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Abstract 

The study extensively examines the evolution of Industrial Control Systems (ICS), with a specific focus on 
Programmable Logic Controllers (PLC) within critical infrastructure, specifically mixing stations and heat 
treatment facilities. The research delves into the cybersecurity risks arising from the convergence of PLCs 
with information technology, transitioning from standalone systems to cloud integration. Noteworthy 
contributions from industry and academia underscore the pivotal role of machine learning and deep learning 
techniques in fortifying PLC-based system security. The article rigorously optimizes five classic machine 
learning algorithms and three deep learning algorithms, achieving an impressive accuracy of over 97%. 
Additionally, the proposed combined model attains over 99% accuracy on Hardware-In-the-Loop-based 
Augmented ICS (HAI) and ICS-Flow datasets. The study's importance lies in its thorough analysis of security 
implications and practical optimization of advanced algorithms, promising effective detection and mitigation of 
cyber threats in PLC-based ICS environments. These insights offer a compelling perspective for industry and 
researchers, providing nuanced understanding of cybersecurity dynamics in critical facilities. Optimized 
algorithms not only demonstrate remarkable threat detection accuracy but also signify a pivotal step in 
enhancing the cybersecurity resilience of essential infrastructure, serving as indispensable tools against 
emerging risks. 
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1. Introduction* 

Automated systems and associated equipment, 
known as industrial control systems (ICS), are used to 
monitor and manage vital infrastructure, including 
power plants, water treatment plants, smart factories, 
and numerous other facilities. To lower industrial 
process costs and enable more convenient 
management, ICS has recently been linked to the 
internet. However, there are more security threats to 
critical infrastructure when ICS is connected to the 
internet. Attackers might, for instance, take over the 
network by attacking the system management division 
or taking advantage of security flaws in network-
connected devices. Every year, there is a rise in ICS 
attacks that disrupt production lines and result in 
financial losses. Building a system that can identify 
network threats is crucial because of this. 

Protecting ICS from network threats can be 
achieved effectively with an intrusion detection system 
(IDS). Creating IDS mechanisms especially for ICS 
has been the subject of recent research. An IDS tracks 
events and finds unauthorized activity. Three 
categories have been established for current methods: 
There are three types of detection methods:                             
(1) signature-based, (2) anomaly-based, and                          
(3) machine learning-based. Signature-based detection 
recognizes attacks by using patterns of incorrect 
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behavior and vulnerabilities in the system to identify 
threats. However, new network assaults that have not 
been previously trained cannot be detected using this 
strategy. Anomaly-based detection looks for 
suspicious activity that deviates from the norm. This 
technique will identify unknown network intrusions. 
However, it is challenging to create models that can 
recognize the features of normal behavior and reliably 
discriminate them from the behaviors brought on by 
network attacks, particularly when the features of the 
two types of behavior are extremely similar. An 
expanded version of anomaly-based detection is 
machine learning-based detection. Research on 
machine learning-based anomaly detection frequently 
concentrates on unsupervised learning techniques to 
create a model for anomaly detection using normal 
data, due to the challenge of gathering tagged attack 
data in a real industrial context. When an attack event 
or system fault occurs, abrupt changes in sensor 
readings are detected by an anomaly detection system, 
which keeps an eye on the sensors in an ICS. 
Numerous earlier studies have shown that aberrant 
behaviors in ICS may be accurately detected by 
machine learning and deep learning models. While 
anomaly detection models have proven effective for 
ICS, it can be challenging to determine which of the 
current models is most appropriate for use with a 
particular production-oriented ICS system because the 
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models' outcomes have primarily been assessed using 
their own datasets, varied experimental conditions, and 
evaluation standards.  

We compared the performance of the most 
sophisticated anomaly detection models using shared 
datasets and identical experimental setups to enable 
direct performance comparisons: Boost, LightGBM, 
Extra Tree, Decision Tree, Random Forest, BiLSTM, 
BiGRU, LSTM, DBNs. In order to determine the best 
time-series variant detection model for the ICS 
environment, the study aims to: (1) provide an 
overview of the techniques used in intrusion detection 
models for ICS; (2) compare the performance of the 
most advanced models with two standard publicly 
available test datasets, such as the ICS-Flow [1] and 
Hardware-In-the-Loop-based Augmented ICS (HAI) 
[2] datasets, under similar settings and modes; and (3) 
analyze the effects of various training dataset sizes in 
order to determine an appropriate training dataset size 
to minimize training costs. The following is a 
summary of our principal contributions: 

- We created a toolset to assess intrusion detection 
model performance based on standard assessment 
criteria and two ICS datasets; 

- Deploying the models and fine-tuning the 
hyperparameters, we were able to compare three Deep 
Learning and five Machine Learning models; 

- Examining how the training dataset's size affected 
the variant identification models, we discovered that 
most of the models could obtain equivalent results 
when using a small subset of the training dataset, with 
a high F1 score. 

2. Related Works 

Researchers are becoming more interested in the 
issue of ICS cybersecurity, especially now that linked 
infrastructures and systems are connected to networks 
that are vulnerable to attack due to the usage of 
insufficient data detection techniques and a range of 
communication protocols. Here we provide studies 
showing that an attacker might compromise the 
network and damage the whole control system, 
summarize remedies that have been proposed to 
defend ICS against cyberattacks, and present new deep 
anomaly-based models for cyberattack detection in 
ICS. Industrial Control System cyberattacks have 
increased in frequency and sophistication as a means 
of eluding detection systems. Firoozjaei et al. [3] 
looked at the adversarial strategies and attack 
techniques used in six significant real-world ICS cyber 
events in the energy and power industries: Stuxnet  [4], 
BlackEnergy [5], Crashoverride [5], Triton [6], 
Irongate and Havex [3]. He provided a weighting 
method to rank the attacks' impacts on ICS and a 
framework for assessing the danger level of ICS 
malware in each assault. False data injection          
cyber-physical attacks (FDIAs) in contemporary smart 

grids that generate massive volumes of data were 
discussed by Wang et al. [7]. To identify FDIAs, the 
author suggested an analytical technique based on the 
margin-setting algorithm (MSA) and the data-centric 
paradigm. Junejo et al.  looked at the problem of a 
system taking a long time to detect that it has deviated 
from its planned behavior when responding to an 
attack. A fast machine learning intrusion detection 
technique based on the physical and control 
component behaviors of a contemporary water 
treatment system was proposed by the author. To 
improve the security of various devices on              
cyber-physical systems (CPSs), such as sensors, 
actuators, and controllers, Elgendi et al. [8] proposed 
a learned (MAPE-K) based model to monitor, analyze, 
plan, execute, and know against advanced cyber 
threats. The model also notifies users of any 
anomalous behavior in an industry setting. Ahmed et 
al. [9] introduced a NoisePrint technique to detect 
assaults on sensors in Cyber-Physical Systems (CPSs) 
by generating fingerprints for sensor and process noise 
during system operation. NoisePrint was tested on two 
testbeds: a water distribution (WADI) and a real-world 
water treatment (SWaT), and it demonstrated more 
than 90% accuracy against attacks on data integrity. 
Some recent approaches to problem-solving using 
machine learning have demonstrated the great 
potential of using AI methods for real-time attack 
detection and processing [10-13]. It is important to 
keep in mind that, even though these studies have been 
put forth to strengthen deep anomaly detections to 
protect against cyberattacks in ICS, it is difficult to 
determine which model among them is the most 
appropriate to use and extrapolate for practical 
applications because of their disparate internal 
methodologies, variety of experiment settings, and 
methods of evaluation. Consequently, our study fills 
this vacuum by thoroughly assessing each of the eight 
primary anomaly detection algorithms and providing 
academic and business organizations with insights and 
recommendations. 

3. Theoretical Framework 

3.1. ICS Datasets Preprocessing 

Large datasets are necessary for deep learning-
based anomaly detection techniques to operate as 
intended. Nevertheless, gathering the information 
from the ICS that is often associated with essential and 
foundational infrastructures is challenging. An assault 
in a real-world ICS, for instance, has the potential to 
seriously harm the system and reveal its weaknesses to 
attackers. As a result, gathering sufficient data from an 
actual ICS would be difficult and inappropriate for the 
majority of ICS. Because of this, a dataset gathered 
from the testbed that replicates the real ICS is used in 
the anomaly detection research in ICS. In this work, 
we leverage two publicly available datasets that are 
often used in ICS anomaly detection research: HAI and 
ICS-Flow.  
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Table 1. Dataset of ICS (HAI) and ICS-Flow 

Datasets Features Training Validation Testing Anomalies (%) 
HAI-23.05 79 1413384 474 128 471 128 2.2% 
ICS-Flow 54 27318 9106 9106 20% 

 
We employed metrics such as Accuracy, Recall, 

Precision, F1-Score and Confusion matrix to showcase 
how well the model methods performed on data. 
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The HAI dataset is available in many editions. In 
this instance, we employ HAI 23.05, which was 
published in 2022, where samples were taken from a 
testbed enhanced with an HIL simulator that simulates 
the production of pumped-storage hydropower and 
steam-turbine electricity. Through packet 
manipulation, an attacker consistently introduces 
inaccuracies into the physical measure in the HAI 
dataset. There are 79 different sorts of attacks in all, 
which label by “1” and “Normal” by “0”. 

To set up a virtual ICS testbed for a sample bottle 
filling facility, the ICS-Flow dataset was built using 
ICSSIM Tools. They used "Normal" denoted by the 
number "0," and "Attack" denoted by the number "1”. 
There are five realistic attack types that they used to 
simulate assaults on ICSs. They captured the network 
packets and physical process state variables of the ICS 
under both normal and attack conditions. Additionally, 
they classified the network flow records using a variety 
of techniques to support studies on supervised learning 
and serve as a basis for evaluating unsupervised 
methods. For academic purposes, they have made the 
flow dataset, log attack files, and raw network traffic 
publicly accessible. Data processing is provided in   
Fig. 1. 

 
Fig. 1. Data Preprocessing 

3.2. Base Machine Learning Algorithms 

A Decision Tree (Fig. 2) is a basic machine 
learning model with a tree-like structure, designed to 
segment the problem space and make decisions 
through nodes and leaves. It uses metrics like Gini 
Impurity or Entropy to ensure optimal                 
decision-making.  

 
Fig. 2. Decision Tree Architecture 

Gradient Boosting Decision Tree (GBDT) builds 
on this by combining multiple DTs iteratively, 
enhancing prediction accuracy. XGBoost and 
LightGBM, as advanced gradient boosting techniques, 
improve upon GBDT's framework, offering efficiency 
and widespread applicability across various domains. 
XgBoost is a highly efficient gradient boosting 
machine learning algorithm, known for its capability 
in predictive modeling, especially within the domain 
of cyberattack data. As part of the ensemble learning 
category, it adeptly identifies complex patterns and 
cyberattack signatures across various devices. Its 
effectiveness in scenarios with sophisticated and 
changing consumer behaviors is notable. XgBoost 
operates as an ensemble of decision trees, predicting 
outcomes for data samples through a formulation 
involving a series of trees:  

 ( ) ( ) ( )1 F  fi k i k i k iy F x x x−= = +  (5) 

where: ( )1k iF x− is the prediction result of previous 𝑘𝑘−1 

trees and ( )k if x is k th− decision tree. 

The algorithm's objective function, which 
includes a cost function evaluating the prediction error, 
is given by: 

 ( ) ( )n
obj i i i1j 1

F  L y , y  fk

j==
= + Ω∑∑  (6) 

In the formula above, 𝑦𝑦𝚤𝚤�  is the predictive output, 
𝑦𝑦𝑖𝑖  is the label value (true value), 𝑓𝑓𝑘𝑘is the k th tree 
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model, T is the number of leaf nodes in the k th tree, γ 
is the leaf tree penalty regular term. ( )1

,n
i ij

L y y
=∑  is 

the loss sum per sample, and XGBoost’s loss function 
l can be customized variously. Furthermore, XGBoost 
facilitates parallel execution to expedite the model 
training process. 

LightGBM and XgBoost both stand out in the 
ensemble machine learning space for their efficiency 
with large-scale, high-dimensional data using Decision 
Trees. LightGBM differentiates itself with Gradient-
based One-Side Sampling (GOSS) and Exclusive 
Feature Bundling (EFB) techniques to enhance 
training speed, reduce memory usage, and maintain 
crucial data through feature optimization.  

CatBoost, similar to LightGBM and XgBoost 
(Fig. 3) advances Gradient Boosting by directly 
incorporating categorical data during training, thus 
eliminating      pre-processing steps and reducing 
overfitting with a unique method for calculating leaf 
values. Both frameworks emphasize iterative learning 
from preceding trees to minimize loss, thereby 

fostering the development of a robust model through a 
series of decision trees. 

3.3. Base Deep Learning Algorithms 

Long short-term memory, a significant 
advancement within the Recurrent Neural Network 
(RNN) family, addresses the challenges faced by 
RNNs in handling time series data. The essence of 
LSTM lies in its memory block, illustrated in Fig. 4, 
which is composed of three types of gates (forget gate, 
input gate, output gate) and a memory cell. These 
components collectively enhance its data processing 
capability.  

BiLSTM improves upon traditional LSTMs by 
incorporating both past and future context through 
bidirectional processing. Unlike single-directional 
LSTMs, BiLSTM learns from sequences in both 
forward and backward directions, enhancing 
comprehension of input data characteristics. This is 
done by processing the input sequence in two 
directions through separate LSTM layers and merging 
their outputs 

 
Fig. 3. CatBoost, XGBoost, LightGBM Architecture 

 

Fig. 4. Data Preprocessing 

 
Fig. 5. GRU Unit 

 
Fig. 6. BiLSTM/BiGRU Architecture 
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Fig. 7. Proposed model  

A bidirectional GRU is a dual-layered structure 
akin to a BiLSTM, incorporating forward and 
backward neural networks to convey complete 
contextual information from input to output. Like a 
bidirectional LSTM, a BiGRU processes input 
information in both directions and merges outputs for 
the result. For classification, the embedding matrix 
outputs are fed into the chosen neural network model 
and then to fully connected layers, maintaining 
consistent parameters across all Proposed models. 

Deep-belief networks (DBNs) blend neural 
networks and probabilistic models to adeptly learn and 
classify complex, high-dimensional data. Their 
layered architecture allows for the sequential learning 
of data features at increasing levels of abstraction. 
Training proceeds in two phases: independent           
pre-training of each layer as a Restricted Boltzmann 
Machine (RBM) to capture data features, encapsulated 
by neuron activation equations 

1

1( 1 | )
1 ( )

i m
i j iji

P v h
exp a h w

=

= =
+ − −∑

 (7) 

In the formula, we denote  𝑃𝑃(𝑣𝑣𝑖𝑖 = 1|h ): Activation 
probability of the 𝑖𝑖𝑡𝑡ℎ visible neuron given the hidden 
layer, 𝑎𝑎𝑖𝑖  :Bias of the 𝑖𝑖𝑡𝑡ℎ  visible neuron, ℎ𝑗𝑗: State of 
the 𝑗𝑗𝑡𝑡ℎ  hidden neuron, 𝑤𝑤𝑖𝑖𝑗𝑗: Connection weight 
between the 𝑖𝑖𝑡𝑡ℎ  visible and 𝑗𝑗𝑡𝑡ℎ  hidden neuron,  𝑚𝑚: 
Number of hidden neurons. and global fine-tuning 
using Back Propagation to refine predictions. 
Significantly, this study enhances DBN training with 
an improved (GA) for parameter optimization, 
particularly focusing on the initial weights and 
thresholds. This method directly targets the 
enhancement of learning efficiency and predictive 
accuracy for ICS datasets, demonstrating DBN's 
applicability to complex data challenges. 

4. Proposed Model Framework 

In this research, we present an innovative 
composite autoencoder architecture, meticulously 
engineered to detect anomalies within industrial 
control systems. Fig. 7 illustrates a composite 
autoencoder design that combines convolutional 
neural networks (CNNs) and LSTM networks to 
capture both spatial and temporal features from 
multivariate time-series data. The model embodies a 
synergistic amalgamation of  CNNs and long short-

term memory (LSTM) networks, encapsulating the 
efficacy of spatial and temporal feature extraction for 
the identification of anomalous patterns in multivariate 
time-series data. Let's dive into each block of the 
structure. 

- Input Layer: Preparing the data for feature 
extraction. 

- Conv1D Layers: Detect salient features within 
the data, which are essential for understanding 
complex patterns inherent in the input sequences. 

- LSTM Layer: Captures temporal dependencies 
and sequences' long-term patterns, crucial for 
identifying time-extended anomalies. 

- Dense Layers & Lambda Layer: Interpret 
features, funneling into a latent space, with a 
Lambda layer introducing stochasticity to model 
the data distribution effectively. 

- Decoding Sequence: Mirroring the encoding 
sequence, the model employs a Repeat Vector 
and an LSTM Layer 1 to reconstruct the temporal 
sequence, while Conv1D Transpose layers 
restore the original input's spatial dimensionality. 

- Output Layer: The output, a reconstruction of the 
input data, is analyzed for anomalies based on a 
reconstruction error threshold, marking 
deviations as potential anomalies. 

This architecture allows for an intricate 
understanding and detection of anomalies, integrating 
the strengths of CNNs and LSTMs into a cohesive 
model adept at managing the complexities of 
multivariate time-series data within industrial systems.  

5. Results and Discussion 

The comprehensive analysis comparing various 
predictive models on the HAI 23.05 and ICS-FLOW 
datasets highlights the superior performance of the 
Proposed model. This analysis was focused on 
evaluating key performance metrics including 
Accuracy, Precision, Recall, and F1 Score, which are 
critical for assessing the effectiveness of predictive 
models in real-world applications.  

The performance of each model is encapsulated 
in Table 2 and 3, highlighting the accuracy, precision,  
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recall, and F1 score. The Proposed model highlighted 
its prowess particularly in the HAI 23.05 dataset, 
where it achieved nearly perfect scores across all 
metrics, registering 0.999 in Accuracy, Precision, 
Recall, and F1 Score. We compare our method with 
several other approaches using different data 
processing techniques, demonstrating that our data 
processing method and model achieve higher 
efficiency [13]. This is marginally higher than the 
already impressive results of the XGBoost model, 
which scored 0.998 in Accuracy, 0.997 in Precision, 
and 0.999 in F1 Score. The slight edge of the Proposed 
model over XGBoost indicates a refined ability to 
manage nuances in data that might elude other models. 

In the ICS-FLOW dataset, the Proposed model 
maintained its dominance, achieving an Accuracy of 
0.996, Precision of 0.997, Recall of 0.997, and an F1 
Score of 0.996. This represents a substantial 
improvement over other sophisticated models like 
CatBoost, which scored 0.975 in F1 Score, and 
BiGRU, which had an F1 Score of 0.962. The high 
scores in Precision and Recall reflect the model’s 
ability to accurately identify true positives while 
minimizing false positives and negatives, which is 
especially important in complex datasets like                      
ICS-FLOW. Below is the confusion matrix (Fig. 8, 9) 
of the models tested on two datasets: 

Table 2. Summary of performance metrics for HAI 23.05 dataset 

Model 
HAI 23.05 

Accuracy Precision Recall F1 Score 

XGBoost  0.998 0.997 0.998 0.999 

LightGBM 0.987 0.988 0.988 0.988 

Decision Tree 0.989 0.989 0.989 0.989 

Random Forest 0.990 0.991 0.990 0.990 

CatBoost 0.990 0.991 0.990 0.991 

BiLSTM 0.985 0.985 0.985 0.985 

BiGRU 0.980 0.980 0.980 0.980 

GA-DBN 0.975 0.976 0.977 0.976 

RANSyncCoder 0.78 0.891 0.776 0.829 

InterFusion 0.76 0.744 0.839 0.748 

Proposed 0.999 0.999 0.999 0.999 

Table 3. Summary of performance metrics for ICS-FLOW dataset 

Model 
ICS-FLOW 

Accuracy Precision Recall F1 Score 

XGBoost 0.987 0.987 0.987 0.988 

LightGBM 0.965 0.962 0.968 0.965 

Decision Tree 0.926 0.938 0.942 0.940 

Random Forest 0.955 0.953 0.957 0.955 

CatBoost 0.975 0.973 0.977 0.975 

BiLSTM 0.960 0.958 0.962 0.960 

BiGRU 0.962 0.960 0.964 0.962 

GA-DBN 0.935 0.933 0.937 0.935 

Proposed 0.996 0.997 0.997 0.996 
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The novelty of the Proposed model is rooted in 
its advanced algorithmic structure, which integrates 
newer, hybrid techniques combining elements of deep 
learning with traditional machine learning 
frameworks. This integration allows for enhanced 
feature extraction and learning from complex patterns, 
which are not as effectively captured by other models. 
Furthermore, the Proposed model might incorporate. 
The confusion matrices for models such as XGBoost, 
LightGBM, Decision Tree, Random Forest, CatBoost, 
BiLSTM, BiGRU, GA-DBN and the Proposed model 
provided insights into their classification accuracy. A 
high concentration of values along the diagonal for the 
Proposed model suggests a higher true positive rate 
and low false positive and negative rates, indicating 

superior performance in classification tasks over the 
other models. 

The Proposed model consistently outperformed 
the benchmark machine learning and deep learning 
models in almost all metrics across both datasets. 
Notably, classical algorithms such as Random Forest 
and Decision Tree demonstrated robustness, but with 
slightly lower precision and recall compared to 
ensemble methods and the Proposed model. The deep 
learning models, including BiLSTM and BiGRU, 
though effective, did not reach the high-performance 
levels of the Proposed model, indicating the potential 
advantage of the Proposed model’s architecture and 
training regimen. 
 

 

 
Fig. 8. Confusion Matrix of HAI 23.05 Dataset  

 

 
Fig. 9. Confusion Matrix of ICS-Flow Dataset 
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6. Conclusion 

The eight most advanced time series-based 
anomaly detection algorithms for ICS are compared 
and evaluated in this paper. Using the same and   
equitable parameters on two publicly available 
benchmark datasets, ICS-Flow [1] and HAI [2], we 
initially concentrated on identifying their optimal 
models yielding the greatest performance outcomes. 
The limitation of machine learning and deep learning 
based anomaly detection methods include of : The lack 
of interpretability, building and maintaining costs are 
high, the lack of high-quality data. 

The evaluation's findings indicate that the 
detection accuracy of our suggested model and 
XGBoost surpassed that of the other models. Our 
model obtains the top F1-score for ICS-Flow, while 
XGBoost achieves the highest F1-score for HAI. 
These results aid in the choice and creation of the ideal 
model for ICS applications. Real-world improvement 
is still needed in the detection accuracy of current 
anomaly detection methods. Instead of depending just 
on one anomaly detection model, an ensemble 
approach combining many models might be employed. 
Prior research shown that in other areas,                     
well-constructed ensemble classifiers may efficiently 
yield extremely accurate anomaly detection outcomes. 
We intend to examine the performance of other model 
combinations in further work. Furthermore, we may 
minimize performance degradation versus fresh and 
unexplored datasets by using a technique known as 
data augmentation to balance the distribution of 
normal and anomalous samples, hence mitigating the 
problem of data imbalance. 
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