
  
JST: Smart Systems and Devices 

Volume 34, Issue 3, September 2024, 017-026 

17 

   
HyperPolypDEQ: A Lightning Transformer-Based Deep Equilibrium 

Model for Colon Polyp Segmentation  
 

Nguyen Minh Chau, Le Truong Giang, Dinh Viet Sang* 
Hanoi University of Science and Technology, Ha Noi, Vietnam 

*Corresponding author email: sangdv@soict.hust.edu.vn 
 

Abstract 

Deep Equilibrium Models (DEQs) have recently emerged as a promising approach to building implicit deep 
learning models that can achieve on-par accuracy with traditional explicit models but with considerably smaller 
sizes. However, the significant downside of DEQs is their slow inference speed, primarily due to the time cost 
of the fixed-point solver. This paper proposes to overcome this issue by applying HyperSolver, a novel 
technique that replaces traditional fixed-point solvers with a lightweight neural network. This is an extension 
of our previous work on PolypDeq concerning DEQs for medical image segmentation as an attempt to 
accelerate our existing implicit models. Experimental results show that our new models using Hyper-Solver 
can achieve similar results to existing DEQ models on several benchmark medical image datasets while 
having a significant speedup in inference time (about 9 times). To the best of our knowledge, this is the first 
attempt to accelerate DEQs for medical image segmentation using HyperSolver, representing a significant 
step towards making implicit deep learning models more practical for real-world applications. 

Keywords: Semantic segmentation, polyp segmentation, implicit deep learning, deep equilibrium models. 

 

1. Introduction1 

Over the past few years, there has been a 
significant rise in the incidence of colorectal cancer. 
Detecting and diagnosing polyps with high precision 
is crucial for effective treatment. Hence, developing 
computer-assisted systems capable of performing 
these tasks can provide valuable support to medical 
professionals and doctors. Artificial intelligence with 
the capability of polyp segmentation [1, 2] has shown 
great potential for this job. 

In computer vision, especially medical image 
analysis, semantic segmentation has become a popular 
area of research lately. With the advancements in deep 
learning methods, it is possible to treat semantic 
segmentation as a classification problem, where each 
pixel is classified into specific categories. Most of the 
works in semantic segmentation [3, 4] follow the 
encoder-decoder architecture, which consists of two 
primary parts: an encoder that processes the input 
image and generates feature maps, which contain 
essential information about the image in a tensor 
format, and a decoder that uses the feature maps 
generated by the encoder to produce a segmentation 
mask. Earlier studies [3, 5-7] utilized Fully 
Convolutional Networks (FCNs) [8] for both the 
encoders and decoders components. Recently, many 
new architectures (such as SegFormer [4]) have 
emerged that employ the Vision Transformer (ViT) [9] 
to achieve impressive results in semantic segmentation 
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tasks. These new architectures using ViT have 
demonstrated superior performance to traditional FCN 
architectures. 

However, in both of these approaches, it is 
necessary to create explicit networks, or architectures, 
that require a large number of parameters in order to 
achieve good results. To address this issue, [10] 
introduced a new class of implicit deep learning 
models for computer vision tasks called Multi-scale 
Deep Equilibrium models (MDEQ). These models 
have been shown to have better memory efficiency and 
representative power than the explicit models 
mentioned above while achieving comparable 
performance. In our previous work [11], we proposed 
a novel deep implicit model based on SegFormer [4], 
a powerful network architecture for semantic 
segmentation based on transformers. Experimental 
results on medical image datasets showed that our 
method outperformed MDEQ in terms of accuracy. 
However, PolypDEQ is still impeded by the relatively 
slow inference speed commonly associated with 
implicit deep learning models, and it requires a method 
to accelerate PolypDEQ to make it more applicable to 
the medical image analysis field, particularly polyp 
segmentation.  

In this paper, we adapt HyperSolver [12], a novel 
method to accelerate DEQs, on top of our previous 
model, PolypDEQ [11], to create a novel method, 
called HyperPolypDEQ. The primary concept 
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underlying the HyperSolver method is to approximate 
the conventional iterative Newton solvers employed in 
DEQs through the use of a lightweight neural network, 
which leads to a substantial reduction in inference time 
without sacrificing the precision of the model. We 
experiment with our proposed model on several 
medical image benchmark datasets. According to the 
experimental results, HyperPolypDEQ can 
significantly improve inference speed, with a 9-fold 
acceleration, while maintaining on-par accuracy. 

In summary, our main contributions are: 

- We validate our previous work on implicit deep 
learning models on a new medical image 
benchmark dataset; 

- We adapt HyperSolver to our model to accelerate 
its inference speed; 

- We demonstrate that our new model, 
HyperPolypDEQ, achieves significant speedup 
in inference time while maintaining high 
accuracy, making it a promising approach for 
medical image segmentation tasks.  

The rest of this paper is organized as follows: 
Section 2 briefly reviews some prior studies regarding 
traditional explicit deep learning and novel implicit 
deep learning methods. Then, we revise the 
backgrounds of deep equilibrium models, iterative 
solvers, and HyperSolver in Section 3. Our proposed 
method is described in Section 4. Section 5 outlines 
our experiment settings. The results and discussions 
are presented in Section 6. Finally, we conclude this 
study in Section 7. 

2. Related Work 

2.1. Explicit Deep Learning Methods 

Colonoscopy analysis is required for clinicians to 
detect the location and severity of polyps in colorectal 
cancer treatment. However, polyps are various in 
shape, size, and location, causing difficulties in 
analyzing colonoscopy by human eyes. 

Traditional deep learning-based semantic 
segmentation methods mainly follow the conventional 
explicit deep learning approach, meaning they focus 
on designing explicit computational graphs, or so-
called “architecture”, for forward and backward 
propagation. Based upon the success of UNet [3] for 
medical image segmentation, UNet++ [5], ResUNet++ 
[6], among other methods, following the same Fully 
Convolutional Network family, yielded promising 
results. Recently, along with the advent of 
Transformers and self-attention mechanisms for 
computer vision tasks, many studies have adapted 
Transformers to achieve state-of-the-art results in 
medical image segmentation tasks. NeoUnet [13] 
leveraged the lightweight HardNet backbone network, 
combined with a self-attention mechanism for polyp 

segmentation and neoplasm detection. TransFuse [14] 
combined both Convolutional Neural Networks 
(CNNs) and Transformers to create a lightweight, 
efficient network with a parallel structure. 
ColonFormer [15] achieved state-of-the-art results in 
the polyp segmentation task using a pure 
Transformers-Based architecture. However, while 
these models have achieved impressive results, they 
require careful engineering of the model architecture 
and tend to have a large number of parameters, making 
them expensive to deploy in practice. 

2.2. Implicit Deep Learning 

Unlike the aforementioned explicit deep learning 
methods, implicit deep learning takes another path 
with a novel idea. Instead of defining a computational 
graph or an explicit architecture, it provides a criterion 
the models must follow (e.g., the network output must 
satisfy an equation). Implicit models operate forward 
and backward propagation as root-finding problems 
(also referred to as finding equilibrium points), using 
Newton’s and Quasi-Newton algorithms [16], such as 
Broyden [17] and Anderson [18], as equilibrium 
solvers. The main benefit of implicit deep learning 
compared to its explicit counterpart is memory 
efficiency: implicit deep learning models naturally do 
not require as many parameters as explicit models, 
leading to a considerable reduction in memory cost 
while maintaining similar accuracy. An example could 
be Neural ODEs (NODEs) [19], which use just one 
residual block in a recursive fashion and equilibrium 
solvers and is equivalent to an infinite-depth ResNet 
[20]. DEQs [21], which is another instance of implicit 
models, used Broyden and Anderson solvers to find 
the equilibrium points of a model for sequential tasks 
in Natural Language Processing. Soon after, Multi-
Scale Deep Equilibrium Models (MDEQs) [10] were 
proposed and became the first implicit model for 
computer vision tasks, including image classification 
and semantic segmentation, and showed comparable 
results with state-of-the-art explicit models. 

However, one drawback of these implicit deep 
learning models is their extremely slow training and 
inference speed compared to conventional explicit 
models, mainly due to the iterative equilibrium 
solvers. These solvers have to represent the internal 
state of the models as tensors and store them in 
memory during the fixed-point solving process, hence 
hindering the models’ performance speed. In this 
work, we attempt to overcome this issue by using 
HyperSolver [12]. 

3. Background: Equilibrium Models and Solvers 

3.1. Deep Equilibrium Models 

Consider a neural block 𝑓𝑓𝜃𝜃, such as a self-
attention or residual block, and an input image x. A 
DEQ [21] solves for an equilibrium representation that 
is equivalent to the feature obtained from input 𝑥𝑥 



  
JST: Smart Systems and Devices 

Volume 34, Issue 3, September 2024, 017-026 

19 

through an infinite number of successive blocks 𝑓𝑓𝜃𝜃. 
DEQ achieves this by solving an equation to find the 
fixed point  𝑧𝑧∗: 

𝑔𝑔𝜃𝜃(𝑧𝑧∗, 𝑥𝑥) ∶= 𝑓𝑓𝜃𝜃(𝑧𝑧∗, 𝑥𝑥)  −  𝑧𝑧∗ (1) 

Here, one can apply Newton’s or quasi-Newton 
methods [16], such as Broyden [17] and Anderson 
[18], to estimate the fixed point solution 𝑧𝑧∗. In the 
backward propagation, one can implicitly differentiate 
through the fixed point by the formula: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧∗

(𝐼𝐼 −  
𝜕𝜕𝑓𝑓𝜃𝜃(𝑧𝑧∗, 𝑥𝑥)

𝜕𝜕𝑧𝑧∗
)−1  

𝜕𝜕𝑓𝑓𝜃𝜃(𝑧𝑧∗, 𝑥𝑥)
𝜕𝜕𝜕𝜕

  

      =  − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧∗

𝐽𝐽𝑔𝑔(𝑧𝑧∗)−1 𝜕𝜕𝑓𝑓𝜃𝜃(𝑧𝑧∗,𝑥𝑥)
𝜕𝜕𝜃𝜃

           (2) 

where 𝜕𝜕  is the loss, 𝐽𝐽𝑔𝑔(𝑧𝑧∗) is the Jacobian of  
𝑔𝑔𝜃𝜃  = 𝑓𝑓𝜃𝜃(𝑧𝑧∗)  −  𝑧𝑧∗ w.r.t 𝑧𝑧∗, which can be estimated 
via solving yet another equation, see [21] for more 
details. Note that this backward pass can be calculated 
without any knowledge of how 𝑧𝑧∗ was computed. 
Since both the forward and backward passes of DEQ 
can be formulated as root-finding problems, the 
algorithms used for finding the solution to these 
equations play a decisive role in DEQ’s performance. 

3.2. Anderson Equilibrium Solver 

Anderson [18] is one of the iterative equilibrium 
point solvers that can be used for DEQs. For a DEQ 
model 𝑓𝑓𝜃𝜃 , starting with one initial point 𝑧𝑧[0](e.g., the 
initial internal state of the model), the Anderson solver 
defines a maximum of 𝑚𝑚 + 1 consecutive solver steps. 
At iteration 𝑘𝑘, it calculates the set of 𝑚𝑚 + 1 past 
residuals (e.g., the solver error)  
𝐺𝐺[𝑘𝑘] = [𝑔𝑔𝜃𝜃(𝑧𝑧[𝑘𝑘−𝑚𝑚]),𝑔𝑔𝜃𝜃(𝑧𝑧[𝑘𝑘−𝑚𝑚+1]), . . . ,𝑔𝑔𝜃𝜃(𝑧𝑧[𝑘𝑘])] with 
𝑔𝑔𝜃𝜃(𝑧𝑧[𝑖𝑖])  =  𝑓𝑓𝜃𝜃(𝑧𝑧[𝑖𝑖]) − 𝑧𝑧[𝑖𝑖]; then it computes a set of 
weights for the past 𝑚𝑚 + 1 steps                                                   
𝛼𝛼[𝑘𝑘] = [𝛼𝛼0

[𝑘𝑘],𝛼𝛼1
[𝑘𝑘], . . . ,𝛼𝛼𝑚𝑚

[𝑘𝑘] ] in a greedy manner to 
minimize the following error: 

𝛼𝛼[𝑘𝑘] = 𝑎𝑎𝑎𝑎𝑔𝑔𝑚𝑚𝑎𝑎𝑛𝑛𝛼𝛼||𝛼𝛼𝐺𝐺[𝑘𝑘]||2     𝑠𝑠. 𝑡𝑡 𝛴𝛴𝛼𝛼[𝑘𝑘] =  1        (3) 

The next internal state 𝑧𝑧[𝑘𝑘+1] is then computed as 
the linear combination of the past 𝑚𝑚 + 1 states 
weighted by 𝛼𝛼[𝑘𝑘], plus the linear combination of the 
past 𝑚𝑚 + 1 residuals weighted by the same 𝛼𝛼[𝑘𝑘] and 
scaled by another smoothing factor 𝛽𝛽. 

𝑧𝑧[𝑘𝑘+1] = 𝛽𝛽�𝛼𝛼𝑖𝑖
[𝑘𝑘]𝑓𝑓𝜃𝜃�𝑧𝑧[𝑘𝑘−𝑚𝑚+𝑖𝑖]�

𝑚𝑚

𝑖𝑖=0

 +  

            (1 − 𝛽𝛽)�𝛼𝛼𝑖𝑖
[𝑘𝑘]𝑧𝑧[𝑘𝑘−𝑚𝑚+𝑖𝑖]

𝑚𝑚

𝑖𝑖=0

 

=  ∑ 𝛼𝛼𝑖𝑖
[𝑘𝑘]𝑧𝑧[𝑘𝑘−𝑚𝑚+𝑖𝑖]𝑚𝑚

𝑖𝑖=0 +  𝛽𝛽 ∑ 𝛼𝛼𝑖𝑖
[𝑘𝑘]𝑔𝑔𝜃𝜃(𝑧𝑧[𝑘𝑘−𝑚𝑚+𝑖𝑖])𝑚𝑚

𝑖𝑖=0     (4) 
These steps are repeated until the stopping 

conditions hold, such as 𝑔𝑔𝜃𝜃(𝑧𝑧[𝑖𝑖]) at some iteration 𝑎𝑎 is 
negligible or approaching the maximum iterations are 
met. Note that Anderson solver requires us to keep 

track of a set of past 𝑚𝑚 + 1 (typically 5) internal states, 
as well as the residuals (same size as the states). It 
means that, in practice, for a DEQ model whose 
internal states 𝑧𝑧 are tensors of millions of elements, the 
memory cost needed during the solving process is also 
scaled linearly by the size of those tensors and the 
choice of 𝑚𝑚. Another downside to this solver and other 
iterative solvers is that they typically initialize the first 
state 𝑧𝑧[0] to be zero or randomly sampled from a 
normal distribution, plus the greedy strategy to find the 
weights 𝛼𝛼 during the solving. These factors, in 
practice, lead to a need for a large number of solving 
iterations to reach the fixed point solution, which is 
very time-consuming due to the lack of parallelism 
nature of these iterative algorithms. It is argued that 
with better initialization and a more accurate way of 
weight computing, we can achieve a much faster 
solving process without losing much quality in the 
final equilibrium point solution. 

3.3. Hyper Solver. 

HyperSolver [12] was proposed to address the 
issue of the slow speed and ineffective weight 
computing of traditional iterative solvers like 
Anderson. The idea is to make the parameters 𝛼𝛼 and 𝛽𝛽 
of the Anderson solver learnable via a compact neural 
network. The core ideas of HyperSolver are stated as 
follows. 

Given a DEQ layer 𝑓𝑓𝜃𝜃 with input 𝑥𝑥, a fixed-point 
solution 𝑧𝑧∗, HyperSolver uses a tiny neural network, 
which consists of two sub-modules: an initializer and 
HyperAnderson iterations, parameterized by  
𝑤𝑤 = {𝜙𝜙, 𝜉𝜉}, respectively. This tiny neural network 
learns the initialization and the parameters 𝛼𝛼 and 𝛽𝛽 of 
Anderson’s solving process. 

According to the authors, the initializer is 
designed to “guess” the initial values of the solving 
process, which is modeled as a tiny network  
ℎ𝜙𝜙: 𝑧𝑧[0] = ℎ𝜙𝜙(𝑥𝑥) consisting of just one convolutional 
layer with ReLU activation. The initializer takes in the 
injection of the input 𝑥𝑥 of DEQs (e.g., a feature map(s) 
of the input image) and produces an initial guess for 
the equilibrium point. 

The main module of the HyperSolver, 
HyperAnderson iterations, is yet modeled by another 
lightweight network to simulate the traditional 
Anderson iterative equilibrium point-solving process. 
It is a module that takes in a small set of 𝑚𝑚 +1 
consecutive residuals:  

𝐺𝐺[𝑘𝑘] = [𝑔𝑔𝜃𝜃
[𝑘𝑘−𝑚𝑚] ,𝑔𝑔𝜃𝜃

[𝑘𝑘−𝑚𝑚+1] , . . . ,𝑔𝑔𝜃𝜃
[𝑘𝑘] ],  

where 𝑔𝑔𝜃𝜃
[𝑖𝑖] =  𝑓𝑓𝜃𝜃(𝑧𝑧[𝑖𝑖])  −  𝑧𝑧[𝑖𝑖] and                                              

𝐺𝐺[0] = [𝑔𝑔𝜃𝜃
[0] , 0, 0, . . . , 0]. 

The HyperAnderson iteration module first 
compresses these residuals tensors via a pooling layer, 
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then applies a temporal convolution, which consists of 
1D convolutional, group normalization, and ReLU 
activation, to “mix” the information of these residuals 
together. This module then uses a linear layer to 
predict a set of 𝛼𝛼[𝑘𝑘]and the smoothing factor 𝛽𝛽[𝑘𝑘]. 
Finally, it applies the same update rule    in (4) to get 
the next internal state 𝑧𝑧[𝑘𝑘+1] and repeat until the fixed 
point  𝑧𝑧∗ is found. 

Notably, the HyperSolver itself can be 
considered an iterative process. However, with a much 
smaller total number of iterations, typically only tens 
instead of hundreds of iterations, to achieve the same 
precision as its traditional Anderson counterpart. This 
is due to a better initial point produced by the initializer 
instead of using zero or Gaussian sampling 
initialization. The improvement also comes from a 
more effective neural-network-based weight (α and β) 
finding instead of the greedy optimization algorithm in 
the traditional Anderson solver. The overall pipeline of 
HyperSolver is summarized as follows: 

- The input x is fed into the Initializer ℎ𝜙𝜙(𝑥𝑥) to get 
the initial guess 𝑧𝑧[0] of the internal state; 

- It is then input into the HyperAnderson iterations 
over 𝑀𝑀 total steps (typically 12 as mentioned in 
[12]) to iteratively produce 𝑧𝑧[1], 𝑧𝑧[2] , . . . , 𝑧𝑧[𝐾𝐾] . 

Bai et al. [12] showed that with the aid of 
HyperSolver, which only costs an extra 1-3% of the 
DEQ model size and 0.9-1.1% training time, these 
DEQs models can enjoy up to 2 times speedup in 
inference without any degradation in accuracy loss. In 
this work, we attempt to incorporate HyperSolver with 
some modifications to fit our existing PolypDEQ 
model. 

4. Methodology 

4.1. PolypDEQ 

In our prior work [11], we presented an original 
neural network design called PolypDEQ. This 
architecture is founded on the principles of implicit 
deep learning, specifically the use of MDEQs, and 
SegFormer. A detailed illustration of this 
comprehensive architecture is delineated in Fig. 1. 

Adhering to the implicit deep learning 
methodology, our core design was the iterative 
transformation 𝑓𝑓𝜃𝜃. Initially, the input image was fed 
into the first ViT encoder block to get a feature map. 
Then, we set 𝑧𝑧, our internal state, as a tensor filled with 
zeros, and possessing the same resolution as the first 
input representation, following the completion of the 
first ViT encoder block. 

Unlike MDEQs, which determine the 
equilibrium state for multiple spatial resolutions, we 
found only one equilibrium state, 𝑧𝑧∗, for 𝑧𝑧 at a singular 
resolution scale. We merged z and the first feature map 
of the ViT encoder to generate another feature map 
possessing the same resolution. This process emulates 
the outcome of “input representation injection”, as 
presented in [10]. 

Our previous work [11] discussed two 
approaches to combine two tensors: direct                     
element-wise addition and utilizing a basic residual 
block. The output of this operation was fed into three 
additional ViT encoder blocks, resulting in four 
distinct feature maps, which include the original 
feature map with input injection.

 
Fig. 1. Overview of our previous PolypDEQ. 
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PolypDEQ employed a straightforward 
hierarchical decoder module resembling the 
conventional UNet decoder module, which 
hierarchically decodes feature maps from coarse to 
fine. At every level of resolution, the feature map is 
interpolated to align with the resolution of the next 
larger feature map. Then, they are concatenated and go 
through a convolution layer. The resultant feature 
maps are fed into the encoder. The encoder produces 
four feature maps, which are given as input to the 
decoder. Instead of applying a convolution layer or a 
linear layer to predict the mask, an implicit deep 
learning approach is used. Broyden’s equilibrium 
solver is utilized to find the equilibrium point 𝑧𝑧∗, 
which is equivalent to iterating 𝑓𝑓𝜃𝜃 infinitely, and then 
predictions are made on it. This model can be viewed 
as an infinite number of weight-tied U-Net one after 
another. We experimented with two approaches, 
explicit models that make predictions right after the 
first iteration of 𝑓𝑓𝜃𝜃 , and implicit models that use the 
Broyden equilibrium solver to find the equilibrium 
state  𝑧𝑧∗ and make predictions on it. 

4.2 HyperPolypDEQ 

This section describes our modifications to 
incorporate HyperSolver into our existing work, 
PolypDEQ. We keep the original design of 
HyperSolver except for two notable changes: the use 
of single-scale internal state representation and our 
training strategy for HyperSolver. 

Single-scale internal state representation: We 
integrate the HyperSolver used for Multi-scale Deep 
Equilibrium Models (MDEQs) into our previous 
PolypDEQ. The original HyperSolver in [12] was 
designed specifically for MDEQs, which use multi-
scale internal states: MDEQs modeled their internal 
states as four tensors at different resolution scales (e.g., 
1/4, 1/8, 1/16, and 1/32), and therefore their solvers 
have to solve for equilibrium state at all four scales. 
The initializer in [12] hence also produces multi-scale 
output states, and their HyperAnderson Iteration has to 
store these states in 𝑚𝑚 + 1 consecutive steps, as well 

as their corresponding residuals. This results in a 
notable memory cost. 

PolypDEQ, however, uses only one internal state 
at a single resolution of 1/4. Hence, the memory cost 
is greatly reduced, resulting in an even faster speed 
than the original MDEQ. Therefore, we design our 
initializer to produce only one internal state of the 
same resolution. Our HyperAnderson iterations also 
require less memory for storing the consecutive 
internal states and residuals. The core modules, such 
as convolutional layers, pooling layers, as well as the 
pipeline, are similar to those in the original 
HyperSolver Design. The overall design of our 
HyperSolver is summarized in Fig. 2 and Fig. 3.  

HyperSolver training strategy: For the training 
strategy, in [12], Bai et al. proposed to train the 
HyperSolver jointly with the DEQ network in an 
alternative manner as follows: 

1. First, the DEQ model is trained from scratch for 
a small number of steps; 

2. Then, a snapshot of the current DEQ model is 
taken, and a HyperSolver is trained from scratch 
on top of it; 

3. After that, the Anderson solver in the DEQ model 
is replaced with the current HyperSolver and the 
DEQ model is trained for the next M steps;  

4. Finally, the DEQ model is frozen again, and the 
HyperSolver is fine-tuned on top of it. Steps 3 
and 4 are repeated until convergence. 

However, we argue that this training strategy is 
unstable: In the first epochs, the fixed point 𝑧𝑧∗ 
provided by DEQs with traditional solvers is an 
unreliable ground truth to train the HyperSolver. 
Hence, we proposed to train the DEQ model separately 
with a Broyden or Anderson solver with a large 
number of solver iterations to reach convergence with 
high precision first. Then, we train a HyperSolver from 
scratch on top of it and replace the original iterative 
solver with the trained HyperSolver during inference. 

 
Fig. 2. Our modified initializer. 
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Fig. 3. Our modified HyperAnderson Iterations. 

 

We found that this training strategy can greatly 
stabilize the convergence of the HyperSolver model. 
This might be due to the fact that HyperSolver is 
trained by the ground truth 𝑧𝑧∗ obtained by solving the 
DEQ model’s equilibrium points with Broyden or 
Anderson for hundreds of iterations, so an already 
converged DEQ model with high precision will 
provide more reliable ground truth, thus, stabilized the 
training of the HyperSolver. 

5. Experiments 

5.1. Datasets 

We conducted experiments on six benchmark 
datasets for polyp segmentation, which are detailed in 
Table 1. The Kvasir dataset [22] was gathered from 
endoscopic equipment at Vestre Viken Health Trust 
(VV) in Norway, and the images were meticulously 
annotated and reviewed by experienced 
gastroenterologists from VV and the Cancer Registry 
of Norway. The dataset contains 1000 images with 
various resolutions ranging from 720 × 576 to                         
1920 × 1072 pixels. The CVC-ClinicDB dataset [23] 
is a collection of frames taken from colonoscopy 
videos, consisting of 612 images with a resolution of 
384 × 288 pixels extracted from 31 colonoscopy 
sequences. It was used in the MICCAI 2015                        
Sub-Challenge on Automatic Polyp Detection 
Challenge in Colonoscopy Videos training stages. The 
CVC-ColonDB dataset [24] was provided by the 
Machine Vision Group (MVG) and includes                         
380 images with a resolution of 574 × 500 pixels taken 
from 15 short colonoscopy videos.  

The EndoScene dataset [26] is the test set of a 
larger dataset called Endoscene, which contains                    
60 images from 44 video sequences acquired from               
36 patients. The ETIS-Larib dataset [26] has 196 high-
resolution (1226 × 996) colonoscopy images. The 
NeoPolyp-Small [13] is a public dataset available in a 
Kaggle competition with 1200 images. The training set 
comprises 1000 images, and the remaining 200 images 
form the test set. 

 

Table 1. The properties of benchmark datasets. 

Dataset 
# 

Training 
images 

# Test 
images Resolution 

Kvarsir-SEG [22] 900 100 Various 
CVC-ClinicDB [23] 550 62 384 x 288 
CVC-ColonDB [24] 0 380 574 x 500 
ETIS-Larib PolypDB 
[25] 0 196 1225 x 966 

EndoScene [26]  0 60 574 x 500 
NeoPolyp-Small [13] 1000 200 Various 

 

Note that the ground truth segmentation mask for 
the first five datasets contains two classes: polyp and 
background. Meanwhile, the NeoPolyp Small dataset 
has three classes: neoplastic polyp, non-neoplastic 
polyp, and background. 

5.2. Implementation Details 

As mentioned before, our training strategy for 
HyperPolypDEQ consists of two phases: First, we 
trained a PolypDEQ with Broyden solver till 
convergence with a large number of solver iterations 
of 100. Then, we trained a HyperSolver on top of the 
trained PolypDEQ for better stability. The training 
process of PolypDEQ comprised two distinct phases: 
explicit and implicit. 

During the explicit phase, the model was trained 
without utilizing any equilibrium solvers, where the 
iterate function fθ was only iterated once. This phase 
involved training the model as an explicit model, 
utilizing the AdamW optimizer with an initial learning 
rate of 10-3, and a cosine annealing learning rate 
scheduler. The learning rate was reduced to 10-6 by the 
end of the training process. The explicit models were 
trained for 100 epochs with a batch size of 16. In 
addition, a multi-scale training strategy was employed 
to boost the model’s generalization capability, 
whereby each training image was resized to 0.75, 1, 
and 1.25 times the original scale before being fed into 
the model. Following the explicit phase, the explicit 
version of the model was obtained. 
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Subsequently, for the implicit phase, the weight 
of the explicit model was copied, given that the 
structure of both explicit and implicit versions of the 
model was identical. The only difference between the 
two versions was the existence of an equilibrium 
solver. The model was then trained explicitly for five 
epochs before applying the equilibrium solver and 
continuing training as an implicit model for the 
remaining 95 epochs. The same training 
configurations as the first phase were utilized, except 
for the learning rate scheduler. For this phase, the 
learning rate was initially set to 10-3 and linearly 
decreased to 10-6 over the first five training epochs. 
The learning rate was then reset to 10-4  and decreased 
to 10-6 following a cosine annealing scheduler for the 
rest of the training. Following the implicit phase, the 
implicit model was obtained. 

We set the maximum number of consecutive 
solver steps to be stored 𝑚𝑚 =  5, and the total number 
of solver iterations 𝑀𝑀 =  12 (much less than 100 for 
traditional Anderson). The training of HyperSolver 
after PolypDEQ convergence was rather simple. We 
deployed Gradient Descent with Adam optimizer, a 
batch size of 8. The learning rate was set to 10-3 and 
gradually decreased to 10-6 following a cosine 
annealing scheduler. We trained our HyperSolver for a 
total of 8 epochs using the three loss functions 
mentioned in the original paper [12]. This training 
specification was applied to all the datasets in our 
experiments. 

Our approach to assessing the performance of 
models in image segmentation tasks involved the 
utilization of two widely recognized evaluation 
metrics, namely the mean Dice score and the mean 
IoU. In particular, these metrics are calculated as 
follows: 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹

 =  ∑ 𝑇𝑇𝑇𝑇𝑖𝑖
𝑁𝑁
𝑖𝑖

∑ 𝑇𝑇𝑇𝑇𝑖𝑖+𝐹𝐹𝑇𝑇𝑖𝑖+𝐹𝐹𝐹𝐹𝑖𝑖𝑁𝑁
𝑖𝑖

            (5) 

𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷 = 2𝑇𝑇𝑇𝑇
2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹

 =  2∑ 𝑇𝑇𝑇𝑇𝑖𝑖
𝑁𝑁
𝑖𝑖

∑ 2𝑇𝑇𝑇𝑇𝑖𝑖+𝐹𝐹𝑇𝑇𝑖𝑖+𝐹𝐹𝐹𝐹𝑖𝑖𝑁𝑁
𝑖𝑖

     (6) 

These metrics were employed to measure the 
similarity and overlap between the predicted 
segmentation masks and the ground truth masks. We 
calculated Dice, and IoU for each image and 
subsequently derived their respective mean values as 
the average performance measures across all the 
images. 
6. Results and Discussion 

Table 2 and Table 3 show the values of the 
performance metrics on the benchmark datasets of our 
models, including PolypDEQ and HyperPolypDEQ, 
compared with MDEQ. We compare both implicit and 
explicit versions of each model, except for 
HyperPolypDEQ, with only the implicit version using 
HyperSolver. Meanwhile, Table 4 demonstrates the 
inference speed of these models. For the datasets in 
Table 2, the metrics were simply computed for the 
class Polyp; meanwhile, for the NeoPolyp-Small 
dataset, we recorded the metrics for two classes of 
Polyps: neoplastic and non-neoplastic, we also further 
performed the metric with the two classes being 
considered as one single class of polyp, as shown in 
Table 3. The time measurement recorded in Table 4 is 
the average inference time of the models over 100 
images taken randomly from our benchmark datasets. 

The experimental results show that the 
transformer architecture used in designing our models, 
PolypDEQ and HyperPolypDEQ, is more effective 
than the architectures used in the three baseline 
models, including implicit and explicit MDEQ, as well 
as Segformer-B0. 

The implicit PolypDEQ models perform well on 
all datasets, surpassing the baseline MDEQ models. 
Additionally, the HyperPolypDEQ yields superior 
performance compared to the baselines on all datasets. 
Note that the addition of HyperSolver results in a slight 
accuracy loss for HyperPolypDEQ on some datasets, 
CVC-Clinic, CVC-Colon, and ETIS. However, it still 
outperforms the three baselines on those datasets. 
However, on the Kvasir and EndoScene datasets, 
HyperPolypDEQ surprisingly achieves more accuracy 
than PolypDEQ.

 
Table 2. Quantitative results on five benchmark datasets. 

Method Mode 
Kvasir ClinicDB ColonDB EndoScene ETIS-Larib 

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU 
MDEQ [10] expl 84.6 77.3 83.6 76.9 58.5 48.7 78.7 69.3 48.5 40.4 
MDEQ [10] impl 87.3 80.3 81.1 74.3 72.4 64.4 82.7 74.0 65.4 57.9 

Segformer-B0 
[4] expl 89.7 83.9 86.2 80.7 73.5 65.7 88.2 80.3 65.7 58.3 

PolypDEQ-
add [11] impl 90.4 84.6 89.5 83.9 74.2 66.4 87.3 79.3 68.9 60.8 

PolypDEQ-
res [11] impl 90.5 84.7 88.8 83.2 74.2 66.6 87.6 79.3 68.3 60.5 

HyperPolpDE
Q (Ours) impl 90.7 84.9 88.9 83.3 73.8 66.3 88.3 80.4 67.6 59.7 
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Table 3. Quantitative results on the NeoPolyp-Small dataset. 

Method Mode 
Neoplastic Non-neoplastic Polyp* 

mDice mIoU mDice mIoU mDice mIoU 

MDEQ [10] explicit 75.6 70.1 72.7 69.5 85.3 76.9 

MDEQ [10] implicit 81.5 76.6 78.4 75.9 87.7 80.2 

Segformer-B0 [4] explicit 85.2 81.0 79.3 77.1 89.2 82.4 

PolypDEQ-add [11] implicit 83.6 80.3 81.6 79.4 90.8 84.8 

HyperPolpDEQ (Ours) implicit 82.8 79.1 81.4 78.9 89.9 83.4 

 (*) We treat both Neoplastic and Non-neoplastic as a single class called Polyp and calculate the metrics 
 

Table 4. Performance comparison in terms of inference time 

Model Mode Time (s) Speed-up rate 

MDEQ [10] explicit 0.011 - 

PolypDEQ-add [11] explicit 0.005 - 

PolypDEQ-res [11] explicit 0.005 - 

MDEQ [10] implicit 0.774 x 1 

PolypDEQ-add [11] implicit 0.549 x 1.41 

PolypDEQ-res [11] implicit 0.560 x 1.38 

HyperPolypDEQ (Ours) implicit 0.085 x 9.11 
 

Fig. 4. Sample results from different models on the NeoPolyp-Small dataset. 
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On the NeoPolyp-Small dataset, while the 
baseline Segformer-B0 performs best for the 
neoplastic class, both the PolypDEQ and 
HyperPolypDEQ are marginally better for the more 
challenging non-neoplastic polyps. The slight 
accuracy loss observed for HyperPolypDEQ compared 
to PolypDEQ supports the findings in the original 
paper of HyperSolver [12], where the authors showed 
that HyperSolver might result in some negligible 
accuracy loss.  

Fig. 4 visualizes some predictions of the available 
models made on images taken from the NeoPolyp-
Small dataset. It is observed that the predictions made 
by explicit and implicit PolypDEQ are close to the 
ground truth label. Both MDEQ models are able to 
predict the location of polyps with some certain 
accuracy. However, they often misclassify the types of 
the detected polyps, PolypDEQ does not suffer from this 
issue. Note that the predictions of HyperPolypDEQ are 
very similar to those of PolypDEQ. This further proves 
that the accuracy loss when incorporating HyperSolver 
into PolypDEQ is negligible. 

Table 4 provides a comparison of the inference 
speed of different models. We also compare the 
acceleration rate of our implicit models, PolypDEQ-
add, PolypDEQ-res, and HyperPolypDEQ, to the 
baseline implicit MDEQ model. Overall, the implicit 
models had significantly slower inference speeds than 
their corresponding explicit models. For instance, the 
inference speed of Implicit MDEQ was approximately 
70 times slower than its explicit version, with an 
inference time of 0.774s versus 0.011s, respectively. 
Similarly, PolypDEQ-add and PolypDEQ-res were 
approximately 100 times slower than their explicit 
counterparts. Compared to the baseline implicit 
MDEQ model, which used multi-scale internal state 
representation, our PolypDEQ can achieve a marginal 
speedup of 1.41 and 1.38 times for PolypDEQ-add and 
PolypDEQ-res, respectively. Including HyperSolver 
in our HyperPolypDEQ helped achieve a remarkable 
inference speed of 0.085s, which is about 6.5 times 
faster than the PolypDEQ-res and surpasses the 
implicit MDEQ by a large margin of 9.11 times 
acceleration. Note that this was achieved while 
sacrificing less than 1% accuracy, making it a 
desirable trade-off between inference time and 
accuracy. The results further demonstrate the novelty of 
HyperSolver, which can help implicit models achieve 
faster inference speeds while remaining accurate. 

7. Conclusion 

PolypDEQ has demonstrated superior efficiency 
compared to other DEQs and explicit models of 
comparable size. However, it suffers from low 
inference speed. This study focuses on enhancing 
inference speed by utilizing HyperSolver to accelerate 
finding fixed-point solutions. The proposed 
HyperPolypDEQ outperforms PolypDEQ in inference 

time while retaining a similar level of accuracy. We 
aspire that this research will play a pivotal role in 
enabling DEQs to be utilized in real-life applications 
that require real-time processing. 

In future work, we plan to explore the use of more 
efficient and powerful backbone architectures to 
enhance accuracy and reduce inference time. Another 
challenge that arises during training DEQs is the issue 
of unstable convergence. We also intend to conduct 
further research and exploration to identify and 
implement effective strategies to overcome this issue. 
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