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Abstract 

This paper presents an innovative control strategy, the Adaptive Fast Terminal Sliding Mode Control 
(AFTSMC), designed for the stability control of an inverted pendulum on a cart. The proposed controller aims 
to stabilize the system within a finite time, leveraging the advantages of fast terminal sliding mode techniques. 
The system’s dynamic model is employed to derive the controller, utilizing an adaptive approach to 
accommodate uncertainties and disturbances. Simulations are conducted to validate the proposed AFTSMC, 
comparing its performance with an Adaptive Sliding Mode Controller under various scenarios. The results 
demonstrate the efficacy of the AFTSMC in achieving stable and precise control, making it a promising solution 
for the challenging dynamics of inverted pendulum systems. 
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1. Introduction1 

The control of an inverted pendulum on a cart 
presents two essential objectives: swing-up and 
stability control. The swing-up task involves 
transitioning the pendulum from hanging to upright, 
while stability control concerns maintaining this 
delicate equilibrium. Achieving both objectives 
demands robust control strategies capable of 
addressing such systems' inherent instability and 
nonlinear dynamics. 

In addressing swing-up control, energy-based 
strategies leverage the system's energy dynamics to 
facilitate a controlled transition to the upright position. 
Methods such as Energy Shaping [1-3], Passivity-
Based Control [4, 5], and Optimal Control Approaches 
[6, 7] offer solutions tailored for managing the 
pendulum's energy distribution. 

In the pursuit of stability control, various 
methodologies have been explored. Proportional-
Integral-Derivative (PID) control [8-10], known for its 
simplicity and widespread application, is often used to 
stabilize systems. However, its effectiveness in 
handling highly nonlinear and uncertain systems might 
be limited. 

Another approach, Linear Quadratic Regulator 
(LQR) control, aims to optimize system performance 
by defining a cost function [10-12]. While offering 
excellent performance under ideal conditions, LQR is 
highly reliant on an accurate system model, making 
it sensitive to model inaccuracies and variations. 
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Another option for stability control of an inverted 
pendulum is Model Predictive Control (MPC), a 
methodology that anticipates future system behaviour 
and manages constraints [13-15]. However, its 
implementation demands substantial computational 
resources and relies heavily on accurate modelling, 
posing challenges for real-time applications. 

Sliding Mode Control (SMC) is another 
significant approach for stability control in an inverted 
pendulum system [16-20]. This control strategy, 
known for its robustness against uncertainties and 
disturbances, presents a compelling solution for 
stabilizing such inherently unstable systems. In the 
context of an inverted pendulum, SMC employs a 
sliding surface to guide the system state, ensuring 
stability even in the presence of uncertainties or 
external disturbances. Its inherent robustness allows 
the system to maintain stability by switching control 
actions, directing the system state towards the defined 
sliding surface. This characteristic makes SMC 
particularly effective for systems prone to 
unpredictable disturbances, a common trait in inverted 
pendulum configurations. 

Emphasizing stability control and leveraging the 
inherent benefits of SMC, this paper presents a 
pioneering method—the Adaptive Fast Terminal 
Sliding Mode Control (AFTSMC). AFTSMC is 
specifically tailored to address stability concerns in 
inverted pendulum-cart systems. Integrating adaptive 
mechanisms with fast terminal sliding mode techniques, 
the proposed AFTSMC aims to enhance the robustness 
of SMC by incorporating adaptability, allowing         
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real-time adjustments in control parameters to 
counteract varying system dynamics or uncertainties. 

The proposed AFTSMC primarily emphasizes 
stability control, aiming to maintain the pendulum in 
an upright position on the cart. While the swing-up 
task remains pivotal for the inverted pendulum system, 
the paper primarily focuses on the stability control 
aspect. The discussion on swing-up serves as a 
contextual foundation, recognizing its importance in 
the broader context of controlling inverted pendulum 
systems. 

The development of AFTSMC strives to combine 
the robustness of SMC with adaptive mechanisms, 
creating a more effective and versatile stability control 
strategy for inverted pendulum systems. The proposed 
AFTSMC approach is anticipated to exhibit superior 
performance in maintaining stability within simulated 
environments compared to traditional SMC-based 
approaches. 

The paper initiates with the following sections 
detailing: the modelling of the inverted pendulum on 
a cart in Section 2, the development of the adaptive 
fast terminal sliding mode control in Section 3, 
presentation of simulation results in Section 4, and 
concludes with a summary and key finding in               
Section 5. 

2. Modelling of the Inverted Pendulum on a Cart 

The configuration of the inverted pendulum on 
a cart, illustrated in Fig. 1, involves a pendulum 
affixed to a cart. Within this setup, pm  (kg) denotes 
the mass of the pendulum, and cm  (kg) represents the 
mass of the cart. The length of the pendulum is 
symbolized as l  (m), where θ  characterizes the 
pendulum's rotational angle from the y -axis in 
radians. The force applied to the cart along the               
x -axis is denoted by u , and g  designates the 
gravitational acceleration vector.  

 
Fig. 1.  Schematic of the inverted pendulum on a cart 
system. 

The coordinates of the pendulum's center, 
denoted as ( , )p px y  are determined as follows: 
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where cx  is the cart position. 

The speed of the pendulum: 
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The kinetic energy of the pendulum is expressed as: 
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where 21
3 pJ m l=  is the equivalent moment of the 

pendulum. 

The kinetic energy of the cart is: 

21
2c c cT m x=      (4) 

Combining (3) and (4), the total kinetic energy of 
the system is given by: 
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Since the cart moves horizontally, its potential 
energy remains constant. The potential energy of the 
system is solely attributed to the pendulum: 

cosp p pV m gy m gl θ= =      (6) 

From (5) and (6), the Lagrangian of the system 
can be obtained as follows: 
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The motion equation of the system is given by: 

i
i i

d L L Q
dt q q

δ δ
δ δ
 
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    (8) 

where iQ  is the generalized force, the variables iq  are 
called generalized coordinates. For the pendulum, we 
define: 
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[ ; ]T
cq x θ=    (9) 

The corresponding velocities are: 
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Equation (8) becomes: 
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We have 
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As a result, the dynamic behaviour of the 
pendulum can be described by the following equation: 
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Defining the state variable 1 2[ ; ]Tx x x=  with 

1x θ=  and 2x θ=  , (13) can be expressed as: 
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After formulating the mathematical model of the 
pendulum system, the subsequent section will focus on 
designing control strategies for the system. This 
discussion will explore various methodologies to 
enhance stability and performance, involving 
controller synthesis and simulation results to evaluate 
their effectiveness. 

3. Control Design 

3.1. Fast Terminal Sliding Surface 

The fundamental terminal sliding mode (TSM) 
surface is defined as: 

1 1 0
q
ps x xβ= + =  (17) 

where 1x R∈  represents the state, 0β > , and 
,  ( )q p q p<  are positive odd integers. 

It can be readily demonstrated that, for an initial 
state 1(0) 0x ≠ , when 0s = , the dynamics (17) will 
converge to 1 0x =  in finite time: 
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The equilibrium at 1 0x =  is identified as a 
terminal attractor, signifying that the state 1 0x = can 
be reached in a stable manner within a finite time. The 
tuning of the parameters , ,p q β  allows for adjustment 
of the reaching time st . 

The inclusion of the nonlinear term /
1
q pxβ  is 

aimed at enhancing the convergent velocity and 
improving the convergence towards equilibrium. 
Closer proximity to equilibrium results in a faster 
convergence rate, leading to finite-time convergence. 
However, when the system state is significantly distant 
from equilibrium, the convergent velocity of the basic 
TSM surface (17) tends to be slower than that of the 
linear counterpart (achieved by setting p q= ). This is 
because the term /

1
q px  works to diminish the 

magnitude of the convergence rate at a distance from 
equilibrium. Consequently, to amplify the 
convergence rate of the basic TSM surface, the fast 
terminal sliding mode (FTSM) surface was introduced. 

The fast terminal sliding mode (FTSM) surface is 
defined as: 

1 1 1 0
q
ps x x xα β= + + =  (19) 

where 1x R∈ , , 0α β > , and ,  ( )q p q p<  are positive 
integers. 

The initial state 1(0) 0x ≠  reaching 1 0x =  within 
the time interval is given by: 
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By appropriately designing , , ,p qα β  the system 
state can achieve the equilibrium point in a finite time 

st . This is evident from (20), where: 

1

q
px x xα β= − −  (21) 

The convergence time of the state 1x  is 
determined by the linear term 1x xα= −  when 1x  is 
distant from the equilibrium point. Nevertheless, when 
the state 1x  approaches the origin 1 0x = , the 
convergence time is dictated by the nonlinear term 

/
1

q px xβ= − . This results in exponential convergence 
of x  to zero. The incorporation of the terminal 
attractor in the sliding surface (20) guarantees that the 
state converges to zero within a finite time. 
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Furthermore, the convergent velocity is assured when 
the state is far from the equilibrium 0. Consequently, 
the state can rapidly and precisely converge to 
equilibrium. 

In this study, the control objective is to track the 
reference angle θ  of the pendulum. The tracking error 
is defined as: 

de θ θ= −  (22) 

where θ  is the angle of the pendulum, and dθ  is the 
reference angle. Consequently, the fast terminal 
sliding mode surface is expressed as: 

0
q
ps e e eα β= + + =  (23) 

3.2. Adaptive Fast Terminal Sliding Mode Controller 

Within this section, we develop an adaptive fast 
terminal sliding mode controller for the inverted 
pendulum-cart system. To facilitate the controller 
design for the system (12) and assume that 1x  belong 
to the set which satisfy 1cos 0x ≠ , we arrange (12) as 
follows: 
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Since 21
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To create a controller without requiring model 
information, we opted for: 
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as the unknown parameters of the system. 

Considering outer disturbance, we transfer (16) 
to state-space form as: 

1 2
2

1 2 2 1 3 2 1( ) tan sin
x x
g x x u x x x dtφ φ
=

 = + − −





 (26) 

where 1 1 3 1
1

1( ) cos
cos

g x x
x

φ φ= − , dt  is the outer 

disturbance.  

Based on a sliding mode function (23), the 
Lyapunov function is chosen as: 
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where 0iγ > , îφ  is the estimation of ( 1, 2,3) i iφ = . 

Define two Lyapunov components as 
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Derivative of both sides of (28), we have: 
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From (26) we have 
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The control law is defined as: 
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where η  is a constant and | |max dtη ≥ . 
Applying the control law (33) to 1V , we have 
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From (29) and (34) we obtain 
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The adaptive law is designed as follows: 
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As a result, | | 0V s sdtη= − − < .  

This implies the stability of the system. 

4. Simulation Results 

In this section, some simulation scenarios are 
carried out to verify the effectiveness of the proposed 
controller in terms of the stability of the pendulum and 
control the pendulum to track desired trajectories. The 
pendulum parameters on a cart system are selected 
from the report of [21]. The mass of the cart is 

0.5cm kg= , the half-length of the pendulum is 
0.3l m= , and gravitational acceleration is 

29.81 (m/s )g = .  

4.1. Stable Control  

To assess the stability capabilities of the 
proposed controller, the pendulum is stabilized to an 
upright position from various initialized angles. An 
Adaptive Sliding Mode Controller (ASMC) is selected 
as a counterpart to the proposed controller for 
comparative analysis. The control signal of ASMC 
controller is: 
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with an adaptive law 
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Two criteria for evaluating the control 
performance are settling time and root mean square 
error (RMSE). The simulation results are succinctly 
presented in Table 1.  
Table 1. Quantitative evaluation of stability 
simulation.  

0 ) (radθ  
Settling time (s) RMSE (rad) 
FTSMC SMC FTSMC SMC 

Without 
noise 

/15π  1.0 _ 0.024 _ 

/ 20π  1.0 3.2 0.012 0.027 

/ 25π  0.8 1.8 0.008 0.014 

With 
noise 

/15π  1.0 _ 0.024 _ 

/ 20π  1.0 3.8 0.012 0.027 

/ 25π  0.8 2.1 0.010 0.017 

Notes: “-” means the controller cannot stabilize the 
pendulum. 
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Notably, the proposed controller consistently 
outperforms its counterpart across both evaluation 
criteria. For instance, with an initial angle of / 25π  
radians, the system under the proposed controller 
achieves stability after 0.8 seconds, compared to                  
1.8 seconds under the ASMC. Even at an initial angle 
of /15π , the AFTSMC effectively stabilizes the 
pendulum, whereas the ASMC struggles to maintain 
stability. Fig. 2 visually depicts the pendulum angles            
(θ ) for both controllers in the stability control 
scenario, providing additional insights into their 
comparative performance.  

In the upper subFig. of Fig. 2, the black line 
represents the reference signal, while the dashed blue 
and red lines depict the simulated angles controlled by 
the  AFTSMC  and  ASMC  controllers,  respectively.  

 
Fig. 2.  The stability evaluation of two controllers 
when the pendulum's initial angle 0 / 25.θ π=  

Furthermore, both controllers exhibit the chattering 
phenomenon in the control signal, as observed in     
Fig. 3. This issue may have implications for actuator 
damage and a reduction in their operational lifespan. 

To evaluate the robustness of the proposed 
controller, a random noise with a bandwidth of 1.0 N 
is introduced into the system as an external 
disturbance. As illustrated in Fig. 4, the Fast Terminal 
Controller adeptly addresses the external disturbance, 
exhibiting negligible impact on both settling time and 
Root Mean Square Error (RMSE) criteria. In contrast, 
the ASMC controller struggles to contend with the 
external disturbance, resulting in an RMSE that is ten 
times greater than when the disturbance is absent. 

4.2. Tracking Control  

In this subsection, the proposed controller's and 
its counterpart's performance is assessed while 
tracking a sinusoidal signal with an amplitude of 0.1 
radians and the frequency values f = 0.1Hz and 0.2Hz. 
The initial angle is set at 0 / 20θ π= radians. 

Fig. 5 visualizes the reference trajectory 
alongside the trajectories generated by the two 
comparative controllers. The external disturbance was 
not considered in the first simulation. Similar to the 
initial simulation scenario, the proposed controller  
exhibits faster response and superior accuracy 
compared to the ASMC in both values of frequency. 

In the next scenario, the same external 
disturbance employed in the first scenario is also 
applied in the second simulation. As illustrated in    
Fig. 6, the external disturbance has minimal impact on 
both controllers during trajectory tracking. 

 

 
 

Fig. 3.  The control signals of two controllers when 
stabilizing the pendulum from the initial angle 

0 / 25.θ π=  

Fig. 4.  The robustness of two controllers when having 
an external disturbance with 0 / 20.θ π=  
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(a) f = 0.1Hz 

 
(a) f = 0.2 Hz 

Fig. 5.  The robustness of two controllers when 
tracking a sinusoidal signal without an external 
disturbance with (a) 0.1 Hz and (b) 0.2Hz of frequency.   

 
(b) f = 0.1Hz 

 
(c) f = 0.2Hz 

Fig. 6.  The robustness of two controllers when having 
an external disturbance and tracking a sinusoidal signal 
with (a) 0.1 Hz and (b) 0.2Hz of frequency. 

5. Conclusion 

In this study, we proposed and evaluated an 
adaptive fast terminal sliding mode control for the 
stabilization and trajectory tracking of an inverted 
pendulum on a cart. By conducting a series of 
simulations and comparing the results with those 
obtained using an adaptive sliding mode one, we 
thoroughly assessed the effectiveness of the AFTSMC 
across various scenarios. 

The stability evaluation revealed that the 
proposed AFTSMC consistently outperformed the 
ASMC, demonstrating faster convergence and 
improved accuracy in stabilizing the pendulum under 
different initial conditions. Notably, when subjected to 
external disturbances, the AFTSMC exhibited 
robustness, effectively mitigating the disturbances and 
maintaining trajectory tracking performance. 

Further assessments during sinusoidal trajectory 
tracking reaffirmed the superior performance of the 

AFTSMC. Despite the inherent challenges of 
inaccurate model parameters, the AFTSMC 
showcased resilience, proving its capability to 
maintain stability and trajectory tracking accuracy 
under these conditions. 

However, it's essential to acknowledge the 
presence of chattering in the control signals of both 
controllers, as observed in the simulation results. This 
phenomenon highlights an area for future refinement, 
as excessive chattering may pose risks to actuator 
integrity and longevity. 

In conclusion, the AFTSMC demonstrated 
remarkable effectiveness in stabilizing and tracking 
the inverted pendulum system, showcasing its 
robustness and resilience to external disturbances and 
uncertainties in model parameters. Future work may 
focus on addressing the chattering issue and extending 
the controller's applicability to real-world 
experimental setups, contributing to advancements in 
the field of nonlinear control systems. 
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