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Abstract 

Currently, there are insufficiently good or efficient tools or procedures for long-term scheduling of aviation 
maintenance activities in the world, and Vietnam specifically. Airlines are impacted by a variety of elements, 
including the quantity of aircraft they operate, their capacity, their personnel resources, their maintenance 
resources, and unforeseen and urgent occurrences that cause schedule disruptions. There are no fast, 
automatic solutions to the above-described problems existing in aviation today. The reinforcement learning 
method as described here could potentially be one answer to these problems. The idea is to plan in years 
running across a specified period such that the aircraft is brought as close as possible to the inspection 
deadline. From there, the airworthiness of the aircraft increases while the maintenance inspection decreases, 
reducing the cost of maintenance. Application optimization of the scheduling plan is done using the Deep Q-
learning method. The results achieved by the Q-learning and Deep Q-learning algorithms are better in terms 
of computation times as compared to the other current techniques. The research results of the checks showed 
reinforcement learning potential in dealing with this problem, where the fly hours loss of planned inspections 
was reduced by using data from Vietnam Airlines. Computational experiments show that our methods adapt 
for different purposes and settings of reality. After teaching the model with these simulated conditions, they 
show how well a reinforcement learning application quickly arrives at lean repair plans. 

Keywords: Aircraft maintenance, maintenance check scheduling, reinforcement learning, Q-learning,            
deep Q-learning. 

 

1. Introduction1 

The air transport system stands as one of the most 
intricate man-made transportation networks globally. 
Over the past decade, the aviation industry has 
experienced substantial growth, emerging as a 
significant contributor to the global GDP surpassing 
other industries and sectors. Consequently, heightened 
competition among airlines has ensued, prompting 
price reductions in airfares, thus resulting in a 
substantial surge in passenger demand. 

A series of sequential operations precedes 
aircraft departure. Firstly, flight schedules are devised 
based on the company's strategic blueprint and 
marketing considerations, including passenger 
demand. This involves the airline determining 
destination cities, departure times, and flight 
frequencies. Secondly, fleet allocation is addressed, 
with airlines assigning aircraft types to scheduled 
routes based on factors such as maximum total range, 
seating capacity, and operational expenses. 
Subsequently, a sequence of flights ensues, with each 
aircraft undergoing maintenance checks at designated 
intervals. Finally, crew management is undertaken, 
involving the assignment of crew members to each 
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aircraft, taking into account tax implications and 
collective bargaining agreements. 

To ensure the smooth and stable operation of the 
aviation industry, several critical factors come into 
play, including operators and services. Among these 
factors, maintenance emerges as a pivotal aspect 
contributing to both safety and efficiency within the 
aviation sector.  

Maintenance check intervals are established 
according to aircraft usage parameters, which are 
defined by flight hours (FH), flight cycles (FC), and 
calendar days (DY). When an aircraft reaches its 
service limit based on any of these three conditions, it 
becomes eligible for routine maintenance checks. The 
four primary types of periodic maintenance checks in 
the aviation industry are the A-check, B-check,            
C-check, and D-check [1]. An A-check typically 
involves an internal or external inspection of the 
aircraft, with certain areas accessible (such as for oil 
inspection and maintenance, filter replacement, and 
lubrication). Conducted approximately every two to 
three months, the A-check is considered a relatively 
minor inspection, usually completed within a single 
day. The C-check involves a comprehensive 
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examination of individual systems and components to 
assess their usability and functionality. Typically 
conducted every 18 to 24 months, this check lasts 
between 1 to 3 weeks. On the other hand, the D-check 
focuses on inspecting critical structural elements such 
as the airframe, support structures, and wings. This 
intensive inspection occurs every 6 to 10 years and can 
last from three weeks to two months. While some 
documents mention the B-check, in practice, many 
airlines opt to integrate B-check tasks into the A-check 
process [2]. Similarly, airlines often incorporate 
numerous tasks from D-checks into C-checks, 
effectively extending the duration of the C-check 
beyond its standard timeframe. Due to the substantial 
impact of these maintenance checks on the aircraft's 
flight readiness and the significant allocation of 
resources required for their execution, they are 
typically scheduled several months in advance, 
typically within a 3 to 5-year timeframe [2].  

Scheduling maintenance checks for an entire 
fleet of aircraft presents a demanding and intricate 
challenge. In practice, aircraft maintenance schedules 
are typically devised based on the expertise of 
maintenance operators. However, this approach poses 
significant drawbacks, primarily in terms of time 
consumption and the potential for suboptimal 
solutions. Maintenance operators for a large fleet must 
dedicate several days or even weeks to plan A and                
C-checks according to each aircraft's inspection cycle 
and the available maintenance resources of the airline. 
Any deviations or issues arising during A or C-checks 
necessitate adjustments to the schedule, leading to 
continual shifting of inspections to earlier or later 
timeframes until a viable schedule is established. As 
this planning method relies on manual processes, the 
primary focus is often on identifying a feasible 
maintenance schedule for the fleet rather than an 
optimal one. Consequently, the traditional manual 
maintenance planning method inevitably results in 
reduced aircraft utilization and a higher frequency of 
A and C-checks in the long term, thereby escalating 
aircraft maintenance costs. 

Presently, airlines are placing growing emphasis 
on enhancing aircraft availability and optimizing 
maintenance planning for greater efficiency. Aircraft 
maintenance stands as one of the primary direct 
operating costs and holds significant weight on an 
airline's balance sheet. As reported by [3], 
approximately 11% of an airline's total costs are 
allocated to aircraft maintenance. In 2014, this 
translated to an average expenditure of 295 million 
USD per year per airline [4]. The long-term economic 
and operational advantages of adopting a more 
efficient approach to maintenance are evident. For 
instance, a typical C-check for the A320 series can 
incur costs ranging from 150 thousand USD to 350 
thousand USD [1], while an A-check typically costs 

between 10 thousand USD to 15 thousand USD. 
Moreover, each additional day of operation can yield 
additional revenue, with commercial revenue ranging 
from 75 thousand USD to 120 thousand USD, 
depending on aircraft usage. However, the complexity 
arises from the fact that A- and C-check planning 
issues are two interconnected combinatorial problems. 
The decision to schedule or postpone an A/C check on 
an aircraft today will influence the future utilization of 
the aircraft and, consequently, the necessity for A/C 
checks in the future. Solving such problems presents a 
considerable challenge, often necessitating the use of 
heuristics and algorithms to assist in decision-making 
[5]. 

Annually, Vietnam attracts a significant influx of 
70 - 80 million visitors, including approximately           
10 million international travelers. In the initial two 
months of 2023, both flight frequency and passenger 
volume surged by over 90% compared to the 
corresponding period, signaling a notable recovery in 
the number of international visitors. Since the year's 
outset, airlines have vigorously promoted domestic 
demand while seeking opportunities in the gradually 
rebounding international market. Given the substantial 
scale of operations, maintenance of each airline's 
aircraft assumes paramount importance. However, 
despite their relatively young fleet age compared to 
global counterparts, the challenge of training 
engineers, mechanics, and establishing adequate 
maintenance centers for these airlines persists due to 
prevailing circumstances. 

Presently, in Vietnam, the majority of airlines 
lack internationally accredited training facilities, 
relying on traditional, non-automated methods that 
heavily involve human personnel. Furthermore, the 
maintenance operations of most airlines in the country 
are reliant on foreign service providers. Moreover, the 
software utilized for aviation maintenance tasks is 
outdated and ill-suited to meet the present 
requirements and demands of the industry. 

Based on the maintenance and service processes 
of airlines in Vietnam, it is apparent that these carriers 
rely on manual scheduling for periodic checks. This 
manual approach is time-consuming, often taking days 
or even weeks to devise a viable maintenance plan. 
Consequently, these airlines typically formulate 
feasible maintenance schedules rather than optimal 
ones, potentially resulting in suboptimal solutions. 
Such inefficiencies can adversely impact aircraft 
performance, leading to financial losses for the 
airlines. Therefore, there is a pressing need to enhance 
existing processes and strive for optimized 
maintenance planning methodologies. 

Consequently, the demand for tools to optimize 
processes and scheduling arrangements within 
Vietnam's aviation industry has surged. Companies 
that have already achieved self-reliance are actively 
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seeking such methods, while others in the process of 
transitioning towards self-reliance will also require 
these optimal solutions. 

The main solution is to apply machine learning 
methods to replace humans in maintenance planning. 
This benefits both human resources and the quality of 
results by optimizing input data and implementation 
processes. 

2. Problem Formulation 

 Each aircraft undergoes grounding for 
maintenance checks at predetermined intervals as 
outlined in the aircraft Maintenance Plan Document 
(MPD). These intervals are determined by three key 
metrics that delineate the lifespan of an aircraft: flight 
hours (FH), flight cycles (FC), and calendar days 
(DY). Each type of maintenance check usually has its 
own specified maximum duration, and the associated 
usage metrics are reset to zero immediately after the 
completion of the check. 

Tolerances, as stipulated in the aircraft's 
Maintenance Plan Document (MPD), can be employed 
to schedule maintenance checks beyond the maximum 
interval. However, this practice should be exercised 
cautiously, as it necessitates clearance from civil 
aviation authorities. Additionally, tolerances are 
deducted from the maximum interval of the 
subsequent check, with flight hours (FH), flight cycles 
(FC), and calendar days (DY) serving as the metrics 
for such deductions. 

The purpose of this task is to get the airplane as 
close to the check deadline as possible before landing 
to undertake repairs. The three cumulative time 
parameters indicated above (FH, FC, and DY) are as 
close to the critical time as feasible, decreasing the 
number of checks and boosting the aircraft's 
airworthiness. 

When a lighter maintenance check is scheduled 
to follow a heavier one, airlines often opt to 
consolidate the two checks. For instance, if both an              
A-check and a C-check are due at intervals separated 
by a specified number of days, they are combined. This 
check merge allows the same aircraft to avoid landing 
twice in a short period of time without necessarily 
increasing the flight time. This check merge prevents 
the same aircraft from landing again in a short period 
of time without extending the C check time. The 
consequence of doing so is that it will increase the 
number of A checks in the long run. 

Some airlines also necessitate a minimum 
interval between the start dates of two identical 
maintenance checks. This requirement primarily 
involves the preparation of resources such as labor, 
tools, aircraft replacement parts, and the hangar 
facilities. 

 

2.1. Assumptions 

The following are the assumptions considered to 
determine the long-term maintenance inspection 
planning method: 

- The minimum time unit for maintenance 
planning is 1 DY; 

- The cumulative duration of an aircraft can be 
measured in terms of FH, FC, and DY; 

- The cumulative duration of each aircraft can 
be determined by the data provided by the 
airline or can be estimated using historical 
data; 

- The time taken for each check may be 
determined by the airline or may be estimated 
using historical data or common conventions; 

- There are 4 slots per day to perform an A/C-
check; 

- Each A/C-check uses only one hangar slot 
during the total check time; 

- C-check has a higher priority than A-check; 

- A-check can be merged in C-check without 
increasing the time of C-check or taking up a 
slot. 

Indeed, maintenance times can fluctuate 
throughout the year due to various factors. During 
peak commercial seasons, such as the New Year, 
Lunar New Year, holidays, and summer periods, the 
volume of maintenance work tends to decrease 
significantly. In some cases, even heavy maintenance 
tasks may be deferred during these periods. This 
adjustment is made to accommodate increased 
operational demands and to minimize disruptions to 
flight schedules during peak travel times. 

The priority given to C-check planning is 
underscored by two primary reasons. Firstly, it 
pertains to the feasibility of merging checks. When 
scheduling an A-check, the precise start and end dates 
of the upcoming C-check are considered to determine 
if merging is viable. Secondly, the duration of the              
C-check, which typically spans several weeks, 
significantly influences the scheduling of the A-check. 
This is because the accumulated parameters for the              
A-check do not increase while the aircraft undergoes 
the C-check, as it remains grounded for inspection. 
Therefore, the timing and duration of the C-check 
directly impact the scheduling of subsequent                        
A-checks. 

Maintenance checks have a cycle of several 
months or years, while the airline only plans to operate 
the aircraft for a short time, so the geographical 
location of the aircraft does not need to be considered. 
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2.2. Mathematical Formulas and Constraint 
Conditions 

The mathematical formulas for the problem are 
generated based on the problem determined in Section 
2.1. The following symbols are used in mathematical 
formulas: 

- 𝑎𝑎ℎ,𝑡𝑡
𝑘𝑘  is a binary variable to indicate if k check 

can be performed in hangar h on day t, 

- 𝐶𝐶𝑡𝑡𝑘𝑘 binary variable to indicate if there is enough 
hangar capacity to schedule k check of aircraft 
i on day t, 

- 𝐷𝐷𝐷𝐷𝑖𝑖 ,𝑡𝑡𝑘𝑘  ,𝐹𝐹𝐹𝐹𝑖𝑖,𝑡𝑡𝑘𝑘  and 𝐹𝐹𝐶𝐶𝑖𝑖,𝑡𝑡𝑘𝑘  correspond to the 
cumulative usages in DY, FH, and FC, 
respectively, of aircraft i on day t for k check, 

- 𝜏𝜏𝑖𝑖,𝑘𝑘𝐷𝐷𝐷𝐷, 𝜏𝜏𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 and 𝜏𝜏𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹  correspond to the tolerance 
used in the last type k check of aircraft i, with 
respect to the same three metrics, 

- 𝐷𝐷𝑖𝑖𝑘𝑘  is the next due date for type k check of 
aircraft i, that is, the day in which the respective 
interval is reached, 

- 𝑢𝑢𝑖𝑖𝑘𝑘 is the next due date for type k check of 
aircraft i using the tolerance, 

- 𝑦𝑦𝑖𝑖𝑘𝑘 is the ending day of the last type k check for 
aircraft i, 

- 𝑧𝑧𝑖𝑖𝑘𝑘 is the scheduled day of the next type k check 
for aircraft i,  

- 𝑔𝑔𝑖𝑖,𝑡𝑡𝑘𝑘  is a binary variable to indicate if aircraft i is 
grounded on day t performing k check, 

- 𝑅𝑅𝑖𝑖,𝑡𝑡𝑘𝑘  is a binary variable to indicate if there is  k 
check starting on day t for aircraft i , 

- 𝐿𝐿𝑖𝑖𝑘𝑘 is the duration (in working days) of the next 
type k check for aircraft i , 

- 𝛿𝛿𝑖𝑖 is the amount of FH lost in the last scheduled 
check of aircraft i , 

- 𝜇𝜇𝑘𝑘 is minimum number of DY between the start 
of two type k checks , 

- 𝑎𝑎ℎ,𝑡𝑡
𝑘𝑘  is variable to indicate if k check can be 

performed in hangar h on day t , 

- 𝐼𝐼𝑖𝑖,𝑘𝑘𝐷𝐷𝐷𝐷 is interval of type k check of aircraft i in 
DY, 

- 𝐼𝐼𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹  is interval of type k check of aircraft i in 
FH, 

- 𝐼𝐼𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹  is interval of type k check of aircraft i in FC. 

From the considered conditions, we will have the 
following mathematical formulas. Certain conditions 
must be determined to select the date to schedule the 
check. 

The first is that the hangar is required for the 
duration of the inspection. We determine the capacity 
of a specific hangar as follows: 

𝑎𝑎ℎ,𝑡𝑡
𝑘𝑘 = �

1, 𝑖𝑖𝑖𝑖 ℎ𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎𝑎𝑎 ℎ 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑓𝑓𝑎𝑎 
𝑡𝑡𝑦𝑦𝑡𝑡𝑎𝑎 𝑘𝑘 𝑓𝑓𝑎𝑎 𝑑𝑑𝑎𝑎𝑦𝑦 𝑡𝑡

0, 𝑓𝑓𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑎𝑎
 (1) 

This variable is used to calculate whether there 
are enough aircraft slots for k check of aircraft i on a 
particular day t and for the duration of the check: 

𝐶𝐶𝑡𝑡𝑘𝑘 =

⎩
⎨

⎧
1, 𝑖𝑖𝑖𝑖 𝐿𝐿𝑖𝑖𝑘𝑘 − � 𝑎𝑎𝑡𝑡′

𝑘𝑘

𝑡𝑡+𝐿𝐿𝑖𝑖
𝑘𝑘

𝑡𝑡′=𝑡𝑡

= 0

0, 𝑓𝑓𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑎𝑎

 (2) 

where t is the candidate's scheduled check date.  

The minimum number of days between the start 
dates of two consecutive type k checks, 𝜇𝜇𝑘𝑘 (under the 
conditions set forth by the airline which is 𝜇𝜇𝑘𝑘 = 3), is 
a second requirements. 𝑅𝑅𝑖𝑖,𝑡𝑡𝑘𝑘  can be used to calculate the 
total number of checks beginning in the range 
[𝑡𝑡 − 𝜇𝜇𝑘𝑘 , 𝑡𝑡 + 𝜇𝜇𝑘𝑘] (aslo [𝑡𝑡 − 3, 𝑡𝑡 + 3]), where t is the 
candidate day for scheduling the check. If this sum 
equals zero, k check for aircraft i can be scheduled for 
day t: 

𝑅𝑅𝑡𝑡𝑘𝑘 = �1, 𝑖𝑖𝑖𝑖 �� � 𝑅𝑅𝑖𝑖,𝑡𝑡′
𝑘𝑘

𝑡𝑡+3

𝑡𝑡′=𝑡𝑡−3

�
𝑖𝑖

= 0

0, 𝑓𝑓𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑎𝑎

 (3) 

This spacing condition only applies to C checks. 

With (2) and (3), we can choose the date to 
schedule the next check for type k check of aircraft i, 
defined by the variable 𝑐𝑐𝑖𝑖𝑘𝑘: 

𝑐𝑐𝑖𝑖𝑘𝑘 = 𝑚𝑚𝑎𝑎𝑚𝑚

⎩
⎨

⎧ �𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚𝑅𝑅𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚
𝑘𝑘 𝐶𝐶𝑖𝑖,𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚

𝑘𝑘 �,

�(𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 + 1)𝑅𝑅𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚+1
𝑘𝑘 𝐶𝐶𝑖𝑖,𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚+1

𝑘𝑘 � , … ,

�𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘 𝐶𝐶𝑖𝑖,𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘 � ⎭
⎬

⎫
 (4) 

where 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑦𝑦𝑖𝑖𝑘𝑘 and 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐷𝐷𝑖𝑖𝑘𝑘. We shall, of course, 
strive to avoid employing tolerances in the scheduling 
process. So, the goal of (4) is to select a date as near to 
the due date as possible to reduce the quantity of 
underutilized FH aboard the airplane. 

If the value of 𝑐𝑐𝑖𝑖𝑘𝑘 = 0, then there are no possible 
days to schedule the check before the due date. This 
can occur when there is insufficient hangar availability 
and/or when the spacing requirement between checks 
is not followed. The tolerance can be utilized in this 
scenario, and the check scheduled day is defined using: 

𝑐𝑐𝑖𝑖𝑘𝑘 = 𝑚𝑚𝑎𝑎𝑚𝑚

⎩
⎪
⎨

⎪
⎧�(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 + 1 − 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚)𝑅𝑅𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚

𝑘𝑘 𝐶𝐶𝑖𝑖,𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚
𝑘𝑘 �,

�
(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 + 1 − 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 + 1)

𝑅𝑅𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚+1
𝑘𝑘 𝐶𝐶𝑖𝑖,𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚+1

𝑘𝑘 � , … ,

�
(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 + 1 − 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚)

𝑅𝑅𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘 𝐶𝐶𝑖𝑖,𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘 �
⎭
⎪
⎬

⎪
⎫

  (5) 
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where 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐷𝐷𝑖𝑖𝑘𝑘 ; 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑢𝑢𝑖𝑖𝑘𝑘; 𝐶𝐶𝑖𝑖,𝑡𝑡𝑘𝑘  is variable to 
indicate if there is enough hangar capacity to schedule 
k check of aircraft i on day t. Similarly, the purpose is 
to select a day as close to the check due date as 
feasible, but this time with the goal of lowering the 
amount of tolerance utilized. 

Now that a new type k check for aircraft i has 
been scheduled, we can schedule 𝑦𝑦𝑖𝑖𝑘𝑘 on the last day of 
this recently scheduled check: 

𝑦𝑦𝑖𝑖𝑘𝑘 = 𝑐𝑐𝑖𝑖𝑘𝑘 + 𝐿𝐿𝑖𝑖𝑘𝑘  (6) 

The amount of FH that is lost because of this 
scheduling, defined as 𝛿𝛿𝑖𝑖, can be computed with: 

𝛿𝛿𝑖𝑖 = �𝑖𝑖𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 − 𝐹𝐹𝐹𝐹𝑖𝑖,𝑡𝑡𝑘𝑘 � (7) 

As a result, on day 𝑦𝑦𝑖𝑖𝑘𝑘 + 1, the cumulative 
utilization attributes of aircraft i, 𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡𝑘𝑘  (cumulative DY 
of aircraft i on day t since its last type k check),
𝐹𝐹𝐹𝐹𝑖𝑖,𝑡𝑡𝑘𝑘  (cumulative FH of aircraft i on day t since its last 
type k check ) and 𝐹𝐹𝐶𝐶𝑖𝑖,𝑡𝑡𝑘𝑘  (cumulative FC of aircraft i on 
day t since its last type k check) are set to 0. The next 
check, 𝐿𝐿𝑖𝑖𝑘𝑘 (next type k check duration, in DY, of 
aircraft i), is updated based on a lookup table 
containing the duration of future checks set by the 
airline. 

The final stage is determining the new due date 
for k check. To begin, we must update the amount of 
tolerance utilized in the previous type k check, which 
must be subtracted from the following interval: 

𝜏𝜏𝑖𝑖,𝑘𝑘𝐷𝐷𝐷𝐷 = 𝑚𝑚𝑎𝑎𝑚𝑚�0,𝐷𝐷𝐷𝐷𝑖𝑖 ,𝑡𝑡𝑘𝑘 − �𝐷𝐷𝑖𝑖𝑘𝑘 − 𝑦𝑦𝑖𝑖𝑘𝑘� � (8) 

𝜏𝜏𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 = 𝑚𝑚𝑎𝑎𝑚𝑚�0,𝐹𝐹𝐹𝐹𝑖𝑖,𝑡𝑡𝑘𝑘 − �𝐷𝐷𝑖𝑖𝑘𝑘 − 𝑦𝑦𝑖𝑖𝑘𝑘�  × 𝑖𝑖ℎ𝑖𝑖� (9) 

𝜏𝜏𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 = 𝑚𝑚𝑎𝑎𝑚𝑚�0,𝐹𝐹𝐶𝐶𝑖𝑖,𝑡𝑡𝑘𝑘 − �𝐷𝐷𝑖𝑖𝑘𝑘 − 𝑦𝑦𝑖𝑖𝑘𝑘�  × 𝑖𝑖𝑐𝑐𝑖𝑖� (10) 

where 𝑖𝑖ℎ𝑖𝑖 and 𝑖𝑖𝑐𝑐𝑖𝑖  correspond to the average daily 
utilization of aircraft i estimated by the airline in FH 
and FC, respectively, and 𝑡𝑡 = 𝑐𝑐𝑖𝑖𝑘𝑘. 𝜏𝜏𝑖𝑖,𝑘𝑘𝐷𝐷𝐷𝐷 is tolerance used 
in the last type k check of aircraft i in DY; 𝜏𝜏𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 is 
tolerance used in the last type k check of aircraft i in 
FH; 𝜏𝜏𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹  is tolerance used in the last type k check of 
aircraft i in FC; 𝐷𝐷𝑖𝑖𝑘𝑘  is next type k check due date of 
aircraft i; 𝑦𝑦𝑖𝑖𝑘𝑘 is end day of the last type k check of 
aircraft i; 𝑅𝑅𝑖𝑖,𝑡𝑡𝑘𝑘  is variable to indicate if there is k check 
starting on day t for aircraft i; 𝑅𝑅𝑡𝑡𝑘𝑘 is variable to indicate 
if there is enough space between type k checks when k 
check is scheduled on day t. 

We must also examine the number of days the 
aircraft is grounded, and its utilization remains 
unchanged. For example, if a C-check is planned after 
the last A-check, the grounded days used to complete 
the C-check do not count toward calculating the next 
A-check due date. We define the day when the interval 
for the next type k check is reached as 𝑑𝑑𝑖𝑖,𝑘𝑘𝐷𝐷𝐷𝐷,𝑑𝑑𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 and 
𝑑𝑑𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 , for each usage metric, without considering 

aircraft ground time: 

𝑑𝑑𝑖𝑖,𝑘𝑘𝐷𝐷𝐷𝐷 = 𝑦𝑦𝑖𝑖𝑘𝑘 + 𝐼𝐼𝑖𝑖,𝑘𝑘𝐷𝐷𝐷𝐷 − 𝜏𝜏𝑖𝑖,𝑘𝑘𝐷𝐷𝐷𝐷 (11) 

𝑑𝑑𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 = 𝑦𝑦𝑖𝑖𝑘𝑘 +
𝐼𝐼𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 − 𝜏𝜏𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹

𝑖𝑖ℎ𝑖𝑖
  (12) 

𝑑𝑑𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 = 𝑦𝑦𝑖𝑖𝑘𝑘 +
𝐼𝐼𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 − 𝜏𝜏𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹

𝑖𝑖𝑐𝑐𝑖𝑖
  (13) 

where 𝐼𝐼𝑖𝑖 ,𝑘𝑘𝐷𝐷𝐷𝐷, 𝐼𝐼𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹  and 𝐼𝐼𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹  represent the type k check 
intervals in DY, FH, and FC, respectively. 

As a result, the due date of the next type k check 
is defined with: 

𝐷𝐷𝑖𝑖𝑘𝑘 = 𝑚𝑚𝑖𝑖𝑎𝑎

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
𝑑𝑑𝑖𝑖,𝑘𝑘𝐷𝐷𝐷𝐷 + � �𝑔𝑔𝑖𝑖,𝑡𝑡𝑘𝑘

𝑘𝑘

𝑑𝑑𝑖𝑖,𝑘𝑘
𝐷𝐷𝐷𝐷

𝑡𝑡=𝑦𝑦𝑖𝑖
𝑘𝑘

,

𝑑𝑑𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 + � �𝑔𝑔𝑖𝑖,𝑡𝑡𝑘𝑘

𝑘𝑘

𝑑𝑑𝑖𝑖,𝑘𝑘
𝐹𝐹𝐹𝐹

𝑡𝑡=𝑦𝑦𝑖𝑖
𝑘𝑘

,

𝑑𝑑𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 + � �𝑔𝑔𝑖𝑖,𝑡𝑡𝑘𝑘

𝑘𝑘

𝑑𝑑𝑖𝑖,𝑘𝑘
𝐹𝐹𝐹𝐹

𝑡𝑡=𝑦𝑦𝑖𝑖
𝑘𝑘

 
⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

  (14) 

This is the due date on which the first usage 
interval is reached after adding the aircraft ground time 
since the last type k check. 

When the tolerance is employed, the final 
characteristic to be calculated is the due date for the 
next k check, 𝑢𝑢𝑖𝑖𝑘𝑘: 

𝑢𝑢𝑖𝑖𝑘𝑘 = 𝑚𝑚𝑖𝑖𝑎𝑎 �𝐷𝐷𝑖𝑖𝑘𝑘 + 𝜃𝜃𝑖𝑖,𝑘𝑘𝐷𝐷𝐷𝐷,𝐷𝐷𝑖𝑖𝑘𝑘 +
𝜃𝜃𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹

𝑖𝑖ℎ𝑖𝑖
,𝐷𝐷𝑖𝑖𝑘𝑘 +

𝜃𝜃𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹

𝑖𝑖𝑐𝑐𝑖𝑖
�   (15) 

where 𝜃𝜃𝑖𝑖,𝑘𝑘𝐷𝐷𝐷𝐷, 𝜃𝜃𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 and 𝜃𝜃𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 , are the maximum tolerances 
that are allowed for k check, with respect to DY, FH, 
and FC, respectively. 

2.3. Problem Constraints 

There are numerous limits in check planning, 
some of which have been discussed in previous 
sections. One of the most critical requirements for this 
challenge is that the aircraft usage conditions 
associated with each type of inspection never exceed 
the maximum permitted level. This maximum 
represents the overall inspection period with a fixed 
tolerance, less the amount of tolerance used in the 
previous inspection. This constraint can be built for 
each metric using the three equations below:  

𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡𝑘𝑘 ≤ 𝐼𝐼𝑖𝑖,𝑘𝑘𝐷𝐷𝐷𝐷 + 𝜃𝜃𝑖𝑖,𝑘𝑘𝐷𝐷𝐷𝐷 − 𝜏𝜏𝑖𝑖,𝑘𝑘𝐷𝐷𝐷𝐷  (16) 

𝐹𝐹𝐹𝐹𝑖𝑖,𝑡𝑡𝑘𝑘 ≤ 𝐼𝐼𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 + 𝜃𝜃𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 − 𝜏𝜏𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹  (17) 

𝐹𝐹𝐶𝐶𝑖𝑖,𝑡𝑡𝑘𝑘 ≤ 𝐼𝐼𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 + 𝜃𝜃𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹 − 𝜏𝜏𝑖𝑖,𝑘𝑘𝐹𝐹𝐹𝐹   (18) 
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It is also critical to ensure that the number of 
checks taking place at the same time each day does not 
exceed the allotted hangar slots: 

��𝑔𝑔𝑖𝑖,𝑡𝑡𝑘𝑘 ≤�𝑎𝑎ℎ,𝑡𝑡
𝑘𝑘 ,   

ℎ𝑖𝑖𝑡𝑡
      𝑡𝑡 ∈ {𝑡𝑡0, … ,𝑇𝑇},     𝑖𝑖 ∈ {1, … ,𝑁𝑁} (19)

 

where 𝑔𝑔𝑖𝑖,𝑡𝑡𝑘𝑘  and 𝑚𝑚ℎ,𝑡𝑡
𝑘𝑘  are the variables mentioned above. 

Finally, we create a constraint based on the 
minimum number of days between the commencement 
of two consecutive k-type checks (in this case, 3 days 
for type C-check, with no such condition for A-check): 

� � 𝑅𝑅𝑖𝑖,𝑡𝑡𝑘𝑘 ,≤ 1,
𝑡𝑡+3

𝑡𝑡′=𝑡𝑡−3𝑖𝑖
     𝑡𝑡 ∈ {𝑡𝑡0, … ,𝑇𝑇},     𝑖𝑖 ∈ {1, … ,𝑁𝑁} (20)

 

where 𝑅𝑅𝑖𝑖,𝑡𝑡𝑘𝑘  is a binary variable to indicate whether there 
was k check starting on day t for aircraft i. 

2.4. Objective Function 

One of the primary objectives of this paper is cost 
reduction. Reducing the fleet's underutilized FH is the 
best approach to achieve this goal in a long-term 
maintenance scheduling dilemma. In the long term, 
this leads to fewer planned checks, which can have a 
big effect because every day the airline is not operating 
costs a lot of money. We can determine the cost of 
selecting action 𝑚𝑚𝑗𝑗 on state 𝑖𝑖𝑗𝑗, 𝐶𝐶𝑗𝑗�𝑖𝑖𝑗𝑗 , 𝑚𝑚𝑗𝑗�, at each stage 
of the scheduling process using the following formula: 

𝐶𝐶𝑗𝑗�𝑖𝑖𝑗𝑗 , 𝑚𝑚𝑗𝑗�  = � 𝛿𝛿𝑖𝑖, 𝑖𝑖𝑖𝑖 𝛿𝛿𝑖𝑖 ≥ 0
−𝛿𝛿𝑖𝑖𝑃𝑃, 𝑖𝑖𝑖𝑖 𝛿𝛿𝑖𝑖 < 0 (21) 

where P is a penalty for using the tolerance, 𝛿𝛿𝑖𝑖 is 
the unused FH from the last planned check of aircraft 
i, and i is the chosen aircraft. 

min
𝜋𝜋

Ε��𝐶𝐶𝑗𝑗 �𝑖𝑖𝑗𝑗 ,𝑋𝑋𝜋𝜋�𝑖𝑖𝑗𝑗��
𝑗𝑗

𝑗𝑗=0

� 

               

      (22) 

Equation (22) can serve as the foundation for 
determining the objective function, which aims to 
minimize costs. In this context, 𝑋𝑋𝜋𝜋�𝑖𝑖𝑗𝑗� represents the 
ideal scheduling policy function. This function guides 
the selection of the optimal action in each state, 
ultimately leading to a reduction in costs. 

3. Problem Solving Methods 

3.1. Reinforcement Learning 

In the field of Reinforcement Learning (RL), 
machines acquire task-solving abilities by engaging 
with the environment, executing actions, and making 
optimal decisions based on the rewards associated with 
each action [6]. This process mirrors the way humans 
learn, as it involves trial and error interactions with the 
environment to determine the most effective strategies. 

The diagram in Fig 1 describes how RL works, 
but before we get into a more detailed explanation, let's 
get acquainted with some of the terminology used 
here:  

 
Fig. 1. Interaction of RL components 

- Environment is the space where the machine 
interacts; 

- Agent (machine) a subject that interacts with 
the environment through actions; 

- Policy is the policy that the machine uses to 
take action; 

- State describes the current state of the agent; 

- Reward reward from the environment 
corresponding to the action performed; 

- Action is what the agent can do. 

A complete framework known as Markov 
Decision Processes (MDPs) is shown in the above 
graphic. In essence, a mathematical framework for 
simulating decision-making scenarios is offered by an 
MDP. In this case, some of the results are random, and 
the remainder are determined by the decisions made 
earlier by the agent. The decision maker's reward is 
contingent upon the course of action selected, 
considering both the current (𝑆𝑆𝑡𝑡+1) and previous 𝑆𝑆𝑡𝑡  
environmental situations. 

The objective is to identify the best course of 
action that will maximize the expected goal, or 𝑅𝑅𝑡𝑡. 
This reward can be calculated using the following 
formula, which equates to the total reward discounted 
over time: 

𝑉𝑉(𝑖𝑖) = max
𝑚𝑚
�𝑅𝑅(𝑖𝑖, 𝑎𝑎) + 𝛾𝛾𝑉𝑉(𝑖𝑖′)�  (23) 

In which, 

- 𝑖𝑖 is A specific state 

- 𝑎𝑎 is An action performed by the agent 

- 𝑖𝑖′ is Previous state  

- 𝛾𝛾 is Discount factor (we will learn below) 

- 𝑅𝑅(𝑖𝑖, 𝑎𝑎) is Reward function with variable state 
s and action and returns the value of the 
reward as the result. 

- 𝑉𝑉(𝑖𝑖) is value at a specific state 
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The max function assists the agent in determining 
the best course of action, while the discount factor γ 
helps the agent determine how far away the goal is. 
The function may still introduce a slight probability of 
confusion for the agent in situations where multiple 
options are available for selection. In such cases, the 
decision-making process is both regulated and 
stochastic, posing a challenge. The randomness arises 
from the uncertainty of when the agent might 
encounter confusion, yet it remains controlled as it 
adheres to established strategies. However, with minor 
modifications, this concept can be applied to refine the 
function: 

𝑉𝑉(𝑖𝑖) = max
𝑚𝑚

�𝑅𝑅(𝑖𝑖, 𝑎𝑎) + 𝛾𝛾�𝑃𝑃(𝑖𝑖, 𝑎𝑎, 𝑖𝑖′)
𝑠𝑠′

𝑉𝑉(𝑖𝑖′)�  (24) 

3.2. Q-Learning 

The Q-Learning model is like the process 
mentioned above. However, instead of making 
decisions about actions based on the value of states 
V(s), Q-Learning focuses more on evaluating the 
quality of an action Q (s, a). From above we have the 
(24): 

𝑉𝑉(𝑖𝑖) = max
𝑚𝑚

�𝑅𝑅(𝑖𝑖, 𝑎𝑎) + 𝛾𝛾�𝑃𝑃(𝑖𝑖, 𝑎𝑎, 𝑖𝑖′)
𝑠𝑠′

𝑉𝑉(𝑖𝑖′)� (25) 

In this formulation we are interested in all states 
and all possible actions. So when we remove the max 
function, we will get the equation R(s,a)+γ∑s′
P(s,a,s′)V(s′) and consider it as the value of a created 
state out for only one possible action. We will take this 
equation as the action evaluation equation 𝑄𝑄(𝑖𝑖, 𝑎𝑎) as 
follows: 
𝑄𝑄(𝑖𝑖, 𝑎𝑎) = 𝑅𝑅(𝑖𝑖, 𝑎𝑎) + 𝛾𝛾�𝑃𝑃(𝑖𝑖, 𝑎𝑎, 𝑖𝑖′)

𝑠𝑠′
𝑉𝑉(𝑖𝑖′) (26) 

To minimize concurrent calculations and ensure 
uniformity, further enhancements can be made to 
refine the equation: 

𝑄𝑄(𝑖𝑖, 𝑎𝑎) = 𝑅𝑅(𝑖𝑖, 𝑎𝑎) +

𝛾𝛾�𝑃𝑃(𝑖𝑖, 𝑎𝑎, 𝑖𝑖′)
𝑠𝑠′

max
𝑚𝑚′

𝑄𝑄(𝑖𝑖′, 𝑎𝑎′) (27) 

The reason we replace 𝑉𝑉(𝑖𝑖) with 𝑚𝑚𝑎𝑎𝑚𝑚𝑄𝑄(𝑖𝑖, 𝑎𝑎) is 
that here, we consider the value of a state to be 
calculated as the largest possible value of 𝑄𝑄(𝑖𝑖, 𝑎𝑎). The 
values calculated from this formula are called                
Q-values and the agent will learn to calculate Q-values 
itself and take actions based on these values. Above we 
have understood how agents make choices based on   
Q-values, so now let's come to the final part, which is 
how agents can calculate Q-values themselves.  

3.3. Deep Q-Learning 

RL is experiencing tremendous growth thanks to 
the development of new algorithms that allow for 
solving more complex problems. In this field, 

complexity is directly related to dimensionality. 
Classical RL algorithms may not be sufficient to 
manage large state and action spaces. The 
dimensionality problem can be solved effectively 
thanks to the remarkable progress of Deep Learning 
(DL) algorithms. DL combined with RL creates a new 
group of algorithms: deep reinforcement learning 
(DRL). DRL methods can be divided into value-based, 
function-based, and policy-based methods. The most 
popular value-function-based method in DRL is Deep 
Q-Network (DQN). This is a version of Q-Learning 
where the value function is not calculated in a table but 
is approximated using an Artificial Neural Network 
(ANN). The Fig. 2 shows the basic architecture of 
DQN. 

The limitation of Q-learning is that if the state is 
too large, it will take a lot of space to store the Q-table 
and slow down the learning time because, during the 
learning process, the Q-table is accessed continuously. 
To avoid overfitting, here we will use two neural 
networks: the main network, called the action-value 
network, and a secondary network, called the target 
action-value network. We will create two deep 
learning networks. We use the first network to derive 
the Q-values, while the second network contains all the 
updates during training. After 100,000 updates, we 
will synchronize. The goal is to keep the interim target 
Q-values constant, so we won't have any variable 
targets to follow. Also, parameter changes will not 
affect the results immediately, and thus, even though 
the inputs may not be 100% independent and 
identically distributed, they will not bias the results as 
mentioned before. 

Another problem with DQN is catastrophic 
forgetting. To reduce this problem, we will use 
experience replay. We put the last million 
transformations into a buffer and retrieved a small set 
of samples of size 32 from this buffer to train the deep 
learning network. This creates an input data set that is 
stable enough to train a neural network. When we 
randomly sample from the playback buffer, the data 
will be more independent of each other and will ensure 
independence and equal distribution.  

 
Fig. 2. DQN architecture 
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This method uses a ‘prediction network’, a 
‘target network’ and a ‘memory replay’ to obtain a loss 
function that will be used to train the prediction 
network. This function can be defined by the following 
function: 

𝐿𝐿(𝜃𝜃) = �
𝑎𝑎 +

𝛾𝛾max
𝑚𝑚′

𝑄𝑄(𝑖𝑖′, 𝑎𝑎′,𝜃𝜃𝑡𝑡𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) − 𝑄𝑄(𝑖𝑖, 𝑎𝑎, 𝜃𝜃)�
2

(28) 

4. Experimental Setup 

4.1. Fundamental Setup 

The created Deep Q-learning algorithm is 
described in this section, with particular attention paid 
to the RL components and the algorithm parameters. 
In addition, it displays the actual maintenance dataset 
obtained from Vietnam Airlines, which simulates and 
depicts real-world circumstances. 

In this problem, we propose a Deep Q-learning 
algorithm to optimize the long-term check planning 
problem. The Fig 3 shows the general workflow of the 
planning process. At each decision step, the RL agent 
selects an aircraft i and checks the next type k for that 
aircraft scheduled on the available date closest to its 
due date. As mentioned earlier C-check is scheduled 
first to deal with cases where two types of A and                   
C-check are combined. Then, the due date for the next 
type k check is calculated and communicated. The 
necessary aircraft information will be updated.  

 
Fig. 3. General workflow of the check scheduling 
process. 

Using experience playback, the agent is trained, 
and a 𝜀𝜀-greedy approach is used to control the amount 
of exploration. The agent will always give priority to 
exploration since, in the first episode, 𝜀𝜀 equals 1. From 
0.01 to every episode, this value decays at a linear 
pace. 

Furthermore, the Double Q-learning method, as 
described in [8], employs a double estimator approach 
to compute the value of the next state. This method 
mitigates the overestimation often encountered in 
action values, constituting its primary advantage. By 
incorporating an additional network—the target 
network—in conjunction with the online network to 
compute action values [9], this approach ensures more 
accurate estimations. While the online network is 

responsible for selecting actions and estimating their 
values, its weights are periodically updated with those 
of the target network to refine its performance. 

Initially, the replay memory is initialized as an 
empty queue. As detailed in Section 3.3, the agent's 
experiences are recorded in the replay memory and 
utilized for model training. Xavier initialization is 
employed to initialize both the target and online 
networks [10]. Each episode commences with the 
current state set to the initial state. Subsequently, 
actions are selected for each step with a predetermined 
probability, either randomly or greedily. Each action 
corresponds to selecting a specific aircraft, as 
previously mentioned. The selected action is then 
executed, scheduling the corresponding aircraft's 
subsequent check. The replay memory computes and 
stores the reward and the ensuing state, while the 
current state transitions to the next state. For a 
minibatch sampled from the replay memory, the target 
value and associated loss are calculated and utilized to 
train the online network. The minimum loss is 
determined as the squared difference between the 
target value and the predicted value. Finally, the 
weights of the target network are updated by 
substituting them with those from the online network. 

The amount of FH lost during the check 
scheduling determines the agent's reward. Equation 
(29) provides a definition for the reward function: 

𝑅𝑅 = �
𝑖𝑖ℎ𝑖𝑖(𝑧𝑧 − 𝐷𝐷), 𝑖𝑖𝑖𝑖 0 ≤ 𝑐𝑐 ≤ 𝐷𝐷

10𝑖𝑖ℎ𝑖𝑖(𝐷𝐷 − 𝑧𝑧), 𝑖𝑖𝑖𝑖 0 ≤ 𝐷𝐷 < 𝑐𝑐
−105, 𝑖𝑖𝑖𝑖 𝑧𝑧 = −1

               (29)  

where 𝑖𝑖ℎ𝑖𝑖 is the average daily utilization of aircraft i 
in FH, c is the check's start day, and D is its due date. 
Three conditions that correspond to three agent penalty 
levels are present in the function. The FH lost when the 
check is scheduled without using the tolerance is the 
condition that corresponds to the smallest penalty, or 
the first condition. To penalize the agent more for 
using the tolerance, the second one is equal to the 
amount of FH that is used multiplied by ten. The last 
condition, which carries the highest penalty, simulates 
a situation in which the check was not planned. 

Grid search methodology was employed to 
determine the neural network architecture and 
hyperparameters for the Deep Q-learning algorithm. 
Various values were systematically defined and tested 
individually for each parameter to identify the optimal 
configuration. The selected network architecture 
consists of a multilayer perceptron with two fully 
connected hidden layers, each comprising 200 
neurons. The chosen optimizer is the Adam optimizer, 
and the sigmoid activation function is utilized for both 
hidden layers [11]. Details of the remaining 
hyperparameters can be found in Table 1.  
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Table 1. Hyperparameters for the Deep Q-learning 
algorithm 

Hyperparameter Value Description 
Episodes 200 Total number of 

training episodes 
Max steps 10000 Maximum number 

of agent steps per 
episode 

Replay memory 
size 

100000 Size of the queue 
containing the agent 
experience 

Batch size 032 Number of samples 
taken from replay 
memory 

Discount factor 0.99 Discount factor of 
future rewards 

Learning rate 0.0001 Learning rate used 
by the optimizer 

Initial 𝜖𝜖 1 Initial value for 
exploration 

Final 𝜖𝜖 0.01 Final value for 
exploration 

Target update 10000 Step frequency to 
update the target 
network 

4.2. Check Cases and Computational Experiments 

With 45 aircraft from the Airbus A320 series 
(A320 and A321), the test case reflects an actual 
maintenance scenario. Table 2 shows the A/C-check 
interval and tolerances that are common to all aircraft.  

Table 2. A/C-check interval and tolerance for the 
Airbus A320 and A321. 

 Calendar 
Days 

Flight 
Hours 

Flight 
Cycles 

A-check interval 40 250 250 
A-check tolerance 4 25 25 
C-check interval 730 7500 5000 
C-check tolerance 60 500 250 

The airline specifies that the duration of C-checks 
for each aircraft is 15 calendar days, while A-checks 
are consistently valid for one calendar day. Regarding 
the minimum interval between the start dates of two 
consecutive checks of the same type, denoted as 𝜇𝜇𝑘𝑘, it 
is set to three days for C-checks and zero days for                  
A-checks. Additionally, estimates for aircraft usage 
are provided in the dataset, indicating that an aircraft 
consumes an average of 10.5 flight hours (FH) and 
undergoes 7 flight cycles (FC) per day. 

In addition to the specified maintenance 
durations for A/C checks, it's noted that during peak 
business periods, the C-check operations are 

temporarily suspended. These high-demand periods 
include the summer season, spanning from June 1 to 
September 30. Furthermore, data pertaining to the 
fleet's initial condition, specifically the duration since 
each aircraft's previous A and C-check, is provided. 

The primary objective in this scenario is to 
identify the optimal long-term scheduling solution for 
A/C-checks. The timeframe for analysis spans from 
January 03, 2020, to January 04, 2024. To evaluate the 
efficacy of our approach, a comparison will be made 
between the RL solution and the airline's actual 
operational data.  

5. Results and Discussion 

The outcomes of test scenarios are shown in this 
section. The following are a set of Key Performance 
Indicators (KPIs) that are defined to assess the calibre 
of the maintenance plan that is generated:  

- the total number of A and C-checks that are 
planned for the full horizon,  

- the average FH between two subsequent 
checks that are A and C, 

- the number of A and C-checks are planned 
based on the tolerance, and  

- the number of A-checks merged into                         
C-checks.  

Since they can all affect maintenance costs, 
which airlines try to keep as low as possible, these 
KPIs are all important to consider when assessing the 
maintenance plan. The learning process is one of the 
most crucial components of the RL algorithm for 
assessing the agent's performance. Consequently, an 
effective performance indicator is the total of the 
prizes that the agent has earned at the conclusion of 
each training session. 

The outcomes are contrasted with airline 
projections for the same time frame. But since the 
airline only plans A-checks for the following year, the 
A-check metrics were not available to them. The 
approaches are contrasted in Table 3.  

Table 3. Comparison of the A and C-check scheduling 
results between the three approaches under several 
Key Performance Indicators 

KPI Airline Our 
Research 

Total C-checks 94 91 
C-check Average FH 7236 7348.9 
Tolerance Events 0 0 
Total A-checks 2750 2743 
A-check Average FH 230 238.4 
Tolerance Events - 22 
Merged A-checks - 14 
Computation Time ≥ 4 days 954s 
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According to the findings presented in Table 3, 
the results derived from the RL method demonstrate 
notable improvements. Specifically, for C-checks, the 
RL solution has led to an average increase in flight 
hours (FH) by 1.6%. This enhancement signifies a 
boost in daily aircraft operations and overall 
airworthiness of the fleet. Additionally, the total 
number of C-checks has been reduced by a factor of 3, 
indicating a substantial decrease in maintenance 
frequency. Consequently, this reduction in C-check 
frequency is anticipated to result in significant cost 
savings for the airline. Therefore, the utilization of the 
RL approach for managing C-checks yields superior 
outcomes compared to traditional manual maintenance 
planning methods. 

The results indicate that the average operating 
flight hours (FH) for A-checks have improved by 
approximately 3.6% compared to the airline's baseline. 
Moreover, the total number of A-checks has been 
reduced by 7 checks. Additionally, 14 A-checks have 
been effectively merged with C-checks, while 
ensuring that the average operating flight hours (FH) 
remain close to the inspection deadline. This 
demonstrates the successful achievement of the 
objective to minimize unused flight hours (FH). 
Furthermore, the optimization of A-check 
consolidation with C-checks ensures that the average 
exploitation remains higher than that of the airline, 
even after consolidation. 

From an economic standpoint, considering that 
the average airline incurs costs ranging from 70 
thousand USD to 350 thousand USD for C-checks and 
between 10 thousand USD and 15 thousand USD for 
A-checks [1], the aforementioned results offer 
significant potential for cost savings. Specifically, the 
improvements achieved through the RL-based 
maintenance planning approach can lead to estimated 
cost savings ranging from 280 thousand USD to 1.2 
million USD for the A320/A321 family fleet. 

Table 4. Amount of money saved after optimization 

 
 
 

Table 5. Additional revenue after optimization 

 
Additional 
operation 

days 

Revenue 
/day 

(USD) 

Additional 
revenue 
(USD) 

C-check 30 - 45 75,000-
120,000 

2,250,000-
5,400,000 

A-check 7 75,000-
120,000 

525,000-
840,000 

Total 37 - 52 75,000-
120,000 

2,775,000-
6,240,000 

Since it takes approximately 10 to 15 days to 
complete a C-check and 1 day for an A-check,                           
3 C-checks and 7 A-checks are reduced to the 
equivalent of approximately 37 to 52 days for the 
aircraft to be ready for service. exploit. One day of 
operations generates revenue from 75 thousand USD 
to 120 thousand USD [1] and having an additional                
37 to 52 days to use for operational purposes means 
the airline will add revenue from 2.8 million to                     
6.2 million USD thanks to optimizing maintenance 
schedules. 

The RL technique has reduced the time required 
to obtain the ideal schedule from 4 days to just 954 
seconds when compared to VNA's scheduling time for 
aircraft maintenance plans. Airlines can therefore save 
a great deal of time and human resources by 
implementing machine learning techniques to aircraft 
maintenance scheduling. This will increase job 
productivity and result in increased revenue and profits 
for the business. 

The distribution of A and C-check usage levels 
for the entire fleet is shown in Fig 4 to Fig 7 in bet. 
From the results we can see the distribution level of the 
maintenance plan when optimized using the method 
RL tends to focus more on inspection due times. The 
number of A-checks tested in the range of 250FH when 
applying the RL method was 94% higher than that of 
the VNA side. The number of optimized C-checks is 
57% higher. 

 
Fig. 4. Distribution of A-check usages of airline 

 Check 
reduced 

Payment 
amount/check 

(USD) 

Amount of 
savings 
(USD) 

C-check 3 70,000 -             
350,000 

210,000 - 
1,050,000 

A-check 7 10,000 -              
15,000 

70,000 - 
105,000 

Total 10  280,000 - 
1,155,000 
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Fig. 5. Distribution of A-check usages optimal 

 
Fig. 6. Distribution of C-check usages of airline 

 
Fig. 7. Distribution of C-check usages optimal 

There are some checks that must be done in 
advance because of the limited number of hangar slots, 
and the algorithm schedules a C-check several months 
before the due date due to the peak times we need 
them. Avoid performing C-checks in the summer, so 
these checks must be done first to optimize future 
checks. 

From Fig. 4 to Fig. 7, we can see that the 
application of the RL method has resulted in both A 
and C-checks approaching the interval, thereby 
reducing FH loss, and achieving the goal of 
optimization. 

Fig. 8 shows the total reward that the agent 
receives through each episode. Initially, the agent has 
just been learned, so there are no optimal strategies to 
follow, combined with a high discovery rate that leads 

to low rewards. However, as the agent learns a lot 
through each episode and has an optimal policy to 
follow, the reward will increase over time until 
convergence is reached around episode 155. 

 
Fig. 8. Total of the agent's training rewards 

From the picture, we can see that the reward 
value increases suddenly in the first episode. This is 
because when we train the agent to learn, we will 
schedule C-check first and have a "target model" of             
C-check. From there, we use the "target model" of                
C-check to further train the agent when assigned to               
A-check, to help speed up the learning process of              
A-check. So, thanks to the previously optimized 
strategy for C-check, in the first episodes, the reward 
value increases rapidly. In the following episodes, the 
agent continues to explore and try new strategies, but 
the more it tries and learns the optimal arrangement 
methods, the more the reward value increases, 
showing that the agent is learning well. Then, as 
mentioned above, at episode 155, convergence is 
achieved, which means the agent has found the most 
optimal strategy, from which the reward value across 
episodes does not fluctuate a lot. 

6. Conclusion 

To enhance the long-term scheduling of A and  
C-checks for a fleet of aircraft, this study introduced a 
reinforcement learning (RL) approach. The primary 
objective was to maximize the utilization of flight 
hours (FH) through optimized maintenance 
scheduling, thereby increasing aircraft availability. 
The proposed method utilized a Deep Q-learning 
algorithm with experience replay. The RL agent was 
tasked with prioritizing the scheduling of C-checks 
and selecting an aircraft at each decision stage to 
schedule its next inspection on the most favorable day 
available.  

With the results and assessments obtained, we 
see that using the Reinforcement Learning method, in 
more detail, applying the Deep Q-Learning algorithm 
to come up with optimal plans for maintenance work. 
in the engineering industry in general and aviation in 
particular is increasing. Although still in its early 
stages, this method has demonstrated great potential in 
creating optimal maintenance policies and is superior 
to traditional methods. 



  
JST: Smart Systems and Devices 

Volume 34, Issue 2, May 2024, 054-065 

65 

Using data from a fleet of 45 aircraft from three 
sub-fleets (A320, and A321). The RL method yields 
more efficient maintenance plans as compared to 
airline estimates for the same period. The airline will 
benefit financially from reducing the number of 
unused flight hours (FH) over the entire scheduled 
period, thus increasing the operating time of 45 of its 
fleet. In more detail, the method has helped reduce C-
check operations by 3 times, increase the average 
operating flight hours of C-check by 1.6%, reduce A-
check operations by 7 times, increase the average 
operating flight hours of A. -check to 3.6% and merge 
14 A-checks into C-check. 

Despite its considerable relevance, there aren't 
many studies on long-term maintenance issues in 
aviation, which motivates more research on the 
subject. To further expand the research, other factors 
affecting aircraft maintenance scheduling, such as 
resources, tasks to be performed in each type of check, 
etc., will be researched and added to further optimize 
the airlines' working processes. 
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