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Abstract
This paper explores the application of genetic algorithms (GAs) to solve the Traveling Salesman Problem (TSP) 
and its variants, specifically the Clustered Generalized Traveling Salesman Problem (CGTSP). In CGTSP, 
nodes (or cities) are grouped into clusters, and the primary objective is to determine the most efficient route 
that includes precisely one node from each cluster while minimizing the overall travel distance This particular 
variation plays a crucial role in practical scenarios, such as logistics, vehicle routing, and network design. In 
these applications, destinations are naturally grouped, and visiting one representative from each group is often 
essential or mandatory. CGTSP effectively tackles the complexity and real-world constraints more adeptly than 
the traditional TSP by integrating the element of clustering. This feature makes it a versatile and applicable 
model for a wide range of industrial and scientific problems. The study aims to assess the effectiveness of 
Genetic Algorithms (GAs) in solving these complex optimization problems. The paper provides an overview 
of the TSP and CGTSP, shows how to rewrite a CGTSP in the form of a TSP and vice versa, discusses the 
fundamentals of GAs, and presents the application of GAs to the problem variants. In addition, we investigate a 
new method to generate the initial population in the genetic algorithm and evaluate the proposed algorithm’s 
performance through experimental results. The findings highlight the potential of GAs as powerful tools for 
solving challenging optimization problems.

Keywords: Genetic Algorithms, Traveling Salesman Problem, Clustered Generalized Traveling Salesman 
Problem (CGTSP), Combinatorial Optimization.

1. Introduction

Nature has and always continues to spark the

fire of boundless imagination for countless generations

of humanity, delivering new unique, diverse, and

captivating phenomena, and fostering creative and bold

ideas. By observing the innate efficiency of organisms

in nature, we are inspired to investigate their possible

applications, especially in the field of optimization.

Traveling Salesman Problem (TSP) is a classic

combinatorial optimization problem that has been

extensively studied in the field of mathematics and

computer science [1]. The problem involves finding

the shortest possible route that a salesman can take to

visit a set of cities and return to the starting point. TSP

has practical applications in various domains, including

transportation planning, logistics, and network routing

[2].

The TSP is an NP-hard problem. Due to its

NP-hardness, finding an optimal solution for TSP

with large instances is computationally challenging.

Therefore, researchers have developed approximation

algorithms, heuristics, and metaheuristic methods to

efficiently solve TSP and search for near-optimal

solutions [1]. Many algorithms are extensively utilized

to solve the problem: dynamic programming, branch

and bound, linear programming, and cutting plane

methods..., while these algorithms possess different

complexities and can solve a wide range of TSP

problems, they are not suitable for large-scale scenarios

[3].

Evolutionary Algorithms (EAs) are natural-

inspired algorithms, that utilize the concept of survival

of the fittest to tackle optimization problems. EAs

have garnered popularity in the fields of benchmarking

and learning problems, and are now widely applied

in various real-world situations. They have also been

extended to solve learning problems. EAs evolve a set

of solutions using selection, crossover, and mutation

operators. Their versatility makes them valuable in

various domains. Ongoing research aims to improve

EAs and apply them to new problem areas and

implement the algorithm in novel domains. The Genetic

Algorithms (GAs), a subset of EAs, are widely used for

solving complex optimization problems that involve

single or multiple objective functions [4]. GAs are

inspired by the process of natural selection and

evolution. They mimic the principles of genetics, to

generate and improve candidate solutions iteratively.

GAs are commonly used to generate high-quality
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solutions to optimization and search problems by

relying on biologically inspired operators such as

mutation, crossover, and selection [5]. Some examples

of GAs applications include optimizing decision trees

for better performance, solving sudoku puzzles [6],

hyperparameter optimization, causal inference [7], etc.

The Generalized Traveling Salesman Problem

(GTSP) extends the TSP by introducing the clusters,

therefore making the salesman to undertake a single

visit to each cluster and find a minimum length trip that

includes precisely one node from each cluster, whereas

the Clustered Traveling Salesman Problem (CTSP)

adds further constraints by forcing the salesman to

visit every node in each cluster. Clustered Generalized

Traveling Salesman Problem (CGTSP) is a two-layer

expansion of traditional TSP in which the external

layer of the problem is CTSP and the internal is

GTSP [8]. The existing literature concerning the

CGTSP is scarce: the problem was introduced by

Sepehri, Motlagh, and Ignatius (in [9]) motivated by a

practical application for optimal routing of dangerous

substances in warehousing operations. The same authors

proposed a mixed integer programming formulation of

the problem containing another interesting application

of the CGTSP in optimizing the robotic automated

storage and retrieval system and presented a solution

approach based on Cross-Entropy method. CGTSP is a

generalized version of TSP where cities are divided

into smaller clusters, and these clusters form larger

groups [10]. This problem arises in various real-world

scenarios, such as vehicle routing in logistics and

network optimization in telecommunications. The paper

[11], presents a novel solution approach for CGTSP

by integrating a genetic algorithm with Dijkstra’s

shortest path algorithm and a TSP solver. This hybrid

method is designed to address the specific constraints

and requirements of the CGTSP, which generalizes

the well-known TSP by incorporating clusters and

sub-clusters of vertices. A new set of instances for the

CGTSP derived from the GTSPLIB is introduced in

this paper. Nevertheless, the paper does not provide a

comprehensive comparison with other existing methods

for solving CGTSP. While it mentions that instances

used by other researchers could not be obtained, a more

detailed comparative analysis would strengthen the

validation of their approach. In [12], the transformation

method for solving CGTSP by converting it into

TSP instances and leveraging powerful TSP solvers

like Concorde and Lin-Kernighan-Helsgaun (LKH)

significantly outperforms existing methods in terms of

solution quality and scalability. It has been applied to

large-scale problems and practical logistics scenarios.

Heuristic solutions using LKH (see [10]) on transformed

TSP instances and exact solutions using Concorde on

transformed TSP instances were compared with Integer

Programming (IP) formulation solutions provided by

CPLEX. However, the results of the experiments

heavily rely on certain assumptions, which may not be

universally applicable. This means that the efficiency

and effectiveness of the CGTSP model as demonstrated

in the paper may not be generalizable to all warehouse

logistics scenarios.

This paper aims to explore the application of GAs

in solving TSP and its variants. Specifically, we will

investigate the transformation of CGTSP into TSP and

apply GAs to solve TSP instances. We will also present

experimental results and evaluate the performance of

the proposed approach.

The remainder of the paper is organized as

follows: Section 1 provides an overview of TSP and

CGTSP. Section 2 introduces GAs and their relevance

in optimization. Section 3 presents the conversion of the

CGTSP into TSP and outlines the application of GAs to

solve TSP. Section 4 describes the experimental setup

and evaluates the results. Finally, Section 5 concludes

the paper and discusses future research directions.

By exploring the potential of GAs in solving

TSP and its variants, this research contributes to

advancements in optimization techniques and offers

insights into the application of evolutionary algorithms

in real-world problem-solving.

2. Transformation from Clustered generalized

traveling salesman problem to Traveling

Salesman Problem

2.1. Notation

Below are some conventions used throughout this

section.

First, the CGTSP problem is represented as a graph.

Consider a directed or undirected graph Γ = (V, E , w),
where V is the set of nodes, E is the set of edges

connecting pairs of nodes, and w : E → R is

a mapping function that assigns the corresponding

distances between the nodes in E . The set of nodes V is

divided into non-intersecting clusters, V =
⋃NC−1

c=0 Cc.

Each cluster Cc is further divided into non-intersecting

NS(c) small clusters

Cc =

NS(c)⋃
s=1

Sc,s (1)

where, Sc,s represents a subcluster within the cluster

Cc, ensuring that each node in V belongs to exactly

one subcluster Sc,s within its respective cluster Cc. We

define NV (c, s) := |Sc,s|, so the number of nodes in
the graph is defined as

n = |V | = ΣNC−1
c=0 Σ

NS(c)
s=1 NV (c, s) (2)

Similarly, NS is the total number of subclusters.

NS = ΣNC−1
c=0 NS(c) (3)
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Fig. 1. An example illustrating the steps for converting CGTSP to TSP with constraints on a subcluster of a graph

consisting of 10 nodes, 3 clusters, and 4 subclusters.

A node v = [c, s, i] is defined as the i–th node
in the subcluster Sc,s of cluster Cc. We assume that

v0 is the starting node of the CGTSP problem, and it
belongs to the subcluster S0,1 of cluster C0. Each edge

(u, v) ∈ E represents a path from u to v, and the length
of the edge is calculated by w(u, v).

In contrast to TSP, where a tour is a permutation

of all nodes, a CGTSP tour contains exactly one node

for each subcluster. Specifically, a tour consisting of

consecutive nodes in the sequence γ = (v0, ..., v0)
is considered a valid CGTSP tour if it satisfies the

following conditions:

• The nodes are visited consecutively in a sequence,

starting from v0 and ending at v0;

• Exactly one node is selected from each subcluster;

• Suppose v is the ith element in the sequence γ and v
belongs to the cluster Cc. Then either the (i+ 1)-th
element also belongs to Cc, or v is the last node in
that is visited in the sequence γ.

A CGTSP tour γ is called valid if any consecutive
pair of nodes in γ has a valid edge in E .

2.2. Transformation from Clustered Generalized

Traveling Salesman Problem to Traveling

Salesman Problem with Constraints

Consider G = (V,E,wG) as a weighted directed
graph, whereV is the set of vertices corresponding to the

vertex set in graph Γ. The set of edges E is constructed

as follows, for every small subcluster s of cluster Cc,

the following edges are added to the set :

• Edge ([c, s,NV (c, s)], [c, s, 1]) with weight 0;

• Edge ([c, s, i], [c, s, i + 1]) for i from 1 to

NV (c, s)− 1 with weight 0;

• Edge (u, v), u = [c, s, i] and v, where:

– If i 6= NV (c, s), the weight of edge (u, v) is
w([c, s, i+ 1], v) in graph Γ;

– If i = NV (c, s), the weight of edge (u, v) is
w([c, s, 1], v) in graph Γ.

The conversion steps are illustrated in the

following example in Fig. 1.

Definition 2.2.1 (TSP tour). A TSP tour in G, denoted
as XT = [xu,v], is called a valid TSP tour if it satisfies
the following conditions:∑

u∈Sc,s

∑
v/∈Sc,s

xu,v = 1,∀Sc,s, (4)

∑
u∈Cc

∑
v/∈Cc

xu,v = 1,∀Cc. (5)
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Definition 2.2.2. The concepts of incoming node and

outgoing node in a tour are defined as following:

• The incoming node of a cluster is a node within the

cluster that appears immediately after a node located

outside the cluster in the tour T i.e., it is the node that

follows a node outside the cluster.

• The outgoing node of a cluster is a node within the

cluster that appears immediately before a node located

outside the cluster in the tour T i.e., it is the node that

precedes a node outside the cluster.

Conditions in Definition 2.2.1 are equivalent to

the requirement that a valid route must have exactly

one outgoing node for each subcluster and one outgoing

node for each cluster. Since T is a route, there is exactly

one corresponding incoming node for each outgoing

node in T . Therefore, each subcluster and each cluster
in the route satisfying the conditions have exactly one

incoming node.

Lemma 2.2.1 (Lemma A.1 from [12]). Consider the

function f(T ) = T ′, which maps a valid tour T to T ′.

It is constructed as follows:

• Start with the initial tour’s starting node v0.

• Iterate through each node in T , excluding v0, and
perform the following steps for each element:

– If the current element is an incoming node, add

it to the new sequence.

– Otherwise, skip it and move on to the next

element.

• Add v0 to the end of the new sequence.

• Then, T ′ is a valid tour for the CGTSP problem.

Lemma 2.2.2 (Lemma A.3 from [12]). The total length

of a tour γ in CGTSP problem Γ is equal to the total

length of a tour T in TSP problem G, and vice versa.

Theorem 2.2.1 (Theorem 3.2 from [12]). The optimal

solution of the CGTSP problem defined on Γ is equal to

the optimal solution of the TSP problem with constraints

defined on G.

2.3. Transformation from Traveling Salesman

Problem (TSP) with Constraints to Traveling

Salesman Problem (TSP) Classic

The TSP is a widely recognized issue that has

been thoroughly researched, thus producing beneficial

real-world outcomes. However, solving the TSP with

constraints still faces limitations, such as the lack of

readily available support in some TSP-solving libraries.

Therefore, in this section, we will present the

approach of transforming the constrained TSP into a

classical TSP problem for the convenience of solving

the CGTSP.

First, we partition the edge set of graph G into

three disjoint sets: E1, E2, E3:

• E1 contains edges with nodes from the same

subcluster;

• E2 contains edges with nodes from the same

subcluster but not in E1;

• E3 includes the remaining edges where the nodes

belong to different subclusters.

Let w(u, v) denote the length of the edge (u, v)
in graph G, and P1, P2 be two specified constants. We

construct the graph G′ = (V,E,w′
G) according to the

following rules:

• The set of vertices V in G′ is equivalent to the set of

vertices V in G;

• The set of edges E in G′ is constructed as following:

– If (u, v) ∈ E1 then w
′
G(u, v) = wG(u, v).

– If (u, v) ∈ E2 then w
′
G(u, v) = wG(u, v)+P1.

– If (u, v) ∈ E1 then w′
G(u, v) = wG(u, v) +

P1 + P2.

The complete algorithm is described in Algorithm 1.

Algorithm 1: Transformation from CGTSP to TSP

Input CGTSP graph Γ = (V,E, ω) with edge
lengths ω(u, v) for all pairs (u, v) ∈ E, P1 and P2,
NC, NV , NS(c);
Output TSP graph G′ = (V,E, ω′

G);
for c = 0 to NC − 1 do

for s = 1 to NS(c) do
foreach u = [c, s, i] ∈ Sc, s do

if i = NV (c, s) then k = 1
else

k = i+ 1
end

end

ω′
G(u, [c, s, k]) = 0 ;

foreach v /∈ Sc, s do
if c ∈ Cc then ω′

G(u, v) = P1+ωG(k, v);
else

ω′
G(u, v) = P2 + P1 + ωG(k, v);

end

end

end

end

return TSP graph G′ = (V,E, ω′
G)

3. Methodology

The genetic algorithm is arguably one of the most

well-known and prevalent meta-heuristic optimization

algorithms. The novelties in this algorithm created a

tectonic shift in how these algorithms were generally

perceived, to the point that most of these ideas

were implemented in shaping the next generation of

meta-heuristic algorithms [13]. It is widely utilized to

solve a wide range of optimization problems.
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Fig. 2. An example illustrating the classification of edges in TSP. From left to right: E1, E2, E3.

The GAs operates by encoding potential solutions

into chromosomes, which are then evaluated for their

fitness using a fitness function. Through iterative

processes of crossover, mutation, and selection, the

algorithm aims to evolve the population towards

finding the optimal solution. The key objective is to

strike a balance between exploration (to discover new

and potentially better solutions) and exploitation (to

refine and optimize existing solutions). The detailed

algorithmic steps can be found in Algorithm 2.

Algorithm 2: GAs

Input TSP G, T is the number of generations,

r ∈ [0, 1] is the mutation rate
Output A solution to the problem;

Population initialization Population evaluation;

for k = 0 to T do

Crossover;

Mutation with rate r;
Select individual for the next generation;

end

return Best individual in the last generation.

The population, an important attribute of the

genetic algorithm, plays a crucial role in determining the

speed and convergence of the algorithm. For the CGTSP

problem, with its specific characteristics of clusters and

subclusters, we can leverage these features to initialize

the initial population and improve the performance of

the algorithm. In the following sections, we will propose

three algorithms for population initialization.

3.1. Randomly Constructed Population

Randomly Constructed Population (Algorithm

3) is a simple initialization method for generating a

population of tours for TSP. It creates a population of P
tours by randomly shuffling the city indices (excluding

the starting point) and appending the starting point to

each tour. This initialization process guarantees the

diversity in the initial population for subsequent genetic

operations in solving the TSP.

Algorithm 3: Randomly constructed population

Input number of city C, number of population P ;
Output Population;

start_point := 0 ;

for i = 1, ..., Psize do
tour_tmp← [j for j = 1, . . . , C];
shuffle(tour_tmp);

tour := start_point + tour_tmp ;

append(tour) to P ;

end

return P

3.2. Population Constructed Based on Clusters

Population Constructed Based on Clusters

(Algorithm 4) sets up the population of P tours by

randomly shuffling the city indices within each cluster

and shuffling the tours from different clusters. The

starting point is added to each tour to create a complete

tour. This process ensures the diversity and coverage of

different clusters in the initial population for subsequent

operations in solving the CGTSP.

Algorithm 4: Population constructed based on clusters

Input number of city C, number of population P ,
number of cluster NC;
Output Population;

start_point := 0;

for i = 1, ..., Psize do
tour_c = [] ;

for c = 1, ..., NC do

Cc := All nodes in cluster c ;
tour_tmp := [j for j = 1, ..., Cc] ;

shuffle (tour_tmp) ;

append tour_tmp to tour_c ;

end

shuffle (tour_c) ;

tour := start_point + tour_c ;

append tour to P ;

end

return P

3.3. Population Constructed Based on Subclusters

Population Constructed Based on Subclusters

(Algorithm 5) initializes the population of P tours

by randomly selecting nodes within each subcluster,

24



JST: Smart Systems and Devices

Volume 35, Issue 1, January, 2025, 020–029

performing circular shifts on the node sets, and shuffling

the tours within each subcluster and cluster. The starting

point is added to each tour to create a complete tour.

This initialization process maintains the diversity and

coverage of different subclusters and clusters in the

initial population for subsequent operations in solving

the CGTSP.

The “circular_shift” function performs a circular

shift operation on a given tour. This operation involves

shifting a portion of the tour to the beginning while

maintaining the order of the remaining elements.

Algorithm 5: Population constructed based on

subclusters

Input number of city C, number of population P ,
number of cluster NC;
Output Population;

start_point := 0 ;

for i = 1, ..., Psize do
tour_c = [];

for c = 1, ..., NC do

tour_s = [] ;

Cc := All nodes in cluster c ;
for s = 1, ..., NS(c) do

Ec,s := Node set in subcluster s of cluster;
Random choice x in Ec,s ;

tour_s_tmp := circular_shift(x,Ec,s) ;

append tour_s_tmp to tour_s ;

end

shuffle(tour_s);

append tour_s to tour_c;

end

shuffle tour_c;

tour := start_point + tour_C ;

append tour to P ;

end

return P

For example, let’s say we have a tour represented

by the list (1, 2, 3, 4, 5) and we want to perform a

circular shift with a random number of 3. The function
would check if the random number (3) is present in the
tour. If it is, the shift index is determined as the index

of 3 in the tour, which is 2.

Then, the function creates a shifted tour by slicing

the original tour from the shift index (2) to the end and
appending the elements from the beginning of the tour

up to the shift index. In this case, the shifted tour would

be (3, 4, 5, 1, 2), where the elements after the shift index
(3, 4, 5) have been moved to the beginning of the tour
while maintaining the order of the remaining elements

(1, 2).

In the experimental section, we combine the

Nearest Neighbor (NN) algorithm with the proposed

genetic algorithm to perform comparisons. We use

the NN algorithm to generate a set of tours starting

from different cities, apply circular shifts to ensure that

the tours start and end at v0, and then, depending on
the population size parameter, either select the tours

obtained from the NN algorithm or continue using

Algorithm 3, Algorithm 4, or Algorithm 5 to form the

initial population.
After obtaining the solution to TSP, we can use

the following conversion Algorithm to convert the

TSP solution to the original CGTSP. The detailed

algorithmic steps can be found in Algorithm 6.

Algorithm 6: Convert result from TSP to CGTSP

Input TSP tour T ;
Output CGTSP tour Υ;
append T ′[0] to Υ;
last_tag := cluster c + subcluster s of T ′[0];
for i = 1, ..., len(T ′) do

current_tag := cluster c + subcluster s of T ′[index];
if current_tag 6= last_tag then

append T ′[index] to Υ;
last_tag := current_tag;

end

end

return Υ

4. Experiments

In this section, a dataset will be used that is

randomly generated from vertices in a 2D Euclidean

space with dimensions of 1000 × 1000, based on the
paper [12]. These datasets are named using a common

format rnd<NC>-<NS>-<NV>, where NC is the

number of clusters, NS is the number of subclusters

within each cluster, and NV is the number of vertices

in each subcluster (except the cluster containing the

starting city). For each size, problems are generated

with high and low values of NC,NS, and NV to

distinguish the differences in various cases. By varying

parameters such as the number of clusters, the number

of subclusters, and the number of vertices in each

cluster, we can explore and understand the differences

between different combinations of NC,NS, and NV .
This helps us gain insights into the factors that influence

the performance and results of the algorithm in different

scenarios. In summary, by generating problems with

different combinations of the number of clusters, the

number of subclusters, and the number of vertices (see

example in Table1), we can analyze and compare the

effectiveness of the algorithm in different situations and

draw conclusions regarding the impact of these factors

on the algorithm’s results. Algorithms are implemented

in Python (Python 3.11.9). Experimental results were

run on Macbook Air M1, 8GB RAM and macOS

Monterey 12.7.5 operating system.

4.1. Evaluating the Results across Different

Population Initialization Levels

During the experimentation process, we ran the

algorithm on the same dataset, rnd3_7_3n.cgtsp, with
the same number of generations to compare the results.
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(a) Classic Model (b) Cluster Model (c) Sub-cluster Model

(d) Comparing convergence speed (e) Comparing the runtime for 10000 iterations

Fig. 3. Comparing the results of the three population initialization levels based on the rnd3_7_3n.cgtsp dataset.

The results described in Fig. 3. From Fig. 3a to Fig. 3d, 
the vertical axis represents the distance traveled, and the 
horizontal axis represents the number of loops. These 
results indicate that the subcluster-level initialization 
method performed better than the other two.

With the subcluster-level initialization approach, 
the population is initially divided into subclusters based 
on important characteristics and similarities. This helps 
create an initial diversity in the population and enhances 
the exploration of the search space. Additionally, the 
convergence speed of the subcluster-level initialization 
method is also evaluated to be faster than the other 
initialization methods. This means that the algorithm 
has the ability to evolve and find better solutions in a 
shorter period of time. Over subsequent generations, the 
population is effectively optimized, leading to improved 
results.

Table 1. Parameter table

Parameter Value

Number of cities 63

Number of clusters 5

Number of subclusters 17

Number of iterations 10000

Population size 1000

4.2. Evaluating the Algorithm

We compare our genetic algorithm with improved

subcluster-level initialization to Google’s OR-tools,

CPLEX from IBM, and the Nearest Neighbor algorithm.

OR-tools is a powerful tool developed by Google to

support solving optimization problems, version 9.9,

updated in March 2024, used in our calculations.

CPLEX is developed by IBM, which is one of

the best solvers for solving nonconvex optimization

problems. In this paper, CPLEX is utilized through

the CPLEX Python API of IBM ILOG CPLEX

Optimization Studio version 22.1.1. It was configured

with a maximum runtime of 3600 seconds. Remarkable

results were obtained from different datasets, leading to

improvements in our genetic algorithm.

The Table 2 present the algorithm’s performance

using the Subcluster Model for population construction

with a maximum of 30,000 iterations, and a population

of 100 individuals. The algorithm stops when the

population does not improve after 1,000 iterations.

The comparison results show that our model,

which uses the Subcluster Model to build the population,

outperforms both OR-Tools and CPLEX on most

datasets. This is proof that our algorithm with

the enhanced subcluster-level initialization method

implemented is more effective than OR-Tools. When

compared with the Nearest Neighbor algorithm, our

algorithm gives better or equivalent results when the

number of cities is small. However, when the number of

cities is large, the Nearest Neighbor algorithm performs

much better than our algorithm. The algorithm depends

heavily on random factors, making it challenging

to find good results when the number of cities is

large. For better results, we can add the journeys

found by the Nearest Neighbor algorithm to the initial

population. In this way, the genetic algorithm will

ensure better or at least equivalent results compared to

the Nearest Neighbor algorithm. Indeed, when adding

tours generated using the NN algorithm, GAs-NN

results outperform NN in most datasets.
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Table 2. Dataset of CGTSP problems and result

Dataset NC NS NV (c, s) n Model No. of cities Tour length Time (s) No. of iter.

rnd2_2_2n 2 2 2 8 OR-tools

CPLEX

GAs

NN

GAs-NN

4

4

4

4

4

3,215.71

2,017.50

2,017.50

2,146.01

2,017.50

0.04

0.80

3.12

0.00

2.04

-

-

1,189

-

1,236

rnd3_3_3n 3 3 3 27 OR-tools

CPLEX

GAs

NN

GAs-NN

9

9

9

9

9

5,379.91

4,093.12

3,114.23

2,757.58

2,755.12

0.02

3,600

14.00

0.00

7.82

-

-

2,976

-

2,552

rnd3_3_7n 3 3 7 63 OR-tools

CPLEX

GAs

NN

GAs-NN

9

9

9

9

9

6,023.22

4,569.22

2,054.94

1,945.08

1,899.40

0.02

3,600

87.02

0.04

38.98

-

-

10,044

-

7,155

rnd3_7_3n 3 7 3 63 OR-tools

CPLEX

GAs

NN

GAs-NN

21

21

21

21

21

11,816.69

7,297.64

6,994.72

5,819.11

5,033.11

0.04

3,600

41.84

0.00

6.94

-

-

4,949

-

1,234

rnd7_3_3n 7 3 3 63 OR-tools

CPLEX

GAs

NN

GAs-NN

21

21

21

21

21

14,129.20

9,301.79

6,193.63

5,279.85

5,123.21

0.04

3,600

86.24

0.07

43.28

-

-

8,904

-

7,072

rnd4_4_4n 4 4 4 64 OR-tools

CPLEX

GAs

NN

GAs-NN

16

16

16

16

16

9,171.72

5,914.08

4,453.49

3,118.49

3,030.12

0.04

3,600

111.74

0.05

100.07

-

-

12,435

-

17,436

rnd5_5_5n 5 5 5 125 OR-tools

CPLEX

GAs

NN

GAs-NN

25

25

25

25

25

12,320.31

12,201.83

7,519.89

4,111.29

4,111.29

0.05

3,600

190.01

0.26

11.81

-

-

11,799

-

1,141

rnd14_3_3n 14 3 3 126 OR-tools

CPLEX

GAs

NN

GAs-NN

42

42

42

42

42

19,268.74

14,079.06

9,604.16

10,052.22

8,403.07

0.04

3,600

217.59

0.00

32.75

-

-

11,990

-

2,735

rnd3_14_3n 3 14 3 126 OR-tools

CPLEX

GAs

NN

GAs-NN

42

42

42

42

42

21,498.46

15,733.79

14,662.30

7,135.61

6,923.76

0.03

3,600

139.72

0.00

10.83

-

-

9,055

-

1,089

rnd3_3_14n 3 3 14 126 OR-tools

CPLEX

GAs

NN

GAs-NN

9

9

9

9

9

4,195.29

4,158.06

2,454.93

1,784.47

1,769.72

0.02

3,600

132.46

0.13

79.30

-

-

8,842

-

8,129

rnd24_3_3n 24 3 3 216 OR-tools

CPLEX

GAs

NN

GAs-NN

72

75

72

72

72

38,511.95

28,380.62

21,402.36

15,295.22

14,275.94

0.05

3,600

939.30

0.01

22.02

-

-

30,000

-

1,021

27
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Dataset NC NS NV (c, s) n Model No. of cities Tour length Time (s) No. of iter.

rnd3_24_3n. 3 24 3 216 OR-tools

CPLEX

GAs

NN

GAs-NN

72

72

72

72

72

37,659.39

23,760.38

29,076.82

bf 9,310.53

bf 9,310.53

0.04

3,600

362.14

0.01

20.73

-

-

14,205

-

1,257

rnd3_3_24n. 3 3 24 216 OR-tools

CPLEX

GAs

NN

GAs-NN

9

10

9

9

9

6,332.79

5,415.27

2,257.53

bf 1,163.83

bf 1,163.83

0.06

3,600

472.51

0.00

272.79

-

-

18,951

-

17,191

rnd6_6_6n. 6 6 6 216 OR-tools

CPLEX

GAs

NN

GAs-NN

36

41

36

36

36

20,347.10

19,098.85

10,448.24

5,772.67

bf 5,084.61

0.06

3,600

345.83

0.01

18.80

-

-

13,334

-

1,100

rnd38_3_3n. 38 3 3 342 OR-tools

CPLEX

GAs

NN

GAs-NN

114

149

114

114

114

58,618.70

72,770.72

39,335.42

24,615.13

bf 23,972.38

0.10

3,600

599.47

0.03

36.26

-

-

14,190

-

1,056

rnd3_38_3n. 3 38 3 342 OR-tools

CPLEX

GAs

NN

GAs-NN

114

127

114

114

114

57,728.84

48,217.65

48,412.03

11,873.87

bf 11,491.81

0.10

3,600

61.90

10.26

45.31

-

-

2,640

-

1,745

rnd3_3_38n. 3 3 38 342 OR-tools

CPLEX

GAs

NN

GAs-NN

9

11

9

9

9

6,174.50

6,991.74

2,163.70

1,188.36

bf 970.54

0.10

3,600

149.83

0.00

456.04

-

-

6,469

-

18,312

rnd7_7_7n. 7 7 7 343 OR-tools

CPLEX

GAs

NN

GAs-NN

49

67

49

49

49

27,340.87

36,467.62

16,207.55

7,220.46

bf 6,381.95

0.10

3,600

556.48

0.01

28.98

-

-

22,332

-

1,112

rnd8_8_8n. 8 8 8 512 OR-tools

CPLEX

GAs

NN

GAs-NN

64

93

64

64

64

31,373.66

44,437.42

22,110.48

7,580.50

bf 7,440.87

0.28

3,600

753.95

0.01

42.94

-

-

17,890

-

1,094

rnd3_3_57n. 3 3 57 513 OR-tools

CPLEX

GAs

NN

GAs-NN

9

12

9

9

9

5,612.53

5,518.44

1,424.49

870.16

bf 714.59

0.26

3,600

518.10

0.00

501.73

-

-

12,396

-

13,187

rnd3_57_3n. 3 57 3 513 OR-tools

CPLEX

GAs

NN

GAs-NN

171

513

171

171

171

91,959.73

274,056.25

78,479.76

15,421.55

bf 14,798.62

0.28

3,600

115.98

0.07

62.89

-

-

3,144

-

1,546

rnd57_3_3n. 57 3 3 513 OR-tools

CPLEX

GAs

NN

GAs-NN

171

230

171

171

171

89,717.16

111,029.69

56,135.50

35,130.73

bf 32,684.63

0.04

3,600

981.67

0.06

53.56

-

-

21,056

-

1,011

28
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5. Conclusion

This paper investigates the application of genetic

algorithms to combinatorial optimization problems that

have various practical applications. Specifically:

• Represent the Traveling Salesman Problem and the

Clustered Traveling Salesman Problem problems.

• Presentation of the results regarding the application

of the genetic algorithm to the traveling salesman

problem and the clustered traveling salesman

problem.

The experimental results demonstrate the great potential

of the proposed genetic algorithm. It can also be

a good solution approach for similar problems.

Future directions of research could explore the

integration of genetic algorithms with other methods

and algorithms, such as machine learning or parameter

tuning optimization, to enhance performance and the

ability to solve complex problems.
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