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Abstract 

Insect-like flapping wings are characterized by multi-degree-of-freedom motions at the wing base, which can 
be divided into two main movements: sweep and rotation. The phase difference between sweep and rotation 
motions is an important kinematic parameter that has a great influence on the wing lift. In this paper, the effect 
of the rotation phase on the average lift of a hawkmoth-like wing is investigated. Simulations were conducted 
using a Fluid-Structure Interaction co-simulation framework developed based on the multibody dynamics 
approach and an unsteady vortex-lattice method. The results show that maximum lift for the rigid wing is 
reached at an advanced phase of about 10%. For the flexible wing, maximum lift is reached at a delayed 
phase of about 5%. The reason for this difference could be the passive deformation of the flexible wing, which 
causes an advanced rotation phase at the wing tip. The obtained results are in good agreement with 
experimental results conducted by previous studies. 
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1. Introduction1 

Insect-like Flapping Wing Micro Air Vehicles 
(FWMAVs) have many advantages over conventional 
flight vehicles, especially at low-speed ranges. They 
can be used for reconnaissance, military technology, 
emergency rescue inside confined spaces, etc [1-3]. 
These micro air vehicles are often designed to mimic 
insects in nature, with complicated flapping 
mechanisms characterized by high flapping frequency 
and multi-degree-of-freedom motion at the wing base 
[4]. The aerodynamic unsteadiness is therefore 
significant [5].  

Each flapping cycle of insects can be divided into 
two phases: upstroke and downstroke (Fig. 1 [7]). The 
wing motion can be divided into two main movements, 
corresponding to two Euler angles: the sweep angle 𝜙𝜙 
for sweeping motion, and the rotation angle 𝛼𝛼 for 
rotational motion. During a cycle, the wings beat 
roughly in a stroke plane, which is defined by the wing 
base and the wing tip of the maximum and minimum 
sweep positions (Points 𝑃𝑃1 and 𝑃𝑃2 in Fig. 1). The 𝑦𝑦0 
axis of the stroke-plane fixed coordinate system 
(𝑥𝑥0 𝑦𝑦0 𝑧𝑧0) is parallel to the horizontal direction, 𝑧𝑧0 is 
perpendicular to the stroke plane [6]. The sweep angle 
𝜙𝜙 is defined as the angle formed by the 𝑦𝑦0 axis and 
wing axis  𝑦𝑦𝑤𝑤. The rotation angle α is defined as the 
angle between the wing chord and the stroke plane.  
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Fig. 1. Flapping mechanism of insects wing  

At the end of each stroke, the wing performs a 
quick rotation along the wingspan to flip the wing in 
the opposite direction. The phase difference between 
rotation and sweeping motion is called the rotation 
phase. If the wing flips (𝛼𝛼 = 90°) before it changes the 
direction (the angle 𝜙𝜙 takes its maximum or minimum 
value at 𝑃𝑃1 or 𝑃𝑃2 points), it is called the advanced 
rotation phase and vice versa. 

Many studies have shown that the rotation phase 
is an important kinematic parameter that has a great 
influence on the wing lift. Dickinson's experiment on 
the Drosophila fruit fly [8] showed that the delayed 
phase is not beneficial for generating lift.  
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Fig. 2. Definition of Euler angles 

In general, researchers agree that an advanced 
phase would be beneficial in terms of lift [9-11] as well 
as aerodynamic quality [12]. According to Lua et al. 
[12], in the advanced phase case, when the wing 
changes its sweep direction, the positive pitch angle 
combined with the induced velocity of the vortex from 
the previous stroke could increase lift. 

Previous studies have mainly focused on rigid 
wings. Insects wings are flexible membrane structures, 
reinforced with veins. The wings of insect-like 
FWMAVs are made of lightweight materials to ensure 
take-off mass and engine performance. With such 
structures, the deformation of the wings under 
aerodynamic and inertial loads on the flight is 
unavoidable. In this paper, an Fluid - Structure 
Interaction (FSI) co-simulation framework is deployed 
to determine the lift of a hawkmoth-like wing in 
hovering flight. Simulations are conducted with 
different values of the rotation phase for both rigid and 
flexible wings, thereby evaluating its influence on the 
lift force. 

2. Methodology 

 The FSI co-simulation framework used in this 
paper is a coupling of an aerodynamics solver based on 
the Unsteady vortex lattice method (UVLM) and a 
dynamics solver based on the multibody-dynamics 
(MBD) approach. The model has been presented 
thoroughly in [6] and will be presented briefly in this 
section to ensure the consistency of the paper.  

2.1. Aerodynamic Model 

 In the UVLM aerodynamics solver, insect wings 
are considered to be very thin and discretized into N 
panels, on each a vortex ring consisting of four straight 
bound-vortex segments with equal circulation is 
applied [13]. Each panel has a collocation point at its 
centroid. When the air flows around the wing, a wake 
is shed from the trailing edge and freely moves with 
the particles of the air stream (Fig. 3). 

The non-penetration boundary condition must be 
satisfied at all collocation points on the wing surface, 
i.e. the normal component of the relative velocity is 
zero:  

[𝑽𝑽∞ + 𝑽𝑽𝑖𝑖𝑖𝑖(𝒓𝒓, 𝑡𝑡) + 𝑽𝑽𝑖𝑖𝑤𝑤(𝒓𝒓, 𝑡𝑡) − 𝑽𝑽𝑤𝑤(𝒓𝒓, 𝑡𝑡)] ∙ 𝒏𝒏 = 0,    (1) 

where 𝑽𝑽∞ is the freestream velocity; 𝑽𝑽𝑖𝑖𝑖𝑖 and 𝑽𝑽𝑖𝑖𝑤𝑤 
denote the velocities due to bound-vortex segments on 
the wing and the free wake, respectively; 𝑽𝑽𝑤𝑤 is the 
velocity of the wing; 𝒏𝒏 is the local normal vector of the 
wing surface. 

 
Fig. 3. UVLM aerodynamic model 

 The induced velocities caused by each vortex 
segment were determined according to the Biot-Savart 
formula. Equation (1) can be rewritten for the kth 
collocation point as: 

∑ 𝑎𝑎𝑖𝑖𝑘𝑘𝛤𝛤𝑖𝑖𝑁𝑁
𝑖𝑖=1 = −�𝑽𝑽∞ + 𝑽𝑽𝑖𝑖𝑤𝑤𝑘𝑘 (𝒓𝒓, 𝑡𝑡) − 𝑽𝑽𝑤𝑤𝑘𝑘 (𝒓𝒓, 𝑡𝑡)� ∙ 𝒏𝒏𝒌𝒌,   (2) 

where upper index k denotes the quantity determined 
at the kth collocation point, 𝛤𝛤𝑖𝑖  is the circulation of 
vortex segments in the ith panel,  𝑎𝑎𝑖𝑖𝑘𝑘 is the normal 
component of the induced velocity at the kth 
collocation point, caused by the ith vortex on the wing 
surface if the circulation is assumed to equal 1. Thus, 
a corresponding system of 𝑁𝑁 equations are derived for 
𝑁𝑁 collocation points, which can be written in matrix 
form as follows:  

⎣
⎢
⎢
⎡𝑎𝑎1

1 𝑎𝑎21 ⋯ 𝑎𝑎𝑁𝑁1

𝑎𝑎12 𝑎𝑎22 ⋯ 𝑎𝑎𝑁𝑁2
⋮ ⋮ ⋱ ⋮
𝑎𝑎1𝑁𝑁 𝑎𝑎2𝑁𝑁 ⋯ 𝑎𝑎𝑁𝑁𝑁𝑁⎦

⎥
⎥
⎤

× �

𝛤𝛤1
𝛤𝛤2
⋮
𝛤𝛤𝑁𝑁

� = �

𝑅𝑅𝑅𝑅𝑅𝑅1
𝑅𝑅𝑅𝑅𝑅𝑅2
⋮

𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁

�                    (3) 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 denotes the right-hand side of equation 
(2) for the kth collocation point. The circulation of each 
vortex segment 𝛤𝛤𝑖𝑖  is determined after solving (3). 
Then, the pressure distribution on the surface can be 
determined according to the unsteady Bernoulli 
equation [13]. 

2.2. FSI Co-Simulation Framework 

 The aerodynamic load distributed on the wing 
surface is converted into the form of external 
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concentrated forces and moments for the MBD solver. 
The wing structure is modeled by 𝑁𝑁𝑖𝑖 rigid bodies 
connected with bending and torsion springs (Fig.  4).  

The generalized coordinate vector used to 
determine the state of the MBD system is  
𝚽𝚽 = �𝜃𝜃2,𝛼𝛼2,𝜃𝜃3,𝛼𝛼3, … ,𝜃𝜃𝑁𝑁𝑏𝑏 ,𝛼𝛼𝑁𝑁𝑏𝑏�

𝑇𝑇
, where 𝜃𝜃𝑘𝑘 and 𝛼𝛼𝑘𝑘 

denote the bending and torsion angles of the 
corresponding springs. 

 
Fig. 4. Spring-bodies system 

Using the Lagrangian method, the equations of 
motion of the MBD system can be written in the matrix 
form as follows: 

        𝑴𝑴�𝜱𝜱, �̇�𝜱, 𝑡𝑡��̈�𝜱 + 𝑯𝑯�𝜱𝜱, �̇�𝜱, 𝑡𝑡� = 𝑸𝑸�𝜱𝜱, �̇�𝜱, 𝑡𝑡�,       (4) 

where 𝑴𝑴, 𝑯𝑯, 𝑸𝑸 are the generalized mass matrix, 
generalized stiffness matrix, and generalized force 
matrix, respectively. 

 Using the Lagrangian method, the equations of 
motion of the MBD system can be written in the matrix 
form as follows: A two-way FSI coupling strategy is 
employed for information exchange between the 
dynamic and aerodynamic models (Fig. 5).  

 
Fig. 5. FSI co-simulation framework 

At each iteration, the new location of the nodes 
on the aerodynamic mesh is interpolated using the 
wing deformation from the MBD solver, and therefore 
to determine the aerodynamic load. The MBD solver 
is then used to determine the new deformation state of 
the wing after converting the aerodynamic load from 
the aerodynamic solver to point forces and torques. For 
solving the system of nonlinear differential equations, 
a quasi-Newtonian method based on the line-search 
theory is employed [14]. 

2.3. Validation 

 First, the multibody dynamics model is validated 
by a simplified system with three bodies connected by 
bending and torsion springs as shown in Fig. 6.  

 
Fig. 6. Multibody system for validation 

 

Table 1.  Parameters of the bodies 

Parameters Body 1 Body 2 Body 3 

Length (cm) 1.61 1.61 1.61 

Mass (mg) 13.27 13.01 7.48 

Inertia 
moment 

(𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2) 
0.47×10-10 3.84×10-10 1.26×10-10 

 
The parameters of the bodies are shown in 

Table 1. 

The motion of the spherical joint at the system 
origin is determined by three Euler angles as follows: 

𝜙𝜙(𝑡𝑡) =
𝜋𝜋
3

cos(2𝜋𝜋𝜋𝜋𝑡𝑡) 

 𝛼𝛼(𝑡𝑡) = −𝜋𝜋
3

sin(2𝜋𝜋𝜋𝜋𝑡𝑡) (5) 

𝜃𝜃(𝑡𝑡) =
10

180
𝜋𝜋cos(4𝜋𝜋𝜋𝜋𝑡𝑡), 

where flapping frequency f  is 26 Hz. 
 At the joint between the second and third bodies, 

forces are applied in the X and Z directions: 
𝐹𝐹𝑋𝑋(𝑡𝑡) = 0,02 sin(2𝜋𝜋𝜋𝜋𝑡𝑡)  (N) 

𝐹𝐹𝑍𝑍(𝑡𝑡) = 0,04 cos(2𝜋𝜋𝜋𝜋𝑡𝑡) (N)                          (6) 

N

Initial kinetic 
parameters

Multibody dynamic 
simulation

Convergence

Update aerodynamic 
mesh

Pressure field on wing 
surface

Wing deformation, 
aerodynamic loads

Output

Yes

No

MBD solver Aerodynamic solver

Determination of inertial and 
stiffness properties

Aerodynamic 
loads

New deformation 
state of the wing

t=t+dt

Structure model
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 The simulation results are compared with a 
similar model built in the commercial software 
MSC/ADAMS. The comparison of the simulation 
results for the coordinates along the axes of point A at 
the tip of the third body is shown in Fig. 7. 

 
Fig. 7. Compare the coordinates of point A along the 
axes 

 
 The results of the two methods are completely 
consistent with each other. This confirms the accuracy 
of the multibody dynamic model.  

 Then, the proposed FSI model is validated by 
comparing the simulated lift coefficient of an insect 
wing model with the experimental results obtained by 
Lua et al. [15]. In that experiment, a hawkmoth-like 
wing model underwent harmonic motions similar to 
those of hovering insects.  The corresponding Euler 
angle functions are: 

𝜙𝜙(𝑡𝑡) =
𝜋𝜋
3

cos(2𝜋𝜋𝜋𝜋𝑡𝑡)  

𝛼𝛼(𝑡𝑡) = −
𝜋𝜋
3

sin(2𝜋𝜋𝜋𝜋𝑡𝑡) (7) 

 The experiment was performed at a Reynolds 
number of 6000. The simulated lift coefficient in a 
flapping period is shown in Fig. 8 [15].  

 
Fig. 8. Comparison of the lift coefficient with the 
experiment  

 

It can be seen that the results obtained from the 
simulation are quite similar to the experimental data. 
The average simulated lift coefficient in a flapping 
period is 2.06, which is close to the experimental value 
of 2.08 with an error of 1.17%. This proves the 
accuracy of the proposed model. 

3. Simulation Results 

The present framework is used to study a wing 
model based on the hawkmoth Manduca Sexta wing. 
The wing structure model is built based on the 
experimental data of O'Hara and Palazotto [16]. 
Details of this process can be found in [6]. Some 
geometric and inertial parameters of the wing model 
are shown in Table 2.   

Table 2.  Wing parameters 

Parameters Unit Values 
Wing mass mg 43.4 
Wing area mm2 815.3 

Wing length mm 48.3 
Mean chord mm 18.4 
    

 
Fig. 9. Aerodynamic mesh 

The aerodynamic mesh in the UVLM solver is 
shown in Fig. 9. A mesh resolution of 6 × 10  
(6 chordwise and 10 spanwise panels) is chosen as 
recommended by [17]. 

The motion at the wing base is represented by 
periodic functions based on experimental data by 
Willmott and Ellington [18] for hovering hawkmoths:  

𝜙𝜙(𝑡𝑡) = 10° + 50° cos�2𝜋𝜋(𝜋𝜋𝑡𝑡 + 𝛿𝛿𝛿𝛿)�  

  𝛼𝛼(𝑡𝑡) = 90° − 45° sin(2𝜋𝜋𝜋𝜋𝑡𝑡),                   (8) 

with a flapping frequency 𝜋𝜋 equals 26.1 Hz. 

In (8), 𝛿𝛿𝛿𝛿 is the rotation phase, expressed as a 
fraction of the flapping period. 𝛿𝛿𝛿𝛿 is negative in an 
advanced phase case, and positive in a delayed phase.  

In this paper, a parameter analysis of 𝛿𝛿𝛿𝛿 was 
conducted, taking values from −20% to 10% for the 
rigid wing, and from −10% to 10% for the flexible 
wing. For each case, we determined the lift force 𝐿𝐿 and 
the average lift in a flapping cycle 𝐿𝐿𝑚𝑚.  
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Fig. 10 shows the variation of Euler angles in one 
flapping period for different cases: advanced phase, 
symmetrical, and delayed phase. The downstroke 
starts when the sweep angle 𝜙𝜙 reaches its maximum 
value. The wing rotates to change direction when the 
rotation angle 𝛼𝛼 = 90° (point A in Fig. 10). The 
rotation phase 𝛿𝛿𝛿𝛿 is defined by the distance from this 
point to the beginning of the flapping cycle. 

 
Fig. 10. Variation of Euler angles in one flapping 
period. 

Fig. 11 shows the wing state and wake 
visualization of the flexible and rigid wings obtained 
by the present program. 

Fig. 12a shows the average lift in one flapping 
period with different values of the rotation phase for 
the rigid wing. The maximum average lift is achieved 
at an advanced phase of 10% (𝛿𝛿𝛿𝛿 = −10%), similar 
to the results obtained from previous studies [12]. The 
average lift decreases rapidly as the rotation phase 
increases. When the phase is too advanced  
(𝛿𝛿𝛿𝛿 < −10%), the average lift also decreases. 

To explain the variation trend of the average lift 
for the rigid wing, Fig. 12b shows the lift force in a 
flapping period for three cases: 𝛿𝛿𝛿𝛿 = −15%,          
𝛿𝛿𝛿𝛿 = −10%, and 𝛿𝛿𝛿𝛿 = 5%. When 𝛿𝛿𝛿𝛿 = −10%, 
there is a significant increase in lift at the beginning of 
each stroke. With this value of the rotation phase, the 
wing takes advantage of the induced velocity of the 
wake from the previous flapping cycle. At the 
midpoint of each stroke, the wing's translational 
velocity and also the aerodynamic force reach 
maximum values. In the case of the advanced phase, 
this moment coincides with a pitch-up movement of 
the wing, which increases lift. When the rotation phase 
is delayed (𝛿𝛿𝛿𝛿 = 5%), there is a significant decrease 
in lift at the midpoint of each stroke. 

 
Fig. 11. Wake visualization of the flexible and rigid 
wings 
 

 
a) 

 
b) 

Fig. 12. Effect of rotation phase on the lift force of the 
rigid wing: a) Average lift versus rotation phase, b) 
Comparison of lift in a flapping period with different 
rotation phases 

Flexible wing

Rigid wing
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The influence of the rotation phase on the mean 

lift of the flexible wing is shown in Fig. 13a. The 
variation trend of the flexible wings is opposite to that 
of the rigid counterpart. The maximum average lift is 
achieved at a delayed phase of about 7%. The average 
lift decreases sharply as 𝛿𝛿𝛿𝛿 declines. A comparison of 
lift in a flapping cycle for different rotation phases in 
Fig. 13b shows that lift differs mainly at the beginning 
of each stroke. Lift force increases as 𝛿𝛿𝛿𝛿 grows. 

 To explain the contradiction between the results 
for rigid and flexible wings, the following section will 
investigate the effect of the structure deformation on 
the rotation phase in the wing base and the wing tip of 
the flexible wing. Fig. 14 shows the variation of Euler 
angles during a flapping period at the wing base and 
the wing tip. Subscripts 𝑏𝑏 and 𝑡𝑡 denote the Euler angles 
at the wing base and wing tip, respectively. It can be 
seen that due to wing deformation, at the wing tip, the 
phase of sweeping motion is delayed while that of 
rotation motion is advanced. 

Fig. 15 shows the phase difference between the 
wing rotations at the wing tip and wing base. It is 
observed that when the rotation phase is delayed by 

10% at the wing base, that at the wing tip is advanced 
by 3%. Therefore, a large lift is generated in this case. 
Similarly, when the rotation phase is advanced by 
10% at the wing base, the rotation phase at the wing 
tip is advanced by 15%, which leads to a significant 
reduction in lift. 

 
Fig. 15. Comparison of the phase difference between 
wing tip and wing base 

 

 
a) 

 
b) 

Fig. 13. Effect of rotation phase on the lift force of the 
flexible wing: a) Average lift versus rotation phase,    
b) Comparison of lift in a flapping period with 
different rotation phases 

 
a) 

 
b) 

Fig. 14. Variation of the Euler angles in a flapping 
period: a) 𝛿𝛿𝛿𝛿 = −5%, b) 𝛿𝛿𝛿𝛿 = 5% 
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These above results have confirmed the 
conclusion of some previous studies that the advanced 
rotation phase could increase lift for rigid wings. 
However, for flexible wings, due to the phase 
difference between the wing base and wing tip under 
the effect of deformation, phase advance at the wing 
base could lead to a significant decrease in lift. 
Maximum lift of the flexible wing is reached at a phase 
delay of 5% at the wing base. Therefore, in the 
designing process of wing motion for FWMAV with 
flexible wings, the phase difference between the wing 
base and the wing tip due to the deformation must be 
considered. 

4. Conclusion 

This paper studies the effect of the rotation phase 
on the lift force of insect-like FWMAV. The 
simulation is conducted using a FSI co-simulation 
framework based on the UVLM aerodynamics solver 
and the MBD approach. The results show that phase 
advance is beneficial in terms of lift for rigid wings. 
However, for flexible wings, there is a phase 
difference between the motions at the wing tip and 
wing base due to structure deformation. The maximum 
lift of the flexible wing is obtained when the rotation 
phase at the wing base is delayed by about 5%. 

Thus, when designing the law of wing motion for 
insect-like FWMAV, it is necessary to pay attention to 
this phase difference. 
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