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Abstract 

This work presents robust path following controllers with disturbance rejection terms for autonomous surface 
vehicles in the presence of unknown bounded disturbances. The objective is to steer the vehicle to the desired 
path while its temporal evolution on the path is defined via a path parameter. The disturbance rejection terms 
are based on sliding mode control utilizing either constant or time-varying gains. To mitigate the chattering 
effect in the sliding mode controllers, a continuous adaptive control law based on a normalization technique is 
subsequently developed. Since the control protocols are proposed as control forces based on the nonlinear 
dynamics of the surface vehicle, Lyapunov stability theory and backstepping control technique are adopted 
for the control system design and the global stability analysis. Under the proposed controllers, the vehicle is 
shown to converge to the desired path asymptotically. Simulation results are also provided to support the 
theoretical analysis. 

Keywords: Autonomous surface vessels, path following, robust adaptive control, sliding mode control. 

 

1. Introduction1 

The development and deployment of autonomous 
surface vehicles (ASVs) for missions such as search 
and rescue, exploration of natural resources, 
environmental monitoring, and surveillance in ocean 
environments, have been of particular interest over the 
past decades. When performing such a task in an open 
sea, the surface vehicle is often asked to follow a 
reference path, which is specified appropriately for the 
task [1-5]. For example, in a formation maneuvering 
of multiple surface vessels [6], one or more leading 
vessels are required to track a predefined trajectory. 
The remaining vessels keep up with the leading vessels 
by maintaining relative positions to nearby vessels. 

When the aim is to steer the vehicle to the desired 
path while the evolution of its position along the 
trajectory is not necessarily specified with time but in 
any other variables, such a problem is called path 
following. As a result, in path following, the vehicle is 
driven to the path with a small cross-track error and 
then travels along it at some desired speed profile, 
which is generally a function of the path parameter. A 
multitude of path following control schemes have been 
presented in the literature [2-8]. There are geometric 
control approaches based on light-of-sight (LOS) 
methods [3, 7-9], the constant bearing approach (CB) 
[11], and the vector field (VF) guidance law [10]. The 
LOS control approach derives a light-of-sight angle 
corresponding to the bearing from the surface vessel to 
a point, at a certain distance ahead of the nearest point, 
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on the tangent axis of the path. The vehicle aligns its 
longitudinal axis to the look-ahead direction to follow 
the path [9]. When constant disturbances are present, 
LOS control methods with integral action were 
investigated in [7, 8]. The CB law aligns the vehicle’s 
forward speed to point to the target vehicle in the path, 
thus a two-point guidance law [11]. In the VF method, 
velocity vector fields are generated around the desired 
path, along which the vehicle follows to eventually 
reach the path [10]. Lee, Tran, and Kim [4, 5] utilized 
tube-based model predictive control (TMPC) for 
docking with obstacle avoidance of fully actuated 
surface ships. 

For underactuated surface vehicles, the number 
of independent controls is less than the dimension of 
the operating space. Path following control protocols 
have been developed for ASVs based largely on 
sliding mode control and backstepping methods [2, 6, 
11-13]. The study [11] explored an extended state 
observer-based LOS controller with an integral sliding 
mode control used to deal with uncertainties. A sliding 
mode control based on radial neural networks was 
presented in [12] for path following subject to 
disturbances and model uncertainty. Disturbance 
observer and artificial potential field (APF) techniques 
were employed in [13]. However, the aforementioned 
works often assume the boundedness of the                 
non-actuated motion. 

A few works have studied path following control 
for underactuated surface vehicles with consideration 
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of the stability of the non-actuated motion [2, 6]. In [2], 
one allows an arbitrary small deviation around the 
reference path to make the control input matrix in the 
error dynamics invertible. The control force is then 
designed by utilizing backstepping control and 
unknown model parameters are estimated by adaptive 
laws [2]. As an alternative, an offset point on the 
forward axis, ahead of the mass center, of the vehicle, 
called the hand point, is driven to the reference path in 
[6].  

This work addresses path following control for 
autonomous surface vehicles in the presence of 
unknown bounded disturbances. Although the fully-
actuation nature of the vehicle sounds less attractive, 
the current work aims to propose and compare several 
robust adaptive controllers for path tracking control 
under unknown disturbances. Compared with those [3, 
7-8, 10-11] commonly designed for kinematic models 
(as velocity inputs), the proposed control schemes are 
developed as forces/torques for dynamical surface 
vehicles. Furthermore, to overcome the chattering 
effect in sliding mode controllers [1,11,12], a 
continuous adaptive control law is studied using a 
normalization method. Numerical simulations show 
that, among the presented controllers, the continuous 
adaptive controller achieves the lowest tracking error 
with smoother control forces. Lyapunov stability 
theory and backstepping control technique are adopted 
for the control system design, the stability analysis, 
and proving asymptotic convergence of the path 
following control. 

In the conference version of this work [1], a 
robust path following controller based on sliding mode 
control with a known upper bound of disturbances was 
presented. Compared with [1], robust adaptive 
controllers are investigated to address the path 
following of surface vehicles when the bound of the 
disturbances is unknown. In these proposed 
controllers, adaptive gains evolving with time, instead 
of fixed gains [1], of the disturbance rejection control 
are utilized. In contrast to [1], a continuous adaptive 
tracking controller and several numerical simulations 
are presented in this work.  

The rest of the paper is organized as follows. Path 
following control problem is stated in Section 2. 
Section 3 presents the path following control laws. 
Simulation results are given in Section 4. Finally, 
Section 4 concludes this paper. 

We use bold lowercase letters , ,a b c and bold 
uppercase letters , ,A B C  to denote vectors and 
matrices, respectively. The transpose of a matrix is A

. The notations 1|| || , || ||⋅ ⋅ , and  || ||∞⋅ specify the           1-
norm, 2-norm, and infinity norm, respectively.  

2. The Vehicle’s Dynamic Model and Path 
Following Control 

2.1. Coordinate Systems and the Dynamics of the 
Surface Vehicle 

Consider a fully actuated surface vehicle 
operating in an open sea whose position [ , ]x y=p  is 
measured with regard to the inertial (North-East) 
coordinate system { }  (see Fig. 1). The longitudinal 
and lateral coordinate axes of the vehicle are fixed to 
its center. 

 

  
Fig. 1. Inertial coordinates, body-fixed coordinate 
system { } , and path coordinate system { , }t n . 

 

The linear velocity of the vehicle expressed in 
{ }  is ,[ , ]u v=v   which contains the surge and sway 
speeds. The orientation angle of { }  relative to { }  
measured clockwise is ψ and the angular rate .r ψ=   
The kinematic relationships between the local and 
inertial components of the vehicle’s velocity are 

cos( ) sin( ),
sin( ) cos( ), .

x u v
y u v r

ψ ψ
ψ ψ ψ

= −
= + =





 (1) 

Denote the rotation matrix 

cos sin
( ) (2).

sin cos
SO

ψ ψ
ψ

ψ ψ
− 

= ∈ 
 

R  

Thus, = vp R ; the rotational kinematics is as 

cos sin 0
( ) : ( ),

sin cos 0
ψ ψ

ψ
ψ ψ

− −   
= =   
   



r
r

r
R RS  (2) 

where ( )rS is a skew-symmetric matrix. Let 
[ , , ]u v rν =  be the vehicle’s body velocity. The           

3-DOF planar motion of the surface vehicle is given in 
the local coordinates as follows 

( .) c wν ν ν ν+ + = +M C D τ τ                      (3) 

Here, , ( )νM C  and 3 3×∈D   denote the mass,  
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Coriolis, and damping matrices, respectively. cτ  and 
3

w ∈τ   are the control and disturbance vectors, 
respectively. These dynamic matrices are given as 
follows [14]: 

11

22 23

32 33

0 0 0 0
0 , 0 ,
0 0

u

v r

v r

m X
m m Y Y
m m N N

   
   = = −   
      

M D  

 
22 23

11

22 23 11

0 0
0 0 .

0

m v m r
m u

m v m r m u

− − 
 =  
 + − 

C  

Here, ijm ’s are the vehicle inertia parameters and the 

parameters in the matrix D  are the hydrodynamic 
damping coefficients. 

For the control design purpose, the forward 
dynamics 

1 1( ( ) ) ( )c wν ν ν ν− −= − − + +M C D M τ τ  
is written in the general nonlinear dynamics: 

,( ) cν= + + vv f u w                                  (4) 

) ,( r rr g u wν= + +                           (5) 

where the nonlinear functions are defined as 
1[ , ] ( ( ) )g ν ν ν−= − −f M C D  , 1[ , ] :c r cu τ−=u M   

and 1[ , ] :r ww τ−=vw M  .  

2.2. Defining the Desired Path 

The curved path   to follow by the vehicle is 
parameterized by [ , ]a bγ ∈Ω = , where the two end 
points of the path are defined at aγ =  and .γ = ∈b  
The position and velocity of a point P∈ , denoted 
as dp  and dv , respectively, are: 

( ) [ ( ), ( )]
d ( ) d ( ) .

d d

,d d d

d d
d d

x y

t t

γ γ γ
γ γ γ γ

γ
′

=

∂
= = =

∂

p
p p

v p 



 (6) 

In the trajectory tracking problem, i.e., the 
position of the vehicle in the path is explicitly specified 
with time, the path parameter γ  is simply the time 
variable t . When sγ = , the distance traveled by the 
vehicle, one has || ( ) || 1d γ′ =p . A parallel-transport path 
frame is constructed at each point P∈  consisting of 
the tangent vector t  to the path and normal vector n  
(see Fig. 1). The tangent vector is: 

( ) ( ) / ( ) .d dγ γ γ′ ′=t p p  

n is obtained by rotation of t about P / 2π radians 
clockwise.  

 

2.3. Path Following Control Problem 

A path following force controller (i.e., cτ ) aims at 
steering the surface vehicle to the desired location in 
the path, i.e., 

( ): ( ) ,d γ= − →e p p 0 as t →∞ . 

The evolution of the vehicle along the path is 
determined by the path parameter ( )tγ . Denote by 

( )dU t +∈ the desired speed of the vehicle in the 
path. When the path following is achieved, the desired 
velocity of the vehicle in  , || ||d =v  || ( ) ||d γ γ′p   
converges to ( )dU t  asymptotically. Consequently, 
the tracking error of the parameter’s speed is obtained 
by 

|| ( ) ||:/d d de Uγ γ γ γ ν′= − = −p  .  (7) 

Here dν  is the desired speed of γ . Define the position 
error in the local coordinates (see Fig. 1):  

( )( )dψ= −e R p p
 . (8) 

The derivative of  e can be shown to be: 

( ) ( ) ( )dr ψ γ γ′= − − +e S e v R p 


  . (9) 

By (7) and (9), the error dynamics of the control 
system with the state 3[ , ]eγ= ∈x e 

 
 is: 

( ) ( ) ( )
.d

d

r ψ γ γ
γ ν

′ − − +
=  − 

S e v R p
x





 


  (10) 

3. Robust Path Following Control Protocols 

Path following control schemes are proposed for 
the surface vehicle when the bound of the disturbances 
is either known or unknown. To this end, we design 
the reference velocity refv  (or i.e., kinematic guidance 
law) and the path parameter’s second derivative γ  as 
follows 

( ) ( )

( ) ( ).

,ref p d d

d dk eγ γ

ψ γ ν

γ ν ψ γ

′

′

= +

= − + −

v K e R p

e R p 




 


  (11) 

Here, 0kγ >  and 2 2
p

×∈K   is a positive definite 

matrix. It is desired to drive v  to track the reference 
velocity ,refv  for ref≡v v  in (10) the path following 
can be shown to be achieved. The rotational degree of 
freedom (5) can utilized to stabilize dψ ψ=  for a 
desired yaw profile ( )d tψ . For example, if the tangent 
to the path were chosen, one would have 

( ) atan2( , )d d dt y xψ ′ ′= . To proceed, the velocity error 

vector z  and its time derivative are respectively 
defined by 
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) ,: ( ( )ref p d dψ γ ν′= − = − −z v v v K e R p
  

( ) ( ) ( ) ( )c p d drν ψ γ ν′= + + − +v ez f u w K S R p 


  

( .( ) ( ) ) ( )d d d dψ γ ν γ ψ γ ν′′ ′− −R p R p 

   (12) 
3.1. Path Following Control with a Known Upper 
Bound of the Disturbances 

The control design is based on a backstepping 
technique. We propose the following control law [1]: 

( ) sign( )c z pk ν β= − − − +u z f z K e   
 ( ) ( ) ( ) ( ) ( )d d d dr ψ γ ν ψ γ ν′ ′− +S R p R p 

   
 ( ) ( ) .d dψ γ ν γ′′+R p 

  (13) 
Here, e  is given in (9), the control gain is 

greater than the bound of the disturbance || ||β ∞> vw
, and sign( )⋅  is the component-wise signum function. 
We can now prove the following theorem, which has 
also been stated in [1]. 

Theorem 1: Consider the vessel's dynamics (3) 
and path-following error dynamics (10). Suppose that 
the desired path ( )d γp  is twice differentiable with 
respect to γ  and min1/ (4 ( ))z pk λ> K . Then, under the 

controller (13), the path-following error →x 0  
asymptotically as time diverges. 

Proof: First, the choice of ref=v v  and γ  in (11) 
ensures the path following objective. This is due to the 
derivative of the Lyapunov function 1 (1/ 2)V = x x  
along the trajectory of (10) satisfies 

2
1 diag( , ) || ||( )min pV kγλ≤ − K x  (see Lemma 1 in [1]). 

In the second step, we show that under the 
proposed controller (13), ref= −z v v can be stabilized 

to zero and  →x 0  asymptotically as t →∞ . We 
consider the Lyapunov function  

(1/ 2) (1/ 2)V = +x x z z  ,  
which is positive definite, continuously differentiable, 
and radially unbounded. Since  (13) is nonsmooth, the 
differential inclusion operation ( )⋅  is used to 
compute V  [15]. In particular, by (10), (12), and the            
skew-symmetry property of ( )rS , i.e., ( ) 0r =e S e

   
for any vector e , one has  

  2 2| |||p zV k e kγ γ= − − − −e K e e z z

 
  

 sign( )β− + vz z z w         

      
( )

2 2
min

1

( ) || ||

|| || || ||
p zk e kγ γλ

β ∞

≤ − − − −

− − v

K e e e z z

w z

 
    

    
2

2 2
min

min min

,1 || ||
2 4zk e kγ γλ
λ λ

 
≤ − −


− 

 

 
+ − 



ze z  

where, in the first inequality we have used  
( )sign( ) sign( )z z=z z  1|| ||= z  and ≤vz w  

1 .|| || || ||∞vz w  It follows that when min1/ (4 ),zk λ>  

0V ≤ and hence ( )V t is uniformly bounded. As a 
result, || ||,|| ||,eγe and || ||z  are bounded. By (9), (11) 

and (12), γ , e , and z  are uniformly bounded. 
Therefore, it can be shown that V is bounded and thus 
V is uniformly continuous. By Barbalat’s lemma, 

0V →  as  t →∞ . As a consequence, →x 0  and 
→z 0 asymptotically as t →∞  and the Theorem is 

proven. 

3.2. Robust Adaptive Path Following Control with 
Unknown Disturbances 

When the bound of the disturbances || ||∞vw  is 
unknown, we propose the following controller with an 
adaptive gain β̂ : 

ˆ( ) ( )sign( )c z pk tν β= − − − +u z f z K e  
       ( ) ( ) ( ) ( ) ( )d d d dr ψ γ ν ψ γ ν′ ′− +S R p R p 

    
        ( ) ( ) .d dψ γ ν γ′′+R p 

  (14) 

1
ˆ ˆ( ) || || , (0) 0t kββ β= >z .  (15) 

Here, 0kβ > is the update rate of the adaptive gain ˆ.β  
The use of a “leaky” integration (15) helps to adjust 
the gain β̂  until it equals or exceeds || ||∞vw  so as to 
make the derivative of a Lyapunov candidate function 
negative [16]. We can now prove an asymptotic 
convergence of the path following as follows. 

Theorem 2: Consider the vessel's dynamics (3) 
and path-following error dynamics (10). Suppose that 
the desired path ( )d γp  is twice differentiable with 
respect to γ  and min1/ (4 ( ))z pk λ> K . Then, under the 
adaptive controller (14)-(15), the path-following error 
→x 0  asymptotically as t →∞ . 

Proof: Consider the derivative of the Lyapunov 
function 

 2
ma1 x

ˆ(1/ 2) (1/ 2) ( ) / (2 ).V kββ β= + + −x x z z   

Here maxβ > || ||∞vw  is an arbitrary gain that is used 
only for the analysis. The derivative of V along the 
trajectory of (10) is given by 

2 2
1 | |||p zV k e kγ γ= − − − −e K e e z z

 
  

 max 1
ˆ ˆ( ) || || sign( )β β β+ − − + vz z z z w         

2 2
min

max 1 1 1

( ) || ||
ˆ ˆ( ) || || || || || || || ||

p zk e kγ γλ

β β β ∞

≤ − − − −

− − ++ v

K e e e z z

z z w z

 
     

( )

2 2
min

max 1| .

( ) || ||

| || || ||
p zk e kγ γλ

β ∞

≤ − − − −

− − v

K e e e z z

w z

 
        

The remainder of the proof follows from a similar 
argument as Proof of Theorem 1, thus omitted.          
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The control laws (13) and (14) are nonsmooth 
due to the use of the signum function, thus causing 
chattering effect. To overcome the discontinuity issue, 
the following control protocol is proposed using a 
normalization technique [16]: 

ˆ( ) ( )
|| || ( )c z pk t

t
ν β

µ
= − − − +

+
zu z f K

z
e  

 ( ) ( ) ( ) ( ) ( )d d d dr ψ γ ν ψ γ ν′ ′− +S R p R p 

   
 ( ) ( ) .d dψ γ ν γ′′+R p 

   (16) 
2ˆ ˆ( ) || || /(|| || ( )), (0) 0.t k tββ µ β= + >z z  (17) 

Here the normalizing signal is || || ( )m z tµ+  has 

been used with ( ) 0tµ > , t∀ , and 
0

( )d
t
µ τ τ

∞

=
< ∞∫  

(e.g., ( ) e , 0att aµ −= > ).   

Theorem 3: Consider the vessel's dynamics (3) 
and path-following error dynamics (10). Suppose that 
the desired path ( )d γp  is twice differentiable with 
respect to γ  and min1/ (4 ( ))z pk λ> K . Then, under the 
adaptive controller (16)-(17), the path-following error 
→x 0  asymptotically as t →∞ .  

Proof: Using the same Lyapunov function 1V as 
before, one has the derivative of 1V along the trajectory 
of (10), (16), and (17) as 

2 2
1 | |||p zV k e kγ γ= − − − −e K e e z z

 
     

         
2

max
|| ||ˆ ˆ( )

|| || ( ) || || ( )t t
β β β

µ µ
+ − − +

+ + v
z z z z w

z z


       

2 2
min ( ) || ||p zk e kγ γλ≤ − − − −K e e e z z 

     
2

max || || /(|| || ( )) || |||| ||tβ µ+ +− vz z w z  
2 2

min ( ) || ||p zk e kγ γλ≤ − − − −K e e e z z 
     

2
max max|| || /(|| || ( )) || ||tβ µ β− + +z z z  

2 2
min ( ) || ||p zk e kγ γλ≤ − − − −K e e e z z 

     
max ( ) || || /(|| || ( ))t tβ µ µ+ +z z  

2 2
min max( ) || || ( )p zk e k tγ γλ β µ≤ − − − − +K e e e z z 

  

2
2 2

min
min min

1 || ||
2 4zk e kγ γλ
λ λ

 
≤ − −


− 

 


+ − 

 

ze z  

 max ( ),tβ µ+    

where, the first inequality makes use of ≤vz w

|| |||| ||vw z  and for any max
0

sup || || .
t

β
>

> vw  

Consequently, 2
1 min 0

min

0 ( ) ( )
2

d
t

V t τλ
λ

∞

=
+< + ∫

ze  

2

0
d

t
k eγ γ τ

∞

=
+ ∫ 2

min 0
( 1/ (4 )) || ( ) | d|z t
k τλ τ

∞

=
+ − ∫ z

1 max 0
(0) ( )d

t
V β µ τ τ

∞

=
≤ + < ∞∫ . Therefore, 1( )V t , e , 
eγ  and ∞∈z   (or i.e., uniformly bounded) and 

, ,eγe z 2∈  ( ( )tα  2∈  if 2

0
|| ( | d) |

t
α τ τ

∞

=∫ ).< ∞  

By (9), (11) and (12), one has γ , e , and z  are 
uniformly bounded. It follows that →x 0  and →z 0
asymptotically as t →∞  according to Barbalat’s 
lemma [16, Lem 3.2.5]. This completes the proof. 
4. Simulation 

For the simulations, the inertial and damping 
parameters of a supply ship are chosen. In particular, 

6
11 4.5096 10m = ⋅ kg, 6

22 7.5608 10m = ⋅ kg,
6

23 32 2.2680 10m m= = − ⋅  kgm, 33m = 72.9683 10⋅  

kgm2 , uX = 45.1380 10− ⋅ Ns/m, vY = 51.6980 10− ⋅  
Ns/m, rY = 61.5081 10⋅  Ns, vN = 61.5081 10⋅  Ns, and 

62.5300 10rN = − ⋅  Nms. The initial position of the 
vehicle is 0 [15, 15]= −p  (m) and the initial yaw angle 

0 / 3ψ π=  (rad). The control gains 0.1zk = , 0.5,kγ =  
and diag{0.2,0.1}p =K  are selected for all simulation 
scenarios in the below. The desired path to follow 

[150cos(0.5 ),150sin(0.5 )]d γ γ=p  is a circle of radius 
150  (m) (the dashed blue line in Fig. 2) with the 
desired speed of the path parameter 0.05dν = . The 
rotational degree of freedom is used to control the 
vehicle to track the tangent ( )γt  to the path. Thus 

( ) atan2( , )d d dt y xψ ′ ′=  and the control input is 
designed as a PD-like ( ) ( )r d du g kψν ψ ψ ψ= + + −  for 

0kψ > . The disturbance acting on the vehicle is given 

as 510 [sin(0.5 ),cos(0.5 ),0]w t tτ =  (N). The adaptive 
updates (15) and (17) are implemented using the 
Euler’s method with sampling time 0.2sT =  sec.  

4.1. Path Following Control under Controllers (13) 
and (14)-(15) with the Signum Function 

Simulation results for the path following control 
under the control law (13) with 0β =  and 0.8β =  are 
provided in Fig. 2(a) and 2(b), respectively. 

As can be seen in Fig. 2 (a), without the sliding 
mode control term sign( )β z  in (13), the vehicle 
follows the path with high position error. Whereas, in 
the presence of sign( )β z  ( 0β ≠ ), the vehicle tracks 
the desired path successfully. However, chattering 
effect occurs in the control cτ  (plotted only the surge 
and sway forces) due to the use of the signum function, 
as shown in Fig. 2(c). The yaw angle ( )tψ  versus time 
is shown in Fig. 2(d). 
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a) Path tracking plotted for 250 secs. 

 
a) Path tracking 

 
b) Path tracking plotted for first 200 secs. 

 
(b) Surge and sway forces vs time 

 
c) Components of cτ  [N] in (13) with 0.8β =  

 
(c) ˆ( )tβ  vs time 

 
(d) Yaw angle vs time. 

 
(d) Yaw angle vs time. 

Fig. 2.  Path following control under (13): (a) 
without and (b) with sliding mode control 

sign( )β z . 

Fig. 3.  Path following control under adaptive 
controller (14) with ˆ(0) 0.05β = , 0.005kβ = . 

 
When an estimate of the upper bound of the 

disturbance, i.e., || ||∞vw , is unknown, path following 
control under adaptive controller (14) with 
ˆ(0) 0.05β =  and 0.005kβ =  is reported in Fig. 3. It is 

shown that the vehicle tracks the desired path 
asymptotically and the update gain ˆ( )tβ keeps 
increasing to slightly above 1 as time increases.  
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4.2. Path Following Control under Adaptive 
Controller (16)-(17) 

We provide the simulation results for path 
following control of the vehicle under the continuous 
adaptive control laws (16)-(17) with ˆ(0) 0.05,β =  

0.005kβ = , and  the  normalizing signal  being  either 
0.05( ) tt eµ −=  or 0.005( ) tt eµ −=  in Fig.4 and Fig. 5, 

respectively. Significant chattering reduction can be 
observed in the first two components of the control cτ
(Fig. 4(b)) while path tracking performance is still 
comparable with that under adaptive controller (14). 
Note that the adaptive gain ˆ( )tβ increases to roughly 
0.74 and remains unchanged as time diverges, which 

is less conservative than the adaptive gain under               
(14)-(15).  

The control cu can be made to vary significantly 
smooth using the normalizing signal 0.005 ,( ) tt eµ −=  
which diminishes slowly with time, as depicted in 
Fig.5 (b). 

We further compare quantitatively the path 
tracking errors (8) of the controllers by computing the 
average and maximum position errors in the steady 
state (after 40 secs) as in Table 1. When there is no 
disturbance rejection term (controller (13) with 0)β =  
the position error is the highest among the controllers. 
The continuous tracking controller (16) with 

0.05( ) tt eµ −=  achieves the lowest tracking error. 

 

a) Path tracking under (16) with 0.05( ) tt eµ −=  

 

a) Path tracking under (16) with 0.005( ) tt eµ −= . 

 
(b) Surge and sway forces vs time 

 
(b) Surge and sway forces vs time 

 

(c) ˆ( )tβ  vs time 

 

 (c) ˆ( )tβ  vs time 

 
(d) Yaw angle vs time 

 
(d) Yaw angle vs time 

Fig. 4.  Path following control under adaptive 
controller (16)-(17) with 0.05( ) tt eµ −= . 

Fig. 5.  Path following control under adaptive 
controller (16)-(17) with 0.005( ) tt eµ −= . 
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 Table 1. Comparison of the position error
|| || || | || ( ) ||| d γ= = −e e p p

in the steady state 

Controllers Mean 
error (m) 

Max 
error (m) 

(13) with 0β =  3.07 5.46 

(13) with 0.8β =  1.82 2.98 

(14) with ˆ(0) 0.05β =  1.38 2.20 

(16) with 0.05( ) tt eµ −=  1.3 2.17 

(16) with 0.005( ) tt eµ −=  1.5 2.84 

 
Note that the adaptive updates (15) and (17) are 

discretized with sampling time 0.2sT =  sec while the 
dynamical vessel is a continuous time system. This 
discrepancy partly accounts for the position tracking 
errors. The position errors can also be made small by 
increasing the controllers’ gains. 

5. Conclusion 

In this work, we have developed several robust 
path following control protocols for fully-actuated 
surface vehicles subject to unknown bounded 
disturbances. Adaptive control terms with                  
time-varying control gains were utilized for path 
following with unknown disturbances. To overcome 
chattering effect in the control forces, a continuous 
path following controller based on a normalization 
method has been proposed. Under the proposed 
controllers, we established asymptotic convergence to 
the desired path of the vehicle based on Lyapunov 
stability theory and Barbalat’s lemma. Simulation 
studies have demonstrated that the vehicle converges 
to desired path asymptotically. The position tracking 
error of the continuous tracking controller is the 
smallest among the controllers. Chattering can also be 
reduced significantly in the control forces of this 
continuous controller.  

For future work, it is promising to extend the 
proposed adaptive controllers to the path following 
control of underactuated surface vehicles with only 
two independent actuators. Path following with 
obstacle avoidance based on Model Predictive Control 
(MPC) [5] or velocity obstacle methods [17] is also 
worthy of further investigation. 
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