Conference on Big Data and
Cloud Computing (NCBDC’15), March 20, 2015.

[22] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E.
Uboweja, M. Hays, F. Zhang, C.-L. Chang, M. G.
Yong, J. Lee, W.-T. Chang, W. Hua, M. Georg and M.
Grundmann, MediaPipe: A framework for building
perception pipelines, arXiv preprint
arXiv:1906.08172, Jun. 2019.

[23] Y. LeCun, Y. Bengio and G. Hinton, Deep learning, N
U R S E, Nature, vol. 521, pp. 436-444, May. 2015.
https://doi.org/10.1038/nature14539

https://archive.org/details/randomhousewebst00elai_0

	1. Introduction0F
	2. Relate Works
	3. Proposed Method
	Acknowledgments

