

JST: Smart Systems and Devices

Volume 34, Issue 3, September 2024, 017-026

17

HyperPolypDEQ: A Lightning Transformer-Based Deep Equilibrium

Model for Colon Polyp Segmentation

Nguyen Minh Chau, Le Truong Giang, Dinh Viet Sang*
Hanoi University of Science and Technology, Ha Noi, Vietnam

*Corresponding author email: sangdv@soict.hust.edu.vn

Abstract

Deep Equilibrium Models (DEQs) have recently emerged as a promising approach to building implicit deep
learning models that can achieve on-par accuracy with traditional explicit models but with considerably smaller
sizes. However, the significant downside of DEQs is their slow inference speed, primarily due to the time cost
of the fixed-point solver. This paper proposes to overcome this issue by applying HyperSolver, a novel
technique that replaces traditional fixed-point solvers with a lightweight neural network. This is an extension
of our previous work on PolypDeq concerning DEQs for medical image segmentation as an attempt to
accelerate our existing implicit models. Experimental results show that our new models using Hyper-Solver
can achieve similar results to existing DEQ models on several benchmark medical image datasets while
having a significant speedup in inference time (about 9 times). To the best of our knowledge, this is the first
attempt to accelerate DEQs for medical image segmentation using HyperSolver, representing a significant
step towards making implicit deep learning models more practical for real-world applications.

Keywords: Semantic segmentation, polyp segmentation, implicit deep learning, deep equilibrium models.

1. Introduction1

Over the past few years, there has been a
significant rise in the incidence of colorectal cancer.
Detecting and diagnosing polyps with high precision
is crucial for effective treatment. Hence, developing
computer-assisted systems capable of performing
these tasks can provide valuable support to medical
professionals and doctors. Artificial intelligence with
the capability of polyp segmentation [1, 2] has shown
great potential for this job.

In computer vision, especially medical image
analysis, semantic segmentation has become a popular
area of research lately. With the advancements in deep
learning methods, it is possible to treat semantic
segmentation as a classification problem, where each
pixel is classified into specific categories. Most of the
works in semantic segmentation [3, 4] follow the
encoder-decoder architecture, which consists of two
primary parts: an encoder that processes the input
image and generates feature maps, which contain
essential information about the image in a tensor
format, and a decoder that uses the feature maps
generated by the encoder to produce a segmentation
mask. Earlier studies [3, 5-7] utilized Fully
Convolutional Networks (FCNs) [8] for both the
encoders and decoders components. Recently, many
new architectures (such as SegFormer [4]) have
emerged that employ the Vision Transformer (ViT) [9]
to achieve impressive results in semantic segmentation

ISSN: 2734-9373
https://doi.org/10.51316/jst.176.ssad.2024.34.3.3
Received: Feb 23, 2024; revised: Apr 19, 2024;
accepted: Apr 25, 2024.

tasks. These new architectures using ViT have
demonstrated superior performance to traditional FCN
architectures.

However, in both of these approaches, it is
necessary to create explicit networks, or architectures,
that require a large number of parameters in order to
achieve good results. To address this issue, [10]
introduced a new class of implicit deep learning
models for computer vision tasks called Multi-scale
Deep Equilibrium models (MDEQ). These models
have been shown to have better memory efficiency and
representative power than the explicit models
mentioned above while achieving comparable
performance. In our previous work [11], we proposed
a novel deep implicit model based on SegFormer [4],
a powerful network architecture for semantic
segmentation based on transformers. Experimental
results on medical image datasets showed that our
method outperformed MDEQ in terms of accuracy.
However, PolypDEQ is still impeded by the relatively
slow inference speed commonly associated with
implicit deep learning models, and it requires a method
to accelerate PolypDEQ to make it more applicable to
the medical image analysis field, particularly polyp
segmentation.

In this paper, we adapt HyperSolver [12], a novel
method to accelerate DEQs, on top of our previous
model, PolypDEQ [11], to create a novel method,
called HyperPolypDEQ. The primary concept

JST: Smart Systems and Devices

Volume 34, Issue 3, September 2024, 017-026

18

underlying the HyperSolver method is to approximate
the conventional iterative Newton solvers employed in
DEQs through the use of a lightweight neural network,
which leads to a substantial reduction in inference time
without sacrificing the precision of the model. We
experiment with our proposed model on several
medical image benchmark datasets. According to the
experimental results, HyperPolypDEQ can
significantly improve inference speed, with a 9-fold
acceleration, while maintaining on-par accuracy.

In summary, our main contributions are:

- We validate our previous work on implicit deep
learning models on a new medical image
benchmark dataset;

- We adapt HyperSolver to our model to accelerate
its inference speed;

- We demonstrate that our new model,
HyperPolypDEQ, achieves significant speedup
in inference time while maintaining high
accuracy, making it a promising approach for
medical image segmentation tasks.

The rest of this paper is organized as follows:
Section 2 briefly reviews some prior studies regarding
traditional explicit deep learning and novel implicit
deep learning methods. Then, we revise the
backgrounds of deep equilibrium models, iterative
solvers, and HyperSolver in Section 3. Our proposed
method is described in Section 4. Section 5 outlines
our experiment settings. The results and discussions
are presented in Section 6. Finally, we conclude this
study in Section 7.

2. Related Work

2.1. Explicit Deep Learning Methods

Colonoscopy analysis is required for clinicians to
detect the location and severity of polyps in colorectal
cancer treatment. However, polyps are various in
shape, size, and location, causing difficulties in
analyzing colonoscopy by human eyes.

Traditional deep learning-based semantic
segmentation methods mainly follow the conventional
explicit deep learning approach, meaning they focus
on designing explicit computational graphs, or so-
called “architecture”, for forward and backward
propagation. Based upon the success of UNet [3] for
medical image segmentation, UNet++ [5], ResUNet++
[6], among other methods, following the same Fully
Convolutional Network family, yielded promising
results. Recently, along with the advent of
Transformers and self-attention mechanisms for
computer vision tasks, many studies have adapted
Transformers to achieve state-of-the-art results in
medical image segmentation tasks. NeoUnet [13]
leveraged the lightweight HardNet backbone network,
combined with a self-attention mechanism for polyp

segmentation and neoplasm detection. TransFuse [14]
combined both Convolutional Neural Networks
(CNNs) and Transformers to create a lightweight,
efficient network with a parallel structure.
ColonFormer [15] achieved state-of-the-art results in
the polyp segmentation task using a pure
Transformers-Based architecture. However, while
these models have achieved impressive results, they
require careful engineering of the model architecture
and tend to have a large number of parameters, making
them expensive to deploy in practice.

2.2. Implicit Deep Learning

Unlike the aforementioned explicit deep learning
methods, implicit deep learning takes another path
with a novel idea. Instead of defining a computational
graph or an explicit architecture, it provides a criterion
the models must follow (e.g., the network output must
satisfy an equation). Implicit models operate forward
and backward propagation as root-finding problems
(also referred to as finding equilibrium points), using
Newton’s and Quasi-Newton algorithms [16], such as
Broyden [17] and Anderson [18], as equilibrium
solvers. The main benefit of implicit deep learning
compared to its explicit counterpart is memory
efficiency: implicit deep learning models naturally do
not require as many parameters as explicit models,
leading to a considerable reduction in memory cost
while maintaining similar accuracy. An example could
be Neural ODEs (NODEs) [19], which use just one
residual block in a recursive fashion and equilibrium
solvers and is equivalent to an infinite-depth ResNet
[20]. DEQs [21], which is another instance of implicit
models, used Broyden and Anderson solvers to find
the equilibrium points of a model for sequential tasks
in Natural Language Processing. Soon after, Multi-
Scale Deep Equilibrium Models (MDEQs) [10] were
proposed and became the first implicit model for
computer vision tasks, including image classification
and semantic segmentation, and showed comparable
results with state-of-the-art explicit models.

However, one drawback of these implicit deep
learning models is their extremely slow training and
inference speed compared to conventional explicit
models, mainly due to the iterative equilibrium
solvers. These solvers have to represent the internal
state of the models as tensors and store them in
memory during the fixed-point solving process, hence
hindering the models’ performance speed. In this
work, we attempt to overcome this issue by using
HyperSolver [12].

3. Background: Equilibrium Models and Solvers

3.1. Deep Equilibrium Models

Consider a neural block 𝑓𝑓𝜃𝜃, such as a self-
attention or residual block, and an input image x. A
DEQ [21] solves for an equilibrium representation that
is equivalent to the feature obtained from input 𝑥𝑥

JST: Smart Systems and Devices

Volume 34, Issue 3, September 2024, 017-026

19

through an infinite number of successive blocks 𝑓𝑓𝜃𝜃.
DEQ achieves this by solving an equation to find the
fixed point 𝑧𝑧∗:

𝑔𝑔𝜃𝜃(𝑧𝑧∗, 𝑥𝑥) ∶= 𝑓𝑓𝜃𝜃(𝑧𝑧∗, 𝑥𝑥) − 𝑧𝑧∗ (1)

Here, one can apply Newton’s or quasi-Newton
methods [16], such as Broyden [17] and Anderson
[18], to estimate the fixed point solution 𝑧𝑧∗. In the
backward propagation, one can implicitly differentiate
through the fixed point by the formula:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧∗

(𝐼𝐼 −
𝜕𝜕𝑓𝑓𝜃𝜃(𝑧𝑧∗, 𝑥𝑥)

𝜕𝜕𝑧𝑧∗
)−1

𝜕𝜕𝑓𝑓𝜃𝜃(𝑧𝑧∗, 𝑥𝑥)
𝜕𝜕𝜕𝜕

 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧∗

𝐽𝐽𝑔𝑔(𝑧𝑧∗)−1 𝜕𝜕𝑓𝑓𝜃𝜃(𝑧𝑧∗,𝑥𝑥)
𝜕𝜕𝜃𝜃

 (2)

where 𝜕𝜕 is the loss, 𝐽𝐽𝑔𝑔(𝑧𝑧∗) is the Jacobian of
𝑔𝑔𝜃𝜃 = 𝑓𝑓𝜃𝜃(𝑧𝑧∗) − 𝑧𝑧∗ w.r.t 𝑧𝑧∗, which can be estimated
via solving yet another equation, see [21] for more
details. Note that this backward pass can be calculated
without any knowledge of how 𝑧𝑧∗ was computed.
Since both the forward and backward passes of DEQ
can be formulated as root-finding problems, the
algorithms used for finding the solution to these
equations play a decisive role in DEQ’s performance.

3.2. Anderson Equilibrium Solver

Anderson [18] is one of the iterative equilibrium
point solvers that can be used for DEQs. For a DEQ
model 𝑓𝑓𝜃𝜃 , starting with one initial point 𝑧𝑧[0](e.g., the
initial internal state of the model), the Anderson solver
defines a maximum of 𝑚𝑚 + 1 consecutive solver steps.
At iteration 𝑘𝑘, it calculates the set of 𝑚𝑚 + 1 past
residuals (e.g., the solver error)
𝐺𝐺[𝑘𝑘] = [𝑔𝑔𝜃𝜃(𝑧𝑧[𝑘𝑘−𝑚𝑚]),𝑔𝑔𝜃𝜃(𝑧𝑧[𝑘𝑘−𝑚𝑚+1]), . . . ,𝑔𝑔𝜃𝜃(𝑧𝑧[𝑘𝑘])] with
𝑔𝑔𝜃𝜃(𝑧𝑧[𝑖𝑖]) = 𝑓𝑓𝜃𝜃(𝑧𝑧[𝑖𝑖]) − 𝑧𝑧[𝑖𝑖]; then it computes a set of
weights for the past 𝑚𝑚 + 1 steps
𝛼𝛼[𝑘𝑘] = [𝛼𝛼0

[𝑘𝑘],𝛼𝛼1
[𝑘𝑘], . . . ,𝛼𝛼𝑚𝑚

[𝑘𝑘]] in a greedy manner to
minimize the following error:

𝛼𝛼[𝑘𝑘] = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑎𝑎𝑛𝑛𝛼𝛼||𝛼𝛼𝐺𝐺[𝑘𝑘]||2 𝑠𝑠. 𝑡𝑡 𝛴𝛴𝛼𝛼[𝑘𝑘] = 1 (3)

The next internal state 𝑧𝑧[𝑘𝑘+1] is then computed as
the linear combination of the past 𝑚𝑚 + 1 states
weighted by 𝛼𝛼[𝑘𝑘], plus the linear combination of the
past 𝑚𝑚 + 1 residuals weighted by the same 𝛼𝛼[𝑘𝑘] and
scaled by another smoothing factor 𝛽𝛽.

𝑧𝑧[𝑘𝑘+1] = 𝛽𝛽�𝛼𝛼𝑖𝑖
[𝑘𝑘]𝑓𝑓𝜃𝜃�𝑧𝑧[𝑘𝑘−𝑚𝑚+𝑖𝑖]�

𝑚𝑚

𝑖𝑖=0

 +

 (1 − 𝛽𝛽)�𝛼𝛼𝑖𝑖
[𝑘𝑘]𝑧𝑧[𝑘𝑘−𝑚𝑚+𝑖𝑖]

𝑚𝑚

𝑖𝑖=0

= ∑ 𝛼𝛼𝑖𝑖
[𝑘𝑘]𝑧𝑧[𝑘𝑘−𝑚𝑚+𝑖𝑖]𝑚𝑚

𝑖𝑖=0 + 𝛽𝛽 ∑ 𝛼𝛼𝑖𝑖
[𝑘𝑘]𝑔𝑔𝜃𝜃(𝑧𝑧[𝑘𝑘−𝑚𝑚+𝑖𝑖])𝑚𝑚

𝑖𝑖=0 (4)
These steps are repeated until the stopping

conditions hold, such as 𝑔𝑔𝜃𝜃(𝑧𝑧[𝑖𝑖]) at some iteration 𝑎𝑎 is
negligible or approaching the maximum iterations are
met. Note that Anderson solver requires us to keep

track of a set of past 𝑚𝑚 + 1 (typically 5) internal states,
as well as the residuals (same size as the states). It
means that, in practice, for a DEQ model whose
internal states 𝑧𝑧 are tensors of millions of elements, the
memory cost needed during the solving process is also
scaled linearly by the size of those tensors and the
choice of 𝑚𝑚. Another downside to this solver and other
iterative solvers is that they typically initialize the first
state 𝑧𝑧[0] to be zero or randomly sampled from a
normal distribution, plus the greedy strategy to find the
weights 𝛼𝛼 during the solving. These factors, in
practice, lead to a need for a large number of solving
iterations to reach the fixed point solution, which is
very time-consuming due to the lack of parallelism
nature of these iterative algorithms. It is argued that
with better initialization and a more accurate way of
weight computing, we can achieve a much faster
solving process without losing much quality in the
final equilibrium point solution.

3.3. Hyper Solver.

HyperSolver [12] was proposed to address the
issue of the slow speed and ineffective weight
computing of traditional iterative solvers like
Anderson. The idea is to make the parameters 𝛼𝛼 and 𝛽𝛽
of the Anderson solver learnable via a compact neural
network. The core ideas of HyperSolver are stated as
follows.

Given a DEQ layer 𝑓𝑓𝜃𝜃 with input 𝑥𝑥, a fixed-point
solution 𝑧𝑧∗, HyperSolver uses a tiny neural network,
which consists of two sub-modules: an initializer and
HyperAnderson iterations, parameterized by
𝑤𝑤 = {𝜙𝜙, 𝜉𝜉}, respectively. This tiny neural network
learns the initialization and the parameters 𝛼𝛼 and 𝛽𝛽 of
Anderson’s solving process.

According to the authors, the initializer is
designed to “guess” the initial values of the solving
process, which is modeled as a tiny network
ℎ𝜙𝜙: 𝑧𝑧[0] = ℎ𝜙𝜙(𝑥𝑥) consisting of just one convolutional
layer with ReLU activation. The initializer takes in the
injection of the input 𝑥𝑥 of DEQs (e.g., a feature map(s)
of the input image) and produces an initial guess for
the equilibrium point.

The main module of the HyperSolver,
HyperAnderson iterations, is yet modeled by another
lightweight network to simulate the traditional
Anderson iterative equilibrium point-solving process.
It is a module that takes in a small set of 𝑚𝑚 +1
consecutive residuals:

𝐺𝐺[𝑘𝑘] = [𝑔𝑔𝜃𝜃
[𝑘𝑘−𝑚𝑚] ,𝑔𝑔𝜃𝜃

[𝑘𝑘−𝑚𝑚+1] , . . . ,𝑔𝑔𝜃𝜃
[𝑘𝑘]],

where 𝑔𝑔𝜃𝜃
[𝑖𝑖] = 𝑓𝑓𝜃𝜃(𝑧𝑧[𝑖𝑖]) − 𝑧𝑧[𝑖𝑖] and

𝐺𝐺[0] = [𝑔𝑔𝜃𝜃
[0] , 0, 0, . . . , 0].

The HyperAnderson iteration module first
compresses these residuals tensors via a pooling layer,

JST: Smart Systems and Devices

Volume 34, Issue 3, September 2024, 017-026

20

then applies a temporal convolution, which consists of
1D convolutional, group normalization, and ReLU
activation, to “mix” the information of these residuals
together. This module then uses a linear layer to
predict a set of 𝛼𝛼[𝑘𝑘]and the smoothing factor 𝛽𝛽[𝑘𝑘].
Finally, it applies the same update rule in (4) to get
the next internal state 𝑧𝑧[𝑘𝑘+1] and repeat until the fixed
point 𝑧𝑧∗ is found.

Notably, the HyperSolver itself can be
considered an iterative process. However, with a much
smaller total number of iterations, typically only tens
instead of hundreds of iterations, to achieve the same
precision as its traditional Anderson counterpart. This
is due to a better initial point produced by the initializer
instead of using zero or Gaussian sampling
initialization. The improvement also comes from a
more effective neural-network-based weight (α and β)
finding instead of the greedy optimization algorithm in
the traditional Anderson solver. The overall pipeline of
HyperSolver is summarized as follows:

- The input x is fed into the Initializer ℎ𝜙𝜙(𝑥𝑥) to get
the initial guess 𝑧𝑧[0] of the internal state;

- It is then input into the HyperAnderson iterations
over 𝑀𝑀 total steps (typically 12 as mentioned in
[12]) to iteratively produce 𝑧𝑧[1], 𝑧𝑧[2] , . . . , 𝑧𝑧[𝐾𝐾] .

Bai et al. [12] showed that with the aid of
HyperSolver, which only costs an extra 1-3% of the
DEQ model size and 0.9-1.1% training time, these
DEQs models can enjoy up to 2 times speedup in
inference without any degradation in accuracy loss. In
this work, we attempt to incorporate HyperSolver with
some modifications to fit our existing PolypDEQ
model.

4. Methodology

4.1. PolypDEQ

In our prior work [11], we presented an original
neural network design called PolypDEQ. This
architecture is founded on the principles of implicit
deep learning, specifically the use of MDEQs, and
SegFormer. A detailed illustration of this
comprehensive architecture is delineated in Fig. 1.

Adhering to the implicit deep learning
methodology, our core design was the iterative
transformation 𝑓𝑓𝜃𝜃. Initially, the input image was fed
into the first ViT encoder block to get a feature map.
Then, we set 𝑧𝑧, our internal state, as a tensor filled with
zeros, and possessing the same resolution as the first
input representation, following the completion of the
first ViT encoder block.

Unlike MDEQs, which determine the
equilibrium state for multiple spatial resolutions, we
found only one equilibrium state, 𝑧𝑧∗, for 𝑧𝑧 at a singular
resolution scale. We merged z and the first feature map
of the ViT encoder to generate another feature map
possessing the same resolution. This process emulates
the outcome of “input representation injection”, as
presented in [10].

Our previous work [11] discussed two
approaches to combine two tensors: direct
element-wise addition and utilizing a basic residual
block. The output of this operation was fed into three
additional ViT encoder blocks, resulting in four
distinct feature maps, which include the original
feature map with input injection.

Fig. 1. Overview of our previous PolypDEQ.

JST: Smart Systems and Devices

Volume 34, Issue 3, September 2024, 017-026

21

PolypDEQ employed a straightforward
hierarchical decoder module resembling the
conventional UNet decoder module, which
hierarchically decodes feature maps from coarse to
fine. At every level of resolution, the feature map is
interpolated to align with the resolution of the next
larger feature map. Then, they are concatenated and go
through a convolution layer. The resultant feature
maps are fed into the encoder. The encoder produces
four feature maps, which are given as input to the
decoder. Instead of applying a convolution layer or a
linear layer to predict the mask, an implicit deep
learning approach is used. Broyden’s equilibrium
solver is utilized to find the equilibrium point 𝑧𝑧∗,
which is equivalent to iterating 𝑓𝑓𝜃𝜃 infinitely, and then
predictions are made on it. This model can be viewed
as an infinite number of weight-tied U-Net one after
another. We experimented with two approaches,
explicit models that make predictions right after the
first iteration of 𝑓𝑓𝜃𝜃 , and implicit models that use the
Broyden equilibrium solver to find the equilibrium
state 𝑧𝑧∗ and make predictions on it.

4.2 HyperPolypDEQ

This section describes our modifications to
incorporate HyperSolver into our existing work,
PolypDEQ. We keep the original design of
HyperSolver except for two notable changes: the use
of single-scale internal state representation and our
training strategy for HyperSolver.

Single-scale internal state representation: We
integrate the HyperSolver used for Multi-scale Deep
Equilibrium Models (MDEQs) into our previous
PolypDEQ. The original HyperSolver in [12] was
designed specifically for MDEQs, which use multi-
scale internal states: MDEQs modeled their internal
states as four tensors at different resolution scales (e.g.,
1/4, 1/8, 1/16, and 1/32), and therefore their solvers
have to solve for equilibrium state at all four scales.
The initializer in [12] hence also produces multi-scale
output states, and their HyperAnderson Iteration has to
store these states in 𝑚𝑚 + 1 consecutive steps, as well

as their corresponding residuals. This results in a
notable memory cost.

PolypDEQ, however, uses only one internal state
at a single resolution of 1/4. Hence, the memory cost
is greatly reduced, resulting in an even faster speed
than the original MDEQ. Therefore, we design our
initializer to produce only one internal state of the
same resolution. Our HyperAnderson iterations also
require less memory for storing the consecutive
internal states and residuals. The core modules, such
as convolutional layers, pooling layers, as well as the
pipeline, are similar to those in the original
HyperSolver Design. The overall design of our
HyperSolver is summarized in Fig. 2 and Fig. 3.

HyperSolver training strategy: For the training
strategy, in [12], Bai et al. proposed to train the
HyperSolver jointly with the DEQ network in an
alternative manner as follows:

1. First, the DEQ model is trained from scratch for
a small number of steps;

2. Then, a snapshot of the current DEQ model is
taken, and a HyperSolver is trained from scratch
on top of it;

3. After that, the Anderson solver in the DEQ model
is replaced with the current HyperSolver and the
DEQ model is trained for the next M steps;

4. Finally, the DEQ model is frozen again, and the
HyperSolver is fine-tuned on top of it. Steps 3
and 4 are repeated until convergence.

However, we argue that this training strategy is
unstable: In the first epochs, the fixed point 𝑧𝑧∗
provided by DEQs with traditional solvers is an
unreliable ground truth to train the HyperSolver.
Hence, we proposed to train the DEQ model separately
with a Broyden or Anderson solver with a large
number of solver iterations to reach convergence with
high precision first. Then, we train a HyperSolver from
scratch on top of it and replace the original iterative
solver with the trained HyperSolver during inference.

Fig. 2. Our modified initializer.

JST: Smart Systems and Devices

Volume 34, Issue 3, September 2024, 017-026

22

Fig. 3. Our modified HyperAnderson Iterations.

We found that this training strategy can greatly
stabilize the convergence of the HyperSolver model.
This might be due to the fact that HyperSolver is
trained by the ground truth 𝑧𝑧∗ obtained by solving the
DEQ model’s equilibrium points with Broyden or
Anderson for hundreds of iterations, so an already
converged DEQ model with high precision will
provide more reliable ground truth, thus, stabilized the
training of the HyperSolver.

5. Experiments

5.1. Datasets

We conducted experiments on six benchmark
datasets for polyp segmentation, which are detailed in
Table 1. The Kvasir dataset [22] was gathered from
endoscopic equipment at Vestre Viken Health Trust
(VV) in Norway, and the images were meticulously
annotated and reviewed by experienced
gastroenterologists from VV and the Cancer Registry
of Norway. The dataset contains 1000 images with
various resolutions ranging from 720 × 576 to
1920 × 1072 pixels. The CVC-ClinicDB dataset [23]
is a collection of frames taken from colonoscopy
videos, consisting of 612 images with a resolution of
384 × 288 pixels extracted from 31 colonoscopy
sequences. It was used in the MICCAI 2015
Sub-Challenge on Automatic Polyp Detection
Challenge in Colonoscopy Videos training stages. The
CVC-ColonDB dataset [24] was provided by the
Machine Vision Group (MVG) and includes
380 images with a resolution of 574 × 500 pixels taken
from 15 short colonoscopy videos.

The EndoScene dataset [26] is the test set of a
larger dataset called Endoscene, which contains
60 images from 44 video sequences acquired from
36 patients. The ETIS-Larib dataset [26] has 196 high-
resolution (1226 × 996) colonoscopy images. The
NeoPolyp-Small [13] is a public dataset available in a
Kaggle competition with 1200 images. The training set
comprises 1000 images, and the remaining 200 images
form the test set.

Table 1. The properties of benchmark datasets.

Dataset

Training
images

Test
images Resolution

Kvarsir-SEG [22] 900 100 Various
CVC-ClinicDB [23] 550 62 384 x 288
CVC-ColonDB [24] 0 380 574 x 500
ETIS-Larib PolypDB
[25] 0 196 1225 x 966

EndoScene [26] 0 60 574 x 500
NeoPolyp-Small [13] 1000 200 Various

Note that the ground truth segmentation mask for
the first five datasets contains two classes: polyp and
background. Meanwhile, the NeoPolyp Small dataset
has three classes: neoplastic polyp, non-neoplastic
polyp, and background.

5.2. Implementation Details

As mentioned before, our training strategy for
HyperPolypDEQ consists of two phases: First, we
trained a PolypDEQ with Broyden solver till
convergence with a large number of solver iterations
of 100. Then, we trained a HyperSolver on top of the
trained PolypDEQ for better stability. The training
process of PolypDEQ comprised two distinct phases:
explicit and implicit.

During the explicit phase, the model was trained
without utilizing any equilibrium solvers, where the
iterate function fθ was only iterated once. This phase
involved training the model as an explicit model,
utilizing the AdamW optimizer with an initial learning
rate of 10-3, and a cosine annealing learning rate
scheduler. The learning rate was reduced to 10-6 by the
end of the training process. The explicit models were
trained for 100 epochs with a batch size of 16. In
addition, a multi-scale training strategy was employed
to boost the model’s generalization capability,
whereby each training image was resized to 0.75, 1,
and 1.25 times the original scale before being fed into
the model. Following the explicit phase, the explicit
version of the model was obtained.

JST: Smart Systems and Devices

Volume 34, Issue 3, September 2024, 017-026

23

Subsequently, for the implicit phase, the weight
of the explicit model was copied, given that the
structure of both explicit and implicit versions of the
model was identical. The only difference between the
two versions was the existence of an equilibrium
solver. The model was then trained explicitly for five
epochs before applying the equilibrium solver and
continuing training as an implicit model for the
remaining 95 epochs. The same training
configurations as the first phase were utilized, except
for the learning rate scheduler. For this phase, the
learning rate was initially set to 10-3 and linearly
decreased to 10-6 over the first five training epochs.
The learning rate was then reset to 10-4 and decreased
to 10-6 following a cosine annealing scheduler for the
rest of the training. Following the implicit phase, the
implicit model was obtained.

We set the maximum number of consecutive
solver steps to be stored 𝑚𝑚 = 5, and the total number
of solver iterations 𝑀𝑀 = 12 (much less than 100 for
traditional Anderson). The training of HyperSolver
after PolypDEQ convergence was rather simple. We
deployed Gradient Descent with Adam optimizer, a
batch size of 8. The learning rate was set to 10-3 and
gradually decreased to 10-6 following a cosine
annealing scheduler. We trained our HyperSolver for a
total of 8 epochs using the three loss functions
mentioned in the original paper [12]. This training
specification was applied to all the datasets in our
experiments.

Our approach to assessing the performance of
models in image segmentation tasks involved the
utilization of two widely recognized evaluation
metrics, namely the mean Dice score and the mean
IoU. In particular, these metrics are calculated as
follows:

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹

 = ∑ 𝑇𝑇𝑇𝑇𝑖𝑖
𝑁𝑁
𝑖𝑖

∑ 𝑇𝑇𝑇𝑇𝑖𝑖+𝐹𝐹𝑇𝑇𝑖𝑖+𝐹𝐹𝐹𝐹𝑖𝑖𝑁𝑁
𝑖𝑖

 (5)

𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷 = 2𝑇𝑇𝑇𝑇
2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹

 = 2∑ 𝑇𝑇𝑇𝑇𝑖𝑖
𝑁𝑁
𝑖𝑖

∑ 2𝑇𝑇𝑇𝑇𝑖𝑖+𝐹𝐹𝑇𝑇𝑖𝑖+𝐹𝐹𝐹𝐹𝑖𝑖𝑁𝑁
𝑖𝑖

 (6)

These metrics were employed to measure the
similarity and overlap between the predicted
segmentation masks and the ground truth masks. We
calculated Dice, and IoU for each image and
subsequently derived their respective mean values as
the average performance measures across all the
images.
6. Results and Discussion

Table 2 and Table 3 show the values of the
performance metrics on the benchmark datasets of our
models, including PolypDEQ and HyperPolypDEQ,
compared with MDEQ. We compare both implicit and
explicit versions of each model, except for
HyperPolypDEQ, with only the implicit version using
HyperSolver. Meanwhile, Table 4 demonstrates the
inference speed of these models. For the datasets in
Table 2, the metrics were simply computed for the
class Polyp; meanwhile, for the NeoPolyp-Small
dataset, we recorded the metrics for two classes of
Polyps: neoplastic and non-neoplastic, we also further
performed the metric with the two classes being
considered as one single class of polyp, as shown in
Table 3. The time measurement recorded in Table 4 is
the average inference time of the models over 100
images taken randomly from our benchmark datasets.

The experimental results show that the
transformer architecture used in designing our models,
PolypDEQ and HyperPolypDEQ, is more effective
than the architectures used in the three baseline
models, including implicit and explicit MDEQ, as well
as Segformer-B0.

The implicit PolypDEQ models perform well on
all datasets, surpassing the baseline MDEQ models.
Additionally, the HyperPolypDEQ yields superior
performance compared to the baselines on all datasets.
Note that the addition of HyperSolver results in a slight
accuracy loss for HyperPolypDEQ on some datasets,
CVC-Clinic, CVC-Colon, and ETIS. However, it still
outperforms the three baselines on those datasets.
However, on the Kvasir and EndoScene datasets,
HyperPolypDEQ surprisingly achieves more accuracy
than PolypDEQ.

Table 2. Quantitative results on five benchmark datasets.

Method Mode
Kvasir ClinicDB ColonDB EndoScene ETIS-Larib

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU
MDEQ [10] expl 84.6 77.3 83.6 76.9 58.5 48.7 78.7 69.3 48.5 40.4
MDEQ [10] impl 87.3 80.3 81.1 74.3 72.4 64.4 82.7 74.0 65.4 57.9

Segformer-B0
[4] expl 89.7 83.9 86.2 80.7 73.5 65.7 88.2 80.3 65.7 58.3

PolypDEQ-
add [11] impl 90.4 84.6 89.5 83.9 74.2 66.4 87.3 79.3 68.9 60.8

PolypDEQ-
res [11] impl 90.5 84.7 88.8 83.2 74.2 66.6 87.6 79.3 68.3 60.5

HyperPolpDE
Q (Ours) impl 90.7 84.9 88.9 83.3 73.8 66.3 88.3 80.4 67.6 59.7

JST: Smart Systems and Devices

Volume 34, Issue 3, September 2024, 017-026

24

Table 3. Quantitative results on the NeoPolyp-Small dataset.

Method Mode
Neoplastic Non-neoplastic Polyp*

mDice mIoU mDice mIoU mDice mIoU

MDEQ [10] explicit 75.6 70.1 72.7 69.5 85.3 76.9

MDEQ [10] implicit 81.5 76.6 78.4 75.9 87.7 80.2

Segformer-B0 [4] explicit 85.2 81.0 79.3 77.1 89.2 82.4

PolypDEQ-add [11] implicit 83.6 80.3 81.6 79.4 90.8 84.8

HyperPolpDEQ (Ours) implicit 82.8 79.1 81.4 78.9 89.9 83.4

 (*) We treat both Neoplastic and Non-neoplastic as a single class called Polyp and calculate the metrics

Table 4. Performance comparison in terms of inference time

Model Mode Time (s) Speed-up rate

MDEQ [10] explicit 0.011 -

PolypDEQ-add [11] explicit 0.005 -

PolypDEQ-res [11] explicit 0.005 -

MDEQ [10] implicit 0.774 x 1

PolypDEQ-add [11] implicit 0.549 x 1.41

PolypDEQ-res [11] implicit 0.560 x 1.38

HyperPolypDEQ (Ours) implicit 0.085 x 9.11

Fig. 4. Sample results from different models on the NeoPolyp-Small dataset.

JST: Smart Systems and Devices

Volume 34, Issue 3, September 2024, 017-026

25

On the NeoPolyp-Small dataset, while the
baseline Segformer-B0 performs best for the
neoplastic class, both the PolypDEQ and
HyperPolypDEQ are marginally better for the more
challenging non-neoplastic polyps. The slight
accuracy loss observed for HyperPolypDEQ compared
to PolypDEQ supports the findings in the original
paper of HyperSolver [12], where the authors showed
that HyperSolver might result in some negligible
accuracy loss.

Fig. 4 visualizes some predictions of the available
models made on images taken from the NeoPolyp-
Small dataset. It is observed that the predictions made
by explicit and implicit PolypDEQ are close to the
ground truth label. Both MDEQ models are able to
predict the location of polyps with some certain
accuracy. However, they often misclassify the types of
the detected polyps, PolypDEQ does not suffer from this
issue. Note that the predictions of HyperPolypDEQ are
very similar to those of PolypDEQ. This further proves
that the accuracy loss when incorporating HyperSolver
into PolypDEQ is negligible.

Table 4 provides a comparison of the inference
speed of different models. We also compare the
acceleration rate of our implicit models, PolypDEQ-
add, PolypDEQ-res, and HyperPolypDEQ, to the
baseline implicit MDEQ model. Overall, the implicit
models had significantly slower inference speeds than
their corresponding explicit models. For instance, the
inference speed of Implicit MDEQ was approximately
70 times slower than its explicit version, with an
inference time of 0.774s versus 0.011s, respectively.
Similarly, PolypDEQ-add and PolypDEQ-res were
approximately 100 times slower than their explicit
counterparts. Compared to the baseline implicit
MDEQ model, which used multi-scale internal state
representation, our PolypDEQ can achieve a marginal
speedup of 1.41 and 1.38 times for PolypDEQ-add and
PolypDEQ-res, respectively. Including HyperSolver
in our HyperPolypDEQ helped achieve a remarkable
inference speed of 0.085s, which is about 6.5 times
faster than the PolypDEQ-res and surpasses the
implicit MDEQ by a large margin of 9.11 times
acceleration. Note that this was achieved while
sacrificing less than 1% accuracy, making it a
desirable trade-off between inference time and
accuracy. The results further demonstrate the novelty of
HyperSolver, which can help implicit models achieve
faster inference speeds while remaining accurate.

7. Conclusion

PolypDEQ has demonstrated superior efficiency
compared to other DEQs and explicit models of
comparable size. However, it suffers from low
inference speed. This study focuses on enhancing
inference speed by utilizing HyperSolver to accelerate
finding fixed-point solutions. The proposed
HyperPolypDEQ outperforms PolypDEQ in inference

time while retaining a similar level of accuracy. We
aspire that this research will play a pivotal role in
enabling DEQs to be utilized in real-life applications
that require real-time processing.

In future work, we plan to explore the use of more
efficient and powerful backbone architectures to
enhance accuracy and reduce inference time. Another
challenge that arises during training DEQs is the issue
of unstable convergence. We also intend to conduct
further research and exploration to identify and
implement effective strategies to overcome this issue.

Acknowledgments

This work was funded by Vingroup Innovation
Foundation (VINIF) under project code
VINIF.2020.DA17.

References

[1] Guanyu Zhou, Xiaogang Liu, Tyler M Berzin, Jeremy
R Glissen Brown, Liangping Li, Chao Zhou, Zhenzhen
Guo, Lei Lei, Fei Xiong, Yan Pan, et al., 951e-a
real-time automatic deep learning polyp detection
system increases polyp and adenoma detection during
colonoscopy: a prospective double-blind randomized
study, Gastroenterology, vol. 156, iss. 6, sup. 1,
May. 2019 pp. S-1511.
https://doi.org/10.1016/S0016-5085(19)40856-1

[2] Shin-ei Kudo, Yuichi Mori, Masashi Misawa, Kenichi
Takeda, Toyoki Kudo, Hayato Itoh, Masahiro Oda, and
Kensaku Mori, Artificial intelligence and colonoscopy:
Current status and future perspectives, Digestive
Endoscopy, vol. 31, iss. 4, Jan. 2019, pp. 363-371.
https://doi.org/10.1111/den.13340

[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
U-net: Convolutional networks for biomedical image
segmentation, in International Conference on Medical
Image Computing and Computer-Assisted
Intervention, Springer, Nov. 2015, pp. 234-241.
https://doi.org/10.1007/978-3-319-24574-4_28

[4] Enze Xie, Wenhai Wang, Zhiding Yu, Anima
Anandkumar, Jose M Alvarez, and Ping Luo,
Segformer, Simple and efficient design for semantic
segmentation with transformers, Advances in Neural
Information Processing Systems, vol. 34, 2021,
pp. 12077-12090.

[5] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee,
Nima Tajbakhsh, and Jianming Liang, Unet++:
A nested u-net architecture for medical image
segmentation, in Deep learning in medical image
analysis and multimodal learning for clinical decision
support, Springer, 2018, pp. 3-11.
https://doi.org/10.1007/978-3-030-00889-5_1

[6] Debesh Jha, Pia H. Smedsrud, Michael A. Riegler, Dag
Johansen, Thomas De Lange, P ̊al Halvorsen, and
H ̊avard D. Johansen, Resunet++: An advanced
architecture for medical image segmentation, in 2019
IEEE International Symposium on Multimedia (ISM),
2019, pp. 225-232.

[7] Shanghua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu
Zhang, Ming-Hsuan Yang, and Philip Torr, Res2net:

JST: Smart Systems and Devices

Volume 34, Issue 3, September 2024, 017-026

26

A new multi-scale backbone architecture, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 2019.

[8] Jonathan Long, Evan Shelhamer, and Trevor Darrell,
Fully convolutional networks for semantic
segmentation, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, Jun. 07-12, 2015, pp. 3431-3440.
https://doi.org/10.1109/CVPR.2015.7298965

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby, An image is worth 16x16 words:
Transformers for image recognition at scale, in 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May. 3-7, 2021.

[10] Shaojie Bai, Vladlen Koltun, and J. Zico Kolter,
Multiscale deep equilibrium models, in Advances in
Neural Information Processing Systems (Neur IPS
2020), Vancouver, Canada, vol. 33, 2020,
pp. 5238-5250.

[11] Nguyen Minh Chau, Le Truong Giang, and Dinh Viet
Sang, Polypdeq: Towards effective transformer-based
deep equilibrium models for colon polyp
segmentation, in Advances in Visual Computing: 17th
International Symposium, ISVC 2022, San Diego, CA,
USA, Oct. 3-5, 2022, Proceedings, Part I, Springer,
2022, pp. 456-467.
https://doi.org/10.1007/978-3-031-20713-6_35

[12] Shaojie Bai, Vladlen Koltun, and J Zico Kolter, Neural
deep equilibrium solvers, in International Conference
on Learning Representations (ICLR), 2022.

[13] Phan Ngoc Lan, Nguyen Sy An, Dao Viet Hang, Dao
Van Long, Tran Quang Trung, Nguyen Thi Thuy, and
Dinh Viet Sang, Neounet: Towards accurate colon
polyp segmentation and neoplasm detection, in
International Symposium on Visual Computing,
Springer, 2021, pp. 15-28.
https://doi.org/10.1007/978-3-030-90436-4_2

[14] Yundong Zhang, Huiye Liu, and Qiang Hu, Transfuse:
Fusing transformers and cnns for medical image
segmentation, in International Conference on Medical
Image Computing and Computer-Assisted
Intervention - MICCAI, Springer, 2021, pp. 14-24.
https://doi.org/10.1007/978-3-030-87193-2_2

[15] Nguyen Thanh Duc, Nguyen Thi Oanh, Nguyen Thi
Thuy, Tran Minh Triet, and Viet Sang Dinh,
Colonformer: An efficient transformer based method
for colon polyp segmentation. IEEE Access, vol. 10,
Aug. 2022, pp. 80575-80586.
https://doi.org/10.1109/ACCESS.2022.3195241

[16] John E Dennis, Jr and Jorge J Mor ́e, Quasi-Newton
methods, motivation and theory, SIAM Review,
vol. 19, iss. 1, 1977, pp. 46-89.
https://doi.org/10.1137/1019005

[17] Charles G Broyden. A class of methods for solving
nonlinear simultaneous equations, Mathematics of
Computation, vol. 19, 1965, pp. 577-593.
https://doi.org/10.1090/S0025-5718-1965-0198670-6

[18] Homer F Walker and Peng Ni, Anderson acceleration
for fixed-point iterations, SIAM Journal on Numerical
Analysis, vol. 49, iss. 4, 2011, pp. 1715-1735.
https://doi.org/10.1137/10078356X

[19] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt,
and David K Duvenaud, Neural ordinary differential
equations, Advances in Neural Information Processing
Systems 31, 2018.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, Deep residual learning for image recognition, in
Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770-778.

[21] Shaojie Bai, J Zico Kolter, and Vladlen Koltun, Deep
equilibrium models, Advances in Neural Information
Processing Systems 32 (NeurIPS), 2019.

[22] Debesh Jha, Pia H Smedsrud, Michael A Riegler, P ̊al
Halvorsen, Thomas de Lange, Dag Johansen, and
H ̊avard D Johansen, Kvasir-seg: A segmented polyp
dataset, in International Conference on Multimedia
Modeling, Springer, 2020, pp. 451-462.
https://doi.org/10.1007/978-3-030-37734-2_37

[23] Jorge Bernal, F Javier S ́anchez, Gloria Fern ́andez-
Esparrach, Debora Gil, Cristina Rodr ı́guez, and
Fernando Vilari ño, Wm-dova maps for accurate polyp
highlighting in colonoscopy: Validation vs. saliency
maps from physicians, Computerized Medical
Imaging and Graphics, vol. 43, 2015, pp. 99-111.
https://doi.org/10.1016/j.compmedimag.2015.02.007

[24] Nima Tajbakhsh, Suryakanth R Gurudu, and Jianming
Liang. Automated polyp detection in colonoscopy
videos using shape and context information. IEEE
Transactions on Medical Imaging, vol. 35, iss. 2, Oct.
2015, pp. 630-644.
https://doi.org/10.1109/TMI.2015.2487997

[25] Juan Silva, Aymeric Histace, Olivier Romain, Xavier
Dray, and Bertrand Granado, Toward embedded
detection of polyps in wce images for early diagnosis
of colorectal cancer, International journal of Computer
Assisted Radiology and Surgery, vol. 9, Sep. 2013,
pp. 283-293.
https://doi.org/10.1007/s11548-013-0926-3

[26] David V ́azquez, Jorge Bernal, F Javier S ́anchez,
Gloria Fern ́andez Esparrach, Antonio M L ópez,
Adriana Romero, Michal Drozdzal, and Aaron
Courville, A benchmark for endoluminal scene
segmentation of colonoscopy images, Journal of
Healthcare Engineering, vol. 2017, iss. 1, Jul. 2017.
https://doi.org/10.1155/2017/4037190

	1. Introduction0F
	2. Related Work

