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Abstract 

Sign language serves as a vital communication method for individuals with hearing impairments, relying on 
hand movements and gestures to convey meaning. For centuries, it has enabled interaction for people with 
hearing and speech disabilities. However, despite its historical significance, many individuals in society 
struggle to interpret these signs, creating a communication barrier with the deaf and mute community. This 
paper proposes a deep learning-based system specifically designed to recognize Vietnamese Sign Language 
(VSL) gestures. The dataset developed includes 23 alphabet signs and 2 accent marks unique to VSL, with 
22 of the alphabet signs resembling those in English. The proposed system achieves an accuracy exceeding 
91% on the raw dataset and 95% on the processed dataset. 
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1. Introduction* 

Sign language, a visual mode of communication, 
comprises hand signals, gestures, facial expressions, 
and body language. Evidence suggests that sign 
language has been a widely used communication 
method for people with hearing impairments since at 
least the fourth century BC [1]. However, a large 
portion of the general population is not familiar with 
sign language, making it difficult for individuals 
relying on this form of communication to interact 
without the help of an interpreter. 

Sign language recognition has therefore been a 
topic of research for many years. Vietnamese Sign 
Language (VSL), though influenced by American Sign 
Language (ASL), includes several unique gestures not 
found in ASL [2]. Moreover, the lack of a publicly 
available VSL dataset has limited the number of 
studies dedicated to recognizing it. To address this gap, 
we constructed a VSL dataset by recording hand 
gesture videos using mobile phone cameras and 
applying data processing techniques to extract still 
images. 

Gesture recognition (GR) can be categorized into 
two types: static gestures and dynamic gestures [3]. 
Static gestures are represented by single images, while 
dynamic gestures require a sequence of images for 
recognition. Feature extraction is a critical phase in 
pattern recognition, particularly in static gesture 
recognition, where the visual elements of an image 
serve as the most reliable indicators for classification 
[4]. 
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This paper leverages the constructed dataset to 
develop a deep learning-based system for recognizing 
VSL Alphabet. The proposed approach achieves an 
accuracy rate of approximately 92-96%. 

2. Relate Works 

Different machine learning techniques such as    
K-nearest neighbours (KNN), Random Forest [5], 
Support Vector Machine (SVM) [6], have been used to 
classify the data into alphabets and words. As a result 
of the recent progress of computers, deep learning-
based methods have been extensively investigated in 
the vision-based approach. A Convolutional Neural 
Networks (CNN) based hand gesture recognition 
system was proposed in [4]. To increase the system's 
robustness, skin modelling, hand positioning, and 
orientation calibration were added. Dataset photos 
were registered using the Xbox Kinect camera. The 
research in [7] further suggested complex neural 
networks like CNN and stacked denoising auto 
encoder that are more effective in learning complex 
hand motions with fewer errors. The 24 hand motions 
in Moeslund's database were recognized using deep 
learning. Recognition has been accomplished in [8] 
using both standard feature extraction approaches and  
CNN. Sign colour images were processed with an 
experimental hybrid discrete wavelet transform Gabor 
filter by the authors. The authors evaluated a variety of 
classifiers, including the Random Forest, K-Nearest 
Neighbours, and Support Vector Machine, for their 
performance. Then, a CNN was applied to get an 
accuracy of 97.01%.  
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From what was mentioned above, convolution 
neural networks have proven its effectiveness in 
classifying hand gestures. After some re-testing 
experiments, we decide to choose convolution neural 
networks for our own dataset. 

The current trend in gesture recognition (GR) 
research can be divided into two main approaches. The 
first involves the use of hand-worn or sensor-based 
devices. In this method, electronic gloves equipped 
with sensors are utilized to capture gesture data, which 
is then analyzed and categorized [9, 10]. While this 
approach is more robust and accurate, its practicality 
is limited by the need for specialized equipment. The 
second approach relies on vision-based techniques. 
Here, the process begins with capturing gesture 
postures or images using a camera. These images are 
subsequently processed using various image 
processing techniques, such as segmentation, 
matching, recognition, and classification [11, 12]. 
Owing to the minimal requirement for specialized 
hardware, this approach has attracted considerable 
attention from researchers [7]. 

In the second category, some GR approaches 
include different algorithms such as: an edge-oriented 
histogram-based method [13], combination of the 
histogram of oriented gradients (HOG) and the scale-
invariant feature transform (SIFT) based method [14], 
deep learning-based methods [15-17], and the scale-
invariant feature transform (SIFT) based method [6]. 
For static gesture identification, an edge-oriented 
histogram was used in [13]. Sign language alphabets' 
edge histogram counts were used as features, in 
addition to that, a multiclass SVM classifier was 
applied and attained an overall accuracy of 93.75%. 
Using the HOG and SIFT algorithms, Gupta et al. [14] 
can recognize hand gestures. They combined the HOG 
and SIFT characteristics for categorization into a 
single array. The classification process makes use of a 
typical KNN classifier. For double-handed gestures, 
179 of the 200 movements were successfully 
classified, and 59 of the 60 gestures were correctly 
classified for single-handed motions. 

Traditional feature extraction methods often fail 
to retain critical information that could enhance object 
classification. The K-Nearest Neighbors (KNN) 
algorithm, while straightforward, is inherently 
memory-intensive and becomes impractical for 
classifiers operating on large-scale datasets due to its 
reliance on storing and referencing the entire training 
data without learning underlying patterns. Current 
approaches predominantly focus on extracting basic 
and simplified features, often relying on image 
transformation algorithms to optimize model 
performance. Alternatively, some methods prioritize 
developing proprietary datasets with improved 
prerocessing strategies to enhance classification 
accuracy.   

In the context of VSL, available datasets remain 
relatively limited, as shown in Table 1, and the use of 
bone diagrams has not been widely explored in recent 
VSL recognition research. A bone diagram is a 
representation of the hand by connecting keypoints 
(landmarks) on the hand, similar to how bones are 
connected at the joints. Therefore, in this paper, we 
propose a novel approach to address this issue by 
utilizing bone diagram to recognize signs. Our focus is 
on the preprocessing phase to ensure clean and reliable 
data. By leveraging OpenCV and Mediapipe to process 
raw data, we handle challenging backgrounds and 
extract hand images into keypoints. Finally, the 
keypoints are fed into the classification model for 
recognition. 

 

Table 1. A summary about some datasets 

Authors Dataset Contents 

Hassene Ben 
Amara [2] 

20BN-
JESTER  

Video sequences of           
27 hand gestures 
represented for                
pre-defined hand 
gestures  

A.H. Vo, [5] VSL-
WRF  

Two dataset contains 
total 27 Vietnamese 
words from the topic 
of relative family 
topic  

O.K. 
Oyedotun and 
A. Khashman 
[10] 

PRIMA  
24 different static 
hand gestures of 
Latin alphabets 

S. Nagarajan 
and T. 
Subashini [11] 

ASL 
Alphabet  

Self-captured of       
24 static hand 
gestures of American 
sign language  

 

We collected data from 35 trained individuals, 
totaling approximately 200 minutes across 875 videos, 
which corresponds to nearly 358,000 image samples. 
This extensive dataset is expected to enhance the 
model's ability to accurately recognize image samples. 
3. Proposed Method 

The proposed method comprises three main 
stages: (1) Data collecting, (2) Image Rre-processing, 
and (3) Model Training for classification. The deep 
learning model is based on a CNN, as detailed in [5]. 
The workflow is illustrated in the block diagram 
shown in Fig. 1. 
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Fig. 1. Block Diagram of the Proposed Study 

3.1. Data Collecting 

3.1.1. A comparison between ASL and VSL 

In this study, we build our own VSL dataset. In 
order to do that, we consider the differences between 
VSL and ASL.   

 
Fig. 2.  American Sign Language Alphabet [18] 

 
Fig. 3.  Vietnamese sign language alphabet [18] 

ASL alphabet consists of 26 characters: “A, B, C, 
D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, 
W, X, Y, Z”. 24 of them can be described as a static 
hand pose, except for J and Z need to be described as 
a dynamic hand motion [18].   

Meanwhile, VSL alphabet is quite different to 
any sign language alphabet. VSL has some additional 
accent marks and lack of some common characters of 
Latin alphabet. The standard of VSL was introduced 
by Vietnamese Ministry of Education and                     
Training [19]. 

As shown in Fig. 2 and Fig. 3, we can see that 
according to Vietnamese standard, there are 22 letters 
of VSL that are similar to ASL, 11 of them have the 
same hand pose including “A, B, C, G, L, O, P, Q, U, 
V, Y”. The remaining 11 letters, including “D, E, H, 
K, M, N, R, S, T, X” have different shapes.  

Apart from 22 similar letters, VSL removes                     
4 letters of ASL (“F, J, W, Z”) and has a unique letter 
Đ (D with stroke - dyet). Moreover, VSL also has                   
3 additional accent marks: “ ^ ” (the circumflex), “ ˘ ” 
(the breve), and “ ’ ” (the horn). Those marks create  
11 single vowels in Vietnamese by the formula in the 
5th row of Fig. 3. Vietnamese also has 5 tonal symbols 
in the 6th row of Fig. 3: “ ` ” (deep), “ ´ ” (sharp), “   ̉” 
(asking), “ ˜ ” (tumbling) and “  ̣” (heavy).  The 
differences between VSL and ASL are summarized in 
Fig. 4. 

 

D   Đ  E  

F H  J 

K  M  N  

R  S  T  

W X  Z 

^  ˘  ’  

 
Fig 4 A comparision of differential symbols between 
ASL (left, 5 first rows) and VSL (right, 5 first rows;   
6-7th row VSL only) 

 

Data Collecting Image  
Pre-processing 

Model Training Result 

a b c d e f g 

h i j k l m 

n o p q r s 

t u v w x y z 
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In VSL standard, there are 23 letters using static 
hand pose to describe. Two of additional accent marks 
(the circumflex and the horn) also use static hand pose, 
while the breve and 5 tonal symbols require hand 
motion to describe. In this study, we will consider only 
23 static letters with 2 static additional accent marks, 
the other dynamic symbols will not be mentioned. 

3.1.2. Data collecting 

In this phase, we collected gesture images by 
photographing 35 participants, both male and female, 
aged 18 to 30. All participants were trained in the VSL 
standard and performed all 25 static symbols of the 
Vietnamese alphabet. 

To capture their performances, we used various 
types of smartphone cameras to record videos of up to 
20 minutes each. These videos were saved in MP4 and 
MOV formats with RGB encoding. The recordings 
employed different frame rates, including 24 FPS,               
30 FPS, 60 FPS, and 120 FPS, to ensure diversity in 
the dataset. 

To introduce variation in environmental conditions, 
we utilized multiple backgrounds with varying 
contrast and brightness levels. Additionally, 
participants positioned their hands at different 
distances from their bodies. Fig. 5 provides examples 
of these conditions. The dataset includes images from 
30 individuals for training and 5 individuals for 
testing. 

   

   
Fig. 5. Examples of hand images from our dataset 

The data was captured under diverse conditions, 
including varying backgrounds, brightness levels, 
contrast settings, and distances between the hands and 
the body. This variability ensures that the dataset is 
robust and representative of real-world scenarios, 
helping the model generalize better during recognition 
tasks. 

3.2. Data Pre-Processing 

3.2.1. Video and image processing 

 In related works, techniques such as 
thresholding or binary mapping are often employed to 
segment the region of interest (ROI) or isolate hands 
in images [20]. Additionally, some methods simplify 

the process by converting images to grayscale [20]. In 
this paper, we introduce a novel preprocessing method 
that uses hand keypoints. Our approach detects                      
21 keypoints (hand landmarks) and reconstructs the 
hand shape by connecting these keypoints. This 
method leverages the OpenCV library [21] for image 
processing and the MediaPipe library [22] for hand 
detection and landmark extraction. 

MediaPipe is highly effective for motion tracking 
and precise hand and finger recognition, thanks to its 
integration of machine learning (ML) models trained 
on extensive datasets by Google. By leveraging ML, 
the library can accurately estimate 21 hand landmarks 
with 3D coordinates from a single image. Furthermore, 
MediaPipe's efficient analytical framework enables 
faster and lighter processing, making it ideal for real-
time applications on mobile devices. 

The MediaPipe framework employs a palm 
detection model designed to enhance real-time 
usability on mobile platforms by utilizing a one-shot 
detector technique. For hand detection, MediaPipe 
uses two model variants: a reduced model and a full 
model, tailored to detect hands of varying sizes with 
magnifications of up to approximately 20x. Moreover, 
the model incorporates additional contextual 
information about the arm and the human body, 
enhancing contrast and improving hand recognition 
accuracy. 

The detection process starts by identifying the 
palm region, which acts as the basis for detecting other 
parts of the hand. Each image is marked with 21 hand 
landmarks in 3D coordinates, later projected to 2D 
coordinates while omitting depth information. This 
training approach ensures high accuracy and 
robustness across diverse conditions, making 
MediaPipe well-suited for reliable hand recognition in 
real-time applications.   

 
Fig. 6. 21 hand landmarks (keypoints) 

Algorithm 1: Auto brightness and contrast balance 
method  

1. input = image with size 512*512 

2. input range = max(Input) - min(Input) 

3. alpha = 255 / Input range 

4. beta = -min(input) * alpha 

5. output = alpha * input + beta   
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Before using the MediaPipe library to detect 
hands with 21 keypoints, we implemented a 
preprocessing algorithm to adjust brightness and 
contrast. This step improves the robustness of the 
MediaPipe library, ensuring it performs consistently 
and reliably under various background conditions. 

Initially, the OpenCV library was utilized to 
process each frame of the video. A brightness and 
contrast balancing algorithm was applied to each 
frame to ensure consistent illumination. Following the 
preprocessing step, the MediaPipe library was 
employed to detect the hands within the image. The 
region of interest (ROI), which contained the hand, 
was then cropped into a square bounding box and 
resized to 512×512 pixels. 

Next, the resized image was reprocessed using 
the MediaPipe library to extract the 21 hand keypoints. 
These keypoints were used to reconstruct an image 
consisting solely of the detected hand markers and the 
connections between them (representing joints and 
bones). The reconstructed image was placed on a 
smooth white background to minimize visual noise 
and emphasize the hand structure. This approach 
significantly improved the contrast of the hand against 
the background and reduced interference from image 
noise. 

Finally, to optimize data size and prepare for 
further processing, the pixel intensity values of the 
reconstructed image were normalized from the range 
[0.255] to [0.1] 

 

Algorithm 2: Pre-processing algorithm of proposed 
method (8 steps) 

Input: Images of various sizes extracted from videos. 

Step 1: Apply an automatic brightness and contrast 
balance method. 

Step 2: Use MediaPipe to detect the hand. 

Step 3: Crop the region of interest (ROI) into a square 
bounding box around the hand. 

Step 4: Resize the cropped image to (512, 512). 

Step 5: Normalize a copy of the resized image to the 
range (0, 1). 

Step 6: Use MediaPipe to detect hand joints in the 
resized image. 

Step 7: Draw the detected joints on a (512, 512) white 
background image using the coordinates from Step 6, 
and use this as the bone diagram image. 

Step 8: Normalize the bone diagram image to the range 
(0, 1). 
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Fig. 7. A sample hand image alphabet of VSL after 
step 3  
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Fig. 8. A sample bone diagram alphabet of VSL after 
step 6 
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Fig. 9.  Structure of the dataset, organized into two 
categories: "hand data" and "bone data"  

After preprocessing the data, we obtained two 
related datasets, which we refer to as "hand data" and 
"bone data" (Fig. 9). 

The "hand data" corresponds to the dataset 1 
obtained after step 4, while the "bone data" refers to 
the dataset 2 generated after step 8. Each dataset 
includes a training set and a test set. The training set 
consists of approximately 270,000 images from                    
30 participants, while the test set contains nearly 
85,000 images from 5 other participants. As a result, 
the "bone data" is significantly smaller in size 
compared to the "hand data.". 

3.2.2. Data visualization 

An additional step was taken to verify the 
suitability of our new data for use as a dataset in the 
machine learning process. By visualizing and 
evaluating the dataset, we assessed it based on several 
criteria: balanced class distribution, sufficient size, and 
an appropriate train-test ratio, as illustrated in Fig. 10, 
Fig. 11, Fig. 12. 

The results indicate that our new dataset has 
balanced class sizes, with approximately                         
10,000 images in each training class folder and around 
3,000 images in each test class folder. The train-test 
ratio of approximately 4:1 is considered typical for a 
machine learning dataset, ensuring a solid foundation 
for training and evaluation. 

3.3. Deep Learning-Based Classification  

3.3.1. Convolution neural network 

CNN is one of the most used deep learning 
methods to analyse visual imagery. CNN involves less 
pre-processing compared to other image classification 
algorithms. The network learns the filters that are 
normally hand-engineered in other systems. The use of 
CNN reduces the images into a format that is easier to 
process while preserving features that are essential for 
making accurate predictions. There are four types of 
operations in a CNN: convolution, pooling, flattening, 
and fully connected layers [23] The convolution layer 
usually captures low-level features such as colour, 
edges, and gradient orientation. The pooling layer 

decreases the spatial dimension of the convolved 
feature. This operation reduces the required 
computational time for dealing with the data through 
dimensionality alleviation. Furthermore, it has the 
advantage of maintaining dominant features that are 
positionally and rotationally invariant during the 
model training process. After the input image has been 
processed the higher-level features may be used for 
classification. Therefore, the image is flattened into a 
1-D vector. In CNN, the flattened output is supplied to 
a fully connected layer. After training, using SoftMax 
classification, the model can provide probabilities of 
prediction of objects in the image. Backpropagation is 
used to train the network. In this study, the system is 
implemented by using PyTorch library on GPU Zotac 
Gaming GeForce RTX 3090Ti. 

Fig. 10.  Size of classes on training set of hand and 
bone data 
 

 
Fig. 11.  Size of classes on testing set of hand and bone 
data 

 

 
Fig. 12.  Train-test ratio of hand data and bone data 
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3.3.2. The structure of the proposed convolutional 
neural network 

The CNN model designed in our study consists 
of multiple layers. Fig. 13 illustrates the proposed 
structure of the CNN which consists of an input layer 
to input the images with 64 × 64 × 3 dimensions; this 
represents the size of the sign language frames that are 
taken as input into the system.      The feature extraction 
part comprises three convolutional layers (Conv1, 
Conv2, Conv3). The convolution filter dimensions in 
each layer are 3 × 3. The batch normalization is 32 for 
ConvNet1, 64 for ConvNet2 and 128 for ConvNet3. 
Each convolution operation is followed by rectified 
linear units (ReLU). After ReLU, MaxPooling is 
applied. Pooling aims to prevent the loss of valuable 
information when the feature is represented. After the 
convolutional stage, flattening is applied for the 
classification stage. The classification stage is 
implemented with fully connected layers followed by 
a ReLU activation function and one SoftMax output 
layer. 

 
Fig. 13. Architecture of the proposed CNN model  

 
3.4. Experimental Results 

 Since the proposed network is the simplified 
version of CNN, we calculate the loss of method by 
cross entropy loss function of PyTorch. 

The training process was conducted using two 
distinct datasets: hand data and bone data (Table 3). 
Each dataset was used to train a separate model, 
denoted as Model I (Table 4) and Model II (Table 5), 
respectively. The models were evaluated using the 
cross-entropy loss function, a standard measure for 
classification tasks. Training was performed over 500 
epochs, with an initial learning rate set to 0.001 

Table 3. Result of testing model 

Model 
Criteria 

Model I Model II 

Sensitivity 0.9838 0.9634 

Specificity 0.9970 0.9985 

Precision 0.9244 0.9665 

F1-score 0.9205 0.9637 

Mean Accuracy 0.9208 0.9637 
 

 

Table 4. Result of testing Model I on single label 

 Pre Rec F1 Support 
A 0.95 0.96 0.95 2620 
B 0.96 0.98 0.97 4910 
C 0.87 0.98 0.92 2632 
D 0.87 0.87 0.87 1746 
Đ 0.93 0.94 0.94 3102 
E 0.94 0.93 0.94 2754 
G 0.94 0.98 0.96 2842 
H 0.65 0.97 0.78 2480 
I 0.8 0.97 0.88 2647 
K 1 0.85 0.92 2468 
L 1 0.92 0.96 3892 
N 0.97 0.93 0.95 1913 
M 0.98 0.98 0.98 3706 
O 0.92 0.86 0.89 3776 
P 0.96 0.99 0.97    2958 
Q 0.96 0.99 0.97 2584 
R 0.98 0.98 0.98 3372 
S 0.81 0.91 0.86 3527 
T 0.96 0.83 0.89 5628 
U 1 0.92 0.96 2586 
V 0.88 0.98 0.93 4342 
X 1 0.72 0.84 3474 
Y 0.93 0.97 0.95 2557 
^ 0.89 0.82 0.85 3050 
’ 0.99 0.86 0.92 3959 

 
Table 5. Result of testing Model II on single label 

 Pre Rec F1 Support 
A 0.98 0.95 0.97 2620 
B 1 0.99 1 4910 
C 0.98 0.99 0.99 2632 
D 0.91 0.96 0.93 1746 
Đ 0.99 0.91 0.95 3102 
E 0.98 0.91 0.94 2754 
G 0.99 1 1 2842 
H 0.93 0.98 0.95 2480 
I 0.97 0.97 0.97 2647 
K 0.95 0.94 0.95 2468 
L 1 0.95 0.97 3892 
N 1 1 1 1913 
M 1 0.99 0.99 3706 
O 0.93 0.99 0.96 3776 
P 0.99 0.96 0.97 2958 
Q 1 1 1 2584 
R 0.98 0.99 0.99 3372 
S 0.98 1 0.99 3527 
T 0.99 0.99 0.99 5628 
U 0.98 1 0.99 2586 
V 0.94 0.96 0.95 4342 
X 0.99 0.77 0.86 3474 
Y 0.97 0.98 0.98 2557 
^ 0.96 0.91 0.93 3050 
’ 0.79 0.98 0.88 3959 
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Fig. 15.  Confusion matrix of trained model on test set of bone data 

 

Fig. 14.  Confusion matrix of trained model on test set of hand data 
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The learning rate decay was triggered when the 
training loss remained constant for two consecutive 
epochs, with the minimum learning rate capped at 
0.0001. This adaptive reduction mechanism aimed to 
facilitate smoother convergence of the models. 

Throughout the training process, the training loss 
of both Model I and Model II exhibited significant 
fluctuations in the initial epochs. However, the losses 
progressively decreased, reaching their minimum 
values around the 50th epoch. This reduction in 
training loss suggests that the models effectively 
learned the underlying features of the datasets. 
Notably, while the reduction in training loss indicated 
improved optimization, a slight decrease in training 
accuracy was observed, potentially signaling the onset 
of overfitting or challenges in further generalization. 

Despite achieving accurate predictions in the 
majority of cases, the models demonstrated occasional 
failures. Upon detailed examination, these 
misclassifications were primarily attributed to 
alphabet similarities and the presence of difficult-to-
recognize characters, which posed challenges for the 
model to distinguish effectively. 

To evaluate the performance of the two trained 
models and validate our observations, we utilized the 
testing datasets of hand data and bone data to test 
Model I and Model II, respectively. The evaluation 
results are summarized in Tables 3, Table 4, and     
Table 5, and further illustrated by two confusion 
matrices in Fig. 14 and Fig. 15. The models were 
assessed using standard performance metrics, 
including sensitivity, specificity, precision, F1-score, 
and mean accuracy. 

The evaluation results indicate that Model II 
outperformed Model I in terms of specificity, 
precision, F1-score, and mean accuracy. However, 
Model I achieved higher sensitivity compared to 
Model II. Additionally, the training time per epoch and 
response time per sample for Model II were observed 
to be lower than those of Model I, highlighting the 
computational efficiency of Model II. 

4. Conclusion 

Sign language serves as a vital communication 
tool for individuals with hearing and speech 
impairments. As such, sign language recognition plays 
a crucial role by capturing sign language videos and 
accurately interpreting the gestures. This paper focuses 
on VSL recognition, utilizing various local features 
and techniques for hand gesture identification. 

The study centers on the development of a VSL 
recognition system capable of handling complex 
backgrounds, leveraging deep learning techniques. 
Specifically, the research utilizes a CNN model. The 
proposed methods were evaluated using a VSL dataset 
that includes the Vietnamese alphabet, incorporating 
unique characters such as “đ”, “’”, and “^” with 

diverse samples collected from a large group of 
signers. 

Experimental results demonstrate the 
effectiveness of the model, particularly when a novel 
pre-processing technique was applied prior to 
inputting data into the model. In particular, hand 
images were transformed into diagrams of hand 
shapes, marked with key points. Additionally, the pre-
processing step proved useful in removing redundant 
background information, thereby improving the 
accuracy of the VSL recognition system. Future work 
will involve expanding the dataset and refining the pre-
processing steps to enhance the recognition method, 
ultimately aiming to achieve higher accuracy. 
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