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Abstract 

This research presents a tracking control system for a ballbot designed to operate in complex environments 
filled with both static and dynamic obstacles. The Nonlinear Model Predictive Control (NMPC) framework is 
formulated to predict the future positions of the ballbot and all surrounding obstacles. This predictive capability 
is crucial for effective navigation, as it allows the ballbot to anticipate potential collisions in the prediction 
horizon. The NMPC is integrated with an optimization problem that is enhanced by Control Barrier Function 
(CBF) constraints. These constraints ensure that the ballbot maintains a safe and consistent distance from 
every obstacle, thus preventing collisions. Additionally, an Extended State Observer (ESO) is implemented to 
observe and compensate for uncertain disturbances in the ballbot’s movements, as well as to estimate 
immeasurable variables that might affect its performance. Various simulation scenarios are conducted to 
thoroughly test and validate the effectiveness of this approach in achieving precise tracking control and reliable 
collision avoidance in environments with a large number of obstacles. 

Keywords: Ballbot, control barrier function, model predictive control, obstacles avoidance. 

 
1. Introduction 

Ballbot*is a self-balancing robot designed based 
on the ideal of inverted pendulum motion. Ballbot is 
designed with many transmission mechanisms such as 
using inverse mouse-ball drive and rollers [1, 2]; using 
three omnidirectional wheels [3, 4];... but in general, 
the movements of ballbot are based on adjusting the 
position of a spherical ball in all directions and keeping 
the robot body balanced above that sphere. Thanks to 
the unique design of the moving mechanism, the 
ballbot moves only based on a single contact point with 
the surface, making this robot more flexible than other 
types of mobile robots. Some significant advantages 
can be listed as the ability to perform complex 
movements (turn left, turn right, turn around, etc.) in 
narrow environments and the ability to self-adjust the 
angle of the ballot's body to maintain balance even 
when carrying objects or moving on inclined planes. 

Although the ballbot demonstrates superior 
flexibility compared to other types of mobile robots, 
tracking and balancing control of the ballbot is still a 
considerable challenge due to its kinematic 
complexity. In most previous research, the authors 
have proposed the following main control methods. 
The first method is to linearize the ballbot model 
around the equilibrium point, i.e. consider state 
variables in balance position to approximate a linear 
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model and apply linear control theories for ballbot                
[1-3, 4-6]. Another method is to project the 3D-ballbot 
model into three planar models, then the controller will 
be designed for each ballbot model in 2D space and 
synthesized through a torque transformation [7-9]. 
These approaches illustrate good responses in 
balancing tasks. However, when the ballbot moves, the 
velocity will not be in the equivalent region, and linear 
controllers will no longer be effective due to the 
significant approximations. For the model separation 
method, controlling the heading angle is complicated 
because when changing the direction angle, some 
infinity components can appear and make this torque 
conversion matrix non-invertible. 

Therefore, in this paper, Nonlinear Model 
Predictive Control (NMPC) is applied to overcome the 
above disadvantages. Besides the advantage that 
NMPC can control the 3D model directly by 
optimizing the objective function without the need for 
linearization or model conversion, MPC also allows 
for handling other complex system conditions in the 
form of optimization problem constraints [10]. 
Leveraging those advantages, we will use MPC as the 
central controller, whose main task is to minimize the 
target function while still ensuring compliance with 
safety conditions and obstacles. To build these 
collision avoidance conditions for each obstacle, we 
use the Control Barrier Function (CBF), initially 
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introduced by Ames et al. in [11, 12]. Instead of using 
the normal constraint that the distance from the ballbot 
to the obstacles is greater than the desired safe 
distance, CBF is formulated based on a safe set of 
distance constraints. The author in [13] has given 
certain conditions to determine the set consisting of all 
control values that render the safe set forward 
invariance, i.e. the safety conditions of the system will 
always be guaranteed throughout the moving process 
when applying this control signal. In addition, the 
states of the ballbot after a certain period of time are 
also predicted in advance by predictive model of 
NMPC. These future values are compared with the 
positions of obstacles and the system anticipates future 
collisions and makes appropriate adjustments in 
control signals based on CBF. 

In situations where not all states can be directly 
measured due to sensor limitations or inherent 
unobservability, the Extended State Observer (ESO) 
steps in to estimate these states based on available 
measurements. Moreover, ESO is designed to estimate 
an additional “extended state,” called the total 
disturbance and includes all uncertainties, 
disturbances, or external impacts on the system. 
Motivated by [14, 15] as active disturbance rejection 
controls, we decided to use the ESO as the observer of 
NMPC in the control structure. 

This study delineates three main contributions:  

- Presenting a detailed mathematical model of 
the ballbot system based on solving the Euler-
Lagrange equation.  

- Introducing a control strategy combining the 
Model Predictive Control and Control Barrier 
Function based on Extended State Observer 
for the ballbot system operating in dynamic 
environments.  

- Simulating the movement of ballbot in 
complex environments with moving 
obstacles and disturbances. 

The rest of this paper includes 4 sections:                
Section 2 introduces the 3D-ballbot system model 
using the Euler-Lagrange equation, the next section 
proposes the control structure using ESO-NMPC and 
CBF, some simulation scenarios are implemented in 
Section 4 to determine the effectiveness of our 
proposed controller. Finally, Section 5 is the 
conclusion and future work. 

2. Ballbot System Model  

2.1. Assumptions and Coordinate Definition 

To facilitate model formulation, some ideal 
assumptions of component interactions and working 
environment are considered as follows:  

- The Omni wheels, the ball, and the ground 
are rigid; 

- Interactions between ball and ground, ball 
and Omni wheels are point contacts and anti-
slipping; 

- There is no delay in the responses of 
actuators; 

- The operating surface are horizontal plane.  

The energy of ballbot is formulated based on the 
state variables and their velocities on different 
coordinates. We define these coordinate conservations 
as Fig. 1, where frame {b} is the translation frame of 
inertial frame {I} and fixed to the centre of the ball, 
frame {b′} are obtained when rotating the frame 
{b}around its center, frame {a’} is rigidly fixed in the 
body at center of mass (COM) and frame {a} is 
translated from frame {a′} alongside 'za axis to the 
COM of the ball. 

 
Fig. 1. Ballbot coordinate definition 

 

2.2. Equation of Motion 

We define ,x y are ball position in xy − plane of 
the inertial frame {I},   ,  and zx yφ φ φ are the roll-pitch-
yaw Euler angles of the body in frame{b}. The 
generalized coordinate of the ballbot is selected as: 

[ ]x y zx y φ φ φ=q


 (1) 

The kinetic energy of the ball includes the 
rotation kinetic energy, and translation kinetic energy 
is given as follows: 

1 1

2 2b b b b bT m= +p p φ J φ   

   (2) 

where, [ ]0b x y=p 
; φ is the rotation of the 

ball; [ ](  an )d ,b b b b b bm J diag J J J=J  are the 
mass, the moment of inertia in one direction and the 
moment of inertia vector, respectively. Then, the 
potential energy of the ballbot is calculated by: 

[ ]0 0 0b b bV g m= =p  (3) 
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The position of the body’s COM is found by 
rotation of the frame {a} to {b}, that is 

[ ]0 0a a b l
→

=p R 
 (4) 

where, l  is the distance from the COM of the ball to 
the COM of the body, and 

a b→
R  is the rotation matrix 

from frame {a} to frame {b}, it is defined by rotation 
of the frame {b} sequence as follows 

 

1 0 0

0 cos sin

0 sin cos

cos 0 sin cos sin 0

0 1 0 sin cos 0

sin 0 cos 0 0 1
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.

..

.
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y y

φ φ

φ φ

φ φ φ φ

φ φ

φ φ

→
= −

−

−

 
 
 
  
   
   
   
     

R

 (5) 

The rotation state vector of the body is defined as 

[ ]x y zφ φ φ=Φ
 and the kinetic and potential 

energy of body-wheels is:  

  

1 1

2 2

0 0
1 1

0 0   
2 2

a a a a a

a b a a b a

T m

m

l l
→ →

= +

= +

   
   
   
    

 
 
  
  

p p Φ J Φ

R R Φ J Φ

 

 

   

 





 (6) 

  [ ] co s0 0 s co         a ya xa aV lg m gm θ θ= =p (7) 

where  and a am J are the total mass and moment of 
inertia of rigid body ball- wheels, respectively. 

Each omniwheel has the individual rotation 
energy around the yaw axis and can be formulatred: 

1

2c cT = Ψ J Ψ 

   (8) 

where Ψ  is the rotation velocities of the omniwheels, 
( , , )c c c cdiag J J J=J  is the moment of inertial of the 

omniwheel. Then, based on the Lagrangian mechanics, 
the dynamic behavior of the ballbot can be described 
in the following: 

d L L

dt

∂ ∂
− =

∂ ∂
Qu

q q

  (9) 

where 
a b c a bL T T T V V= + + − −  is the Lagrange 

function and [ ]1 2 3τ τ τ=u 
is input torque vector. 

Equation (9) can be also described in the matrix form:  

( ) ( , ) ( ) ( , ) ( )t++ + =M q q C q q q G q D q Q q u    (10) 

where 5( )∈M q 
is  mass matrix, 5( , )∈C q q 

 is 

Coriolis matrix, 5( )∈G q 
 is gravity matrix, 

5 3×∈Q   is Jacobian matrix and 5( , )t ∈D q 
 is 

disturbance vector.  

3. Control Structure 

3.1. Nonlinear Model Predictive Control (NMPC) 

NMPC is a type of optimal control method with 
a cost function built from control signals as well as 
errors between the response and the desired value . The 
optimization problem minimizes this cost function 
while still ensuring all constraint conditions. For 
conventional MPC and NMPC, the most necessary 
constraint is the dynamic equation of the system. The 
main difference between MPC and NMPC lies in the 
predictive model, the use of nonlinear predictive 
model and nonlinear constraints of NMPC bring 
higher accuracy and efficiency compared to MPC. 

 
Fig. 2. NMPC principle 

 

The basic principle of NMPC is depicted in      
Fig. 2. By getting measurement values at time

0t , the 
future state can be determined in the prediction horizon 
of time T based on the system model. A cost function 
must be given to minimize the control signal u for the 
next control horizon  ( )c cT T T≤ . The larger the 
prediction horizon and control horizon, the more future 
state variables can be predicted. Still, it will increase 
the complexity and processing time of the optimization 
problem as well as waste computation when 
unexpected situations arise. This process is worked 
iteratively to update future states continuously, and the 
control signals calculated at this step can be applied to 
all subsequent steps if the model accuracy is 
guaranteed. Based on the equation of motion (10), the 
control signal 𝐮𝐮 is given by the solution of the 
optimization problem: 

0

0

1

arg min ( ) ( ) ( )

 

( )

s.t. ( )       ( ) ( , ) ( )

( )

( )

t T

t

dτ τ τ τ τ
+

−

= +

= − −

∫
u

u e e u u

q M q Q q u C q q q G q  

  
 (11) 
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where u is the control signal, T is the time of predictive 
horizon; 0 0,= > = >     are the weight 
matrices of NMPC and ( ) ( ) ( )rt t t= −e q q is the error 

of states and reference 
rq . 

3.2. NMPC with Extended State Observer              
(ESO-NMPC) 

To achieve effective future prediction, NMPC 
must receive feedback states from the system model. 
However, the mathematical model of the system also 
includes uncertain parameters and disturbances as well 
as lack of measurement ability. Therefore, the 
optimization controller must be implemented step by 
step in infinity loops, and ESO can be used as a high-
performance observer for handling uncertain 
disturbances and hard-to-observe variables in ballbot 
system. Consider the ballbot system (10) with 

1 2a  nd= =q q q q , we obtain: 

 
1 2

1 1

2 2 1( , )( )t− −

=

= − + +

q q

q M Qu M Cq G D q





 (12) 

The linear ESO [14] for system observation state 
variables is designed as follows 

1 1
1 2 1

11 1
2 3 2 2

1 1
3 3 3

ˆ
ˆ  ˆ

ˆ
ˆ ˆ

ˆ

 

 ˆ

α
ε

α
ε

α
ε

−

−
= +

−
= + +

−
=

q q
q q

q q
q q M Qu

q q
q







 (13) 

where
1 2 3 ˆ anˆ ˆ, d q q q are the estimated values of 

1 2,  q q
and the total disturbance is defined as

1 1

3 2( )− −= = − + −q f M Cq G M D , respectively.  

Theorem 1: By assuming that the total disturbance 
max max ( 0)d df f< >f‖ ‖  and the chosen parameters 

1 2 3, 0,,α α α ε > satisfying 

1

2

3

1 0

0 1 is Hurwitz,

0 0

α

α

α

−

= −

−

 
 
 
  

H  (14) 

then the error of estimated ESO variables 

1 1 2 2 3 3
ˆ ˆ ˆ( ) ( ) ( )= − − −  e q q q q q q

   is 

bounded and lim 0
t→∞

=e  

Proof. The error dynamic of the above ESO can be 
determined as    

1 5 5

2 5 5

3 5 5

ˆ ˆ ˆ

α

ε ε α ε

α

−

= + = − +

− 

 



 
 
  

 
 
 
 

I I 0 0

e Ae Bf I 0 I e 0 f

I 0 0 I



   (15) 

Then Lyapunov candidate function is selected 
with positive define matrix  as: 

ˆ ˆε= e e    (16) 

Therefore, the derivative of the Lyapunov 
candidate can be calculated in the following  

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( )

      
      

d

dt
ε ε

ε ε

ε ε

= +

= + + +

= + + +

e e e e

Ae Bf e e Ae Bf

e A e Bf e e Ae e Bf

 

 

 

 

 

    

  

 

   

 (17) 

By choosing 
1 2 3, , ,α α α ε as positive constant, 

positive define matrix   and H is Hurwitz, the 

Lyapunov equation 0+ + =A A   is satisfied. 
The equation (17) becomes:  

2

min max

min
max

min min

ˆ ˆ ˆ2

ˆ ˆ( ) 2 .

( )
2

( ) ( )

      

      

d

d

d

dt

f

f

ε

λ ε

λ
ε

ελ ελ

= − +

≤ − +

≤ − +

e e e Bf

e e B

B



   

 

 
 

 

‖ ‖ ‖ ‖‖ ‖

‖ ‖

 (18) 

where the function 
min max a )n• d) • ( (λ λ  are the 

maximum eigenvalue of matrix (•) . We define 

1 min 2 min an )) (d (c cελ λ= =  to obtain: 

 12
max

1 12 d

ccd
f

dt c c
ε

−
≤ + B  ‖ ‖  (19) 

then, 

2 2

1 1

2 2

1 1

1

( )
2 21 max

01 1

2 21 max

1 2

ˆ   

ˆ( (0))

ˆ( (0)) 2
 1

c ctt t
c cd

c c
t t

c cd

c

c f
e e d

c c

c f
e e

c c

τε
τ

ε

− −
−

− −

≤

≤ +

+ +≤
 
  
 

∫

e

e B

e B

‖ ‖

‖ ‖

‖ ‖



 

 

 (20) 

By selecting positive number 1ε  , the error 
between estimated states and output states is bounded 

and convergence to zero, i.e. 
0

ˆlim lim 0( )
tε→ →∞

=e . The 

theorem is proven.              
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Following the substitution of the system 
variables in (11) with the output from ESO, a 
generalized          ESO-NMPC for the ballbot is outlined 
as follows: 

0

0

1

1 1 1 2 2 1

ˆ ˆarg min ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆs (  ) .t. ) ( ( , ) ( )    

( )

( )

t T

t

dτ τ τ τ τ
+

−

= +

= − −

∫
u

u e e u u

q M q Q q u C q q q G q

  
  (21) 

where [ ]1 2=x q q 
is observation state vector and 

1
ˆ ˆ( ) ( ) ( )rt t t= −e q q is the error of observation state and 
reference. 

3.3. Obstacles Avoidance Using ESO-NMPC and 
Control Barrier Function (CBF) 

We define the position of i-th obstacle in ground 

as [ ]( ) ( ) ( )i i it x t y t=O 
. Motivated by CBF [13], 

barrier function for i-th obstacle can be chosen:  
2 2

1 1 max( ( ), ( )) ( ( ), ( ))i i i iD t t d t t d= −q O q O  (22) 

From this CBF certificate, the super level safe set of 
the distance can be formulated as follow 

5

1{ : 0}D= ∈ ⊂ ≥q    (23) 

Definition 1. Consider the dynamic system (10) with 
the control signal u  is locally Lipschitz. For any initial 
condition 10

1 ∈ ⊂q  , there are existed a maximum 

interval 
1( (0)) [0, )maxt=q  such that 

1 1( ) ( (0))t ∈q q  is the unique solution of (10). The set
 defined in (23) is forward invariance if 

1 1( ) ( ( ))   t t t∈ ∀ ∈q q  . The system (10) is safe 
under the constraint condition of set   if  is forward 
invariance [13].  

Definition 2. Consider the set  as the super level set 
of continuous differential function :iD →  , the 

function 
iD  is a CBF if existing a class κ∞  function 

(•)iγ  such as [11] 

1

1

1 1( , ) ( ( , ))

i

i i i i i

D

D Dγ

∂
≠ ∀ ∈∂

∂

≥ −

0 q
q

q O q O


 (24) 

By choosing a positive barrier function D if the 
ballbot is not in contact with the obstacle, then when 
the ballbot approaches the obstacle, the derivative of 
the barrier function D , will tend to push the ballbot far 
away. That is if the selected control signal satisfies that 

 and( , , ) ( , )  i i i i i iD Dγ γ κ
∞

≥ − ∈q O u q O , ballbot will 
not  collide  with  obstacles. Therefore,  we  achieved  

final obstacle avoidance based on the NMPC-CBF by 
the optimization problem as follows: 

0

0

1

( ) ( 1) ( 2)

1 1

1 1 1 2 2 1

ˆ ˆarg min ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆs.t. ( ) ( ) ( , ) ( )

( ) ( , , , )

( , , ) ( ( , ))

     

         

         

( )

( )

t T

t

k k k

i i i i

i i i i i

d

t f

D D

τ τ τ τ τ

γ

+

−

− −

= +

= − −

= …

≥ −

∫
u

u e e u u

q M q Q q u C q q q G q

O O O O

q O u q O





  

 (25) 

Finally, the control structure for driving the 
ballbot balancing, tracking, and avoiding a moving or 
static obstacle is achieved in Fig. 3. At the time 

0t the 

sensor measures the state 
iO  of n  obstacles and 

output of the ballbot system. The observer estimates 
the output 

1
ˆ ˆ=q q  and the first derivative of output

2
ˆ ˆ=q q . Then the Predictive Model tries to predict the 

state of ballbot and the obstacles in the future of 
sT . 

This information is used to formulate the barrier 
function (22) and the CBF constraint ( )i i iD Dγ≥ −  in 
the MPC optimization problem. The final control 
signal u ensures that the ballbot tracks reference 
trajectory and avoids obstacles. 

 
Fig. 3. NMPC control structure 

4. Simulation  

Ballbot is operated in two scenarios: static 
obstacles avoidance and moving obstacles avoidance. 
All the obstacles are considered in green and blue 
circular objects, the red circle represents for ballbot. 
The disturbance applied in system is defined as: 

5sin(20 )

5sin(20 )

( , ) 0.45sin(90 )

0.45sin(90 )

0.55sin(90 )

t

t

t t

t

t

π

π

π

π

π

=

 
 
 
 
 
 
  

D q  (26) 

All parameters for system model and controller 
are shown in Table 1: 
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Table 1. Parameters for model and control structure 

System parameters Control parameters 

𝑚𝑚𝑎𝑎 4.65 kg 𝛼𝛼1 4.1 

𝑚𝑚𝑏𝑏 0.6 kg 𝛼𝛼2 8.1 

𝑟𝑟𝑏𝑏 0.11 m 𝛼𝛼3 1.5 

𝑟𝑟𝑐𝑐  0.05 m 𝜖𝜖 0.01 

𝐽𝐽𝑎𝑎 diag(0.2,0.2,0.05) prediction 
horizon 𝑇𝑇 0.5 s 

𝐽𝐽𝑏𝑏 0.006 kgm2 control 
horizon 𝑇𝑇𝑐𝑐 1 s 

𝐽𝐽𝑐𝑐 0.0002 kgm2   
5 5×I  

𝑙𝑙 0.5 m 𝜆𝜆 10 
 

4.1. Static Obstacles Avoidance 

In the first scenario, ballbot must track the 
desired line trajectory from (0, 0) to point (3.3). There 
are two obstacles blocking this path with the position 

[ ]1 .( ) 1 1 2t =O 
and [ ]2 .( ) 2 1 8t =O 

, and the 
same radius of 0.3 m. The CBF certificates in avoiding 
obstacles are selected for each obstacle as follows: 

 2 2( ( ), ( )) ( ) ( ) 0.3i i b iD t t t t= − −q O p O‖ ‖  (27) 

It can be observed that if the ballbot continues to 
follow the required trajectory without CBF, it will 
collide with two static obstacles at times 4.5s and 7.5s. 
However, two CBF constraints have changed the 
trajectory at these times to keep safe distances from 
obstacles. After leaving the dangerous area, the ballbot 
continues following the original trajectory (as shown 
in Fig. 4, Fig. 5 and Fig. 6. 

 
Fig. 4. Trajectory of ballbot in avoiding double static 
obstacles 

 
Fig. 5. Position response in Ox-axis 

 
Fig. 6. Position response in Oy-axis 

Fig. 7. CBF certificates for each static obstacle 

The CBF certificates in Fig. 7 illustrates that the 
distance between ballbot and each obstacle are never 
under point of 0. That means the collisions don’t occur 
in the entire operating process.  

Fig. 8. Euler angle responses of ballbot 

Simultaneously, there is an increase in deflection 
angles for guiding the robot’s trajectory as shown in 
Fig. 8, but the system still guarantees not-too-large 
deflection angles and returns to the balanced point 
after completing the collision avoidance task. The 
predictive capability of NMPC in anticipating 
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collisions ensures smooth movement, preventing 
abrupt changes in tilt angles and control signals. 

4.2. Moving Obstacles Avoidance 

In the second scenario, beside the tracking task, 
ballbot need to predict collisions and adjust this 
trajectory to avoid the moving obstacles which tend to 
come across the desired path. The first position, 
velocity and radius of each obstacle are defined as:  

 

1

1 1

2 2

1

0 0.23
 ;  0

5

(0) ;

0

( )

(0) ;

.3
1

)

0.09

2 0.04
;  0.2

0.2
(

5

 

 

o

o

t

t

r

r

= =

= =

=
−

−
=

   
      
   
      

O O

O O





 (28) 

The CBFs for each obstacle can be formulated as: 
2

1 1 1

2

2 2 2

2
1
2
2

( ( ), ( )) ( ) ( )

( ( ), ( )) ( ) ( )

b

b

o

o

D t t t t r

D t t t t r

= − −

= − −

q O p O

q O p O

‖ ‖

‖ ‖
 (29) 

 
Fig. 9. Trajectory of ballbot in avoiding double moving 
obstacles 

The proposed controller also shows excellent 
effectiveness in the case of moving obstacles. The 
future state of ballbot and obstacles are predicted and 
the result trajectory has some small change by 
circumventing the rear of the object for the minimum 
error with the desired path as shown in Fig. 9. The 
time-varying positions in Ox-axis and Oy-axis are 
presented in Fig. 10 and Fig. 11, respectively. 

Similar to the scenario 1, CBF certificates in            
Fig. 12 decrease to nearly 0 when the ballbot is in the 
process of avoiding collisions while the Euler angle 
responses still ensure the balancing task of ballbot. 
Even when subjected to disturbance, the approximated 
values of deflection angle are very close to the 
respective model output response (Fig. 13). That 
shows that ESO has done a good job of estimating 
noise and state variables. 

 
Fig. 10. Position response in Ox-axis 

 
Fig. 11. Position response in Oy-axis 

Fig. 12. CBF certificates for each static obstacle 

 
Fig. 13. Euler angle responses of ballbot 

5. Conclusion 

In this research, NMPC is implemented to 
maintain balance and navigate ballbot in operating 
environments with obstacles. ESO is applied as a 
disturbance rejection observer and overcoming the 
immeasurable variables. Leveraging NMPC 
predictability of ballbot's output response and behavior 
of dynamic obstacles, we applies CBFs to ensure 
collision avoidance between the ballbot and each 
obstacle in the prediction horizon. The numerical 
simulations are given to demonstrate the effectiveness 
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of the proposed method with both static and moving 
obstacles in disturbed environments.  

In future work, we have a plan to improve our 
proposed controller by ensuring the safety guarantee 
with the tilt angle constraints as well as handling the 
complex-shaped obstacles. On the other hand, we will 
also try to handle with unknown motion equation of 
moving obstacles by using curve-fitting algorithm or 
machine learning. 
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