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Abstract 

In this work, an efficient and accurate face recognition system based on edge processing using GPUs was 
completely developed. A complete pipeline that contains a sequence of processing steps, including                        
pre-processing, face feature extraction, and matching, is proposed. For processing steps, lightweight deep 
neural models were developed and optimized so that they could be computationally accelerated on an 
embedded hardware of Nvidia’s Jetson Nano. Besides the core processing pipeline, a database, as well as a 
user application server were also developed to fully meet the requirements of readily commercialized 
applications. The experimental evaluation results show that our system has a very high accuracy based on 
the BLUFR benchmark, with a precision of 98.642%. Also, the system is very computationally efficient, as the 
computing time to recognize an ID in a dataset of 1171IDs with 10141 images on the Jetson Nano is only 
165ms. For the critical case, the system can process 4 camera streams and simultaneously recognize a 
maximum of 40 IDs within a computing time of 458ms for each ID. With its high-speed and accuracy 
characteristics, the developed system has a high potential for practical applications. 
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1. Introduction* 

The rapid development and advancement of deep 
learning and computing hardware have shown many 
advantages for the image processing problem. The face 
recognition issue has received much attention in recent 
years due to its very high potential for practical 
applications in access/check-in/check-out control 
systems, public security surveillance systems, and 
electronic commercial transactions [1]. As illustrated 
in Fig. 1, face recognition, like any other image 
processing problem, has three main modules: i) the 
pre-processing module, which includes processes such 
as face detection, anti-spoofing, alignment, and quality 
checking; ii) the face feature extraction module, which 
employs a deep neural network and typically yields 
face-feature vectors (FFVs); and iii) the face feature 
matching module, which calculates cosine distances 
between FFVs to obtain the final identification of a 
face. Each module requires much of research effort to 
improve the accuracy and performance of the system 
[2-4]. This processing pipeline requires a lot of 
computational effort, and as a result, high-performance 
computing hardware is needed. Thus, the need for 
developing and optimizing lightweight models that 
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satisfy both high accuracy and computational 
efficiency is a current research trend [1]. 

For many applications of face recognition, 
systems have plenty of cameras, which generate a 
large amount of data to be processed. If all the 
generated data is sent to the central server to be 
processed, the system will confront a problem of very 
high throughput and bandwidth. This will make the 
system very difficult to deploy, even for real-time 
applications. Thus, the solution to this problem is the 
deployment of the hybrid edge-central computing 
architecture. 

There have been many efforts to deploy deep face 
recognition techniques on embedded hardware using 
GPUs as edge computing [5-9]. The use of GPUs at the 
edge can help accelerate the computation of the 
processing pipeline. It has been demonstrated that the 
use of GPUs can significantly accelerate computation. 
However, due to the limited hardware resources of 
embedded hardware, the processing pipeline as well as 
deep neural network models for face recognition 
should continue to be optimized in such a way that they 
are lightweight and have high accuracy. 
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Fig. 1. General processing steps of the whole face recognition system Jetson Nano 

 

 
Fig. 2. A whole description of Nvidia’s DeepStream platform 

 
A key goal has been set that the system should be 

optimized so that the lightweight embedded hardware 
can process as many camera streams as possible. In 
conventional methods, a processing pipeline using the 
so-called Gstreamer [10] is often used. Each camera 
stream is attached to a Gstreamer-based pipeline, 
which contains a set of deep learning models. This 
approach has the disadvantage that the utilization of 
hardware for deep learning models is repeated through 
all camera streams. This limits the number of camera 
streams that can be processed on lightweight 
embedded hardware. Fortunately, Nvidia has released 
the DeepStream SDK [11], which allows you to mux 

multiple camera streams into a single processing 
pipeline. This new approach is quite impressive and 
thus should be further optimized and evaluated. 

DeepStream SDK from Nvidia is a complete 
streaming analytics toolkit based on GStreamer for AI-
based multi-sensor processing, video, audio, and 
image understanding. DeepStream’s multi-platform 
support gives us a faster, easier way to develop vision 
AI applications and services. We can even deploy 
them on-premises, on the edge, and in the cloud. Fig. 2 
depicts a description of the entire platform. It is ideal 
for vision AI developers, software partners, startups, 
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and OEMs who are developing IVA apps and services. 
Stream processing pipelines incorporating neural 
networks and other complex processing tasks such as 
tracking, video encoding/decoding, and video 
rendering can be created by developers. DeepStream 
pipelines enable real-time video, image, and sensor 
data analytics. This platform provides extremely 
powerful tools with numerous advantages, including: 

a) DeepStream SDK is powerful and flexible, 
making it suitable for a wide range of use-cases across 
a wide range of industries. 

b) Multiple Programming Options: The 
platform uses the simple and intuitive UI of C/C++, 
Python, or Graph Composer, you can create powerful 
vision AI applications. 

c) Real-Time Insights: The platform can gain an 
understanding of rich, multimodal real-time sensor 
data at the edge. 

d) Managed AI Services: The platform can 
deploy AI services in Kubernetes-managed cloud 
native containers. 

e) Lower total cost of ownership: The platform 
increases stream density by training, adapting, and 
optimizing models with TAO toolkit and deploying 
models with DeepStream. 

In this work, an efficient and accurate face 
recognition system based on GPU-based embedded 
hardware is developed. The system has a complete 
processing pipeline that contains pre- and post-
processing algorithms as well as deep convolutional 
neural models. The DeepStream SDK is exploited for 
the video processing, which includes the decoder and 
the mux. The decoder of DeepStream is already 
optimized for hardware by Nvidia, so it is more 
efficient than building the Gstreamer pipeline from 
scratch. The mux allows for batching camera frames 
from several cameras into only one processing pipeline 
to reduce the utilization of the hardware resource. Our 
contribution is that, instead of using the already-
available plugins of deep models for face recognition 
issues, we develop and optimize models ourselves. 
These models are developed so that they are 
lightweight while maintaining high accuracy 
characteristics. For this reason, pretrained models with 
the backbones of VIT-T [12], Retina Mnet [13], and 
MobileNetV2 [14] were fine-tuned using transfer 
learning techniques with a public dataset [15]. These 
models are then optimized and quantized so that they 
can be implemented and computationally accelerated 
on the Jetson Nano from Nvidia [16]. The accuracy of 
the system is evaluated via the benchmark BLUFR 
[17], and the computational efficiency is verified via 
several critical scenarios. For a complete system, a 
database that contains data for recognizing people and 
a user application server were developed. 

2. System Description 

The overall processing pipeline of the design 
system is shown in Fig. 3. There are four main 
modules, each of which is responsible for a specific 
task. The first module is the face recognition pipeline, 
which contains a sequence of several processing steps. 
Video frames captured from cameras are streamed to 
the processing unit via the RTSP protocol. The video 
streams are decoded by the NVDEC. The decoded 
frames are converted to the RGBA format. These 
frames are routed to the batching system for further 
processing on the Jetson Nano's hardware CPU. All 
decoded frames from different cameras are pushed to 
a meta data patch and then sent to our self-developed 
plug-in, which performs the following processes: 

a) Attaching the tracking identification (ID) for 
each camera stream to be managed. 

b) Resizing image frames to 640x360 and 
converting them to BGR format in order to satisfy the 
input requirement of the face detection model. 

c) Performing the face detection inference to get 
the bounding box and landmarks of the detecting face, 
which are consequently used for the tracking and 
alignment process. Each detected face in video frames 
is assigned a tracking ID. Face tracking enables us to 
avoid duplication of a person's faces to be processed 
and reduce processing efforts. 

d) Using face anti-spoofing to eliminate fake 
cases in which someone intentionally generates the 
face image of an interested person using images from 
smart phones, tablets, printed paper, or even wearing a 
mask [2]. 

e) Using the detected landmarks and the affine 
transformation to align the face. In sequence, the face 
feature vector extraction model is performed. 
Extracted vectors are then matched with vectors from 
the database to find a person's ID [3-4]. 

Deep neural networks used for this processing are 
listed in Table 1. Most of these processes are 
implemented on the deep learning processing unit 
(GPU) of the Jetson Nano. To meet the requirements 
of real-time applications, we can use the GPU to 
accelerate the computation of deep learning models by 
using parallel computing.  

Table 1. Technical detail of the developed models.  

Model Back-bone/specification 

Face anti-spoofing Mobilenet V2 [14] 

Face and landmark 
detection 

Retina mnet [13] 

Face feature extraction VIT-T [12] 

Face alignment Affine transformation [18] 
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Fig. 3. Processing pipeline of the whole face recognition system based on Jetson Nano 

 
The second module is the database using Postgre 

SQL, which contains the face feature vectors of the 
corresponding images of the person's identification. 
This database is created by the third module, namely 
the server updater. This module also has full deep 
learning models for face detection and face feature 
vector extraction. The extracted face feature vectors 
are then updated in the Feature Vector DB. Inputs to 
this module are the face images of interested persons 
and the corresponding record of information such as 
their name, age, company, and email. These inputs can 
be imported from the so-called CIVAMS Web Server 
or from the image database. When a person is required 
to be queried, its face feature vectors are matched with 
feature vectors in the database to find the best-matched 
vector, which has a maximum cosine similarity larger 
than a threshold. This process is handled by the 
system's ARM CPU, which is housed on a Jetson Nano 
chip. The fourth module is the user application, which 

contains the CIVAMS Web Server and CIVAMS 
Application Servers and other display devices and 
actuators for user-specific applications. 

Fig. 4 describes a block diagram of the 
development and deployment of a deep learning model 
on the Jetson Nano platform. First, a deep neural 
network is trained based on the so-called PyTorch 
framework and a given dataset. After the training and 
testing process, a weight file “model.weight” is 
obtained. This model is then converted to ONNX 
format to get "model.onnx". These files are then 
quantized and combined via the tool Nvidia TensorRT 
from the hardware provider to obtain "model.engine", 
which is stored on the SD card. For the hardware 
platform creation, several software frameworks are 
installed on the Jetson Nano, including Nvidia Cuda, 
Python, TensorRT, and OpenCV. 
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Fig. 4. Development and deployment pipeline of deep learning models on Jetson Nano 

 
The detailed technical specifications of the Jetson 

Nano from Nvidia can be found in [16]. This hardware 
is intended for the edge processing of deep neural 
networks. The hardware is a completed multi-process 
system on chip (MP-SOC), which can be used for 
image processing. The hardware includes a 128-core 
Maxwell processor, a quad-core ARM A57 CPU 
running at 1.43 GHz, and 4 GB of 64-bit LPDDR4 
memory (25.6 GB/s), 4K at 30 fps, 4x 1080p at 30 fps, 
9x 720p at 30 fps (H.264/H.265), 4K at 60 fps, 2x 4K 
at 30 fps, 8x 1080p at 30 fps, 18x 720p at 30 fps 
(H.264/H.265); The computational benchmark for this 
hardware can be found on the homepage of 
Nvidia  [16].  

3. Results and Discussion 

The face feature vector extraction model was 
developed based on the backbone of VIT-T [12] with 
a pretrained model. This model was fine-tuned based 
on a public dataset, namely the MS1M-ArcFace [15], 
which contains a set of 5.8M images of a total of 85k 
IDs. This dataset is additionally enriched by our self-
collected dataset, which contains 200k images of 13k 
IDs. It is important that these 200k images have 
challenging characteristics including blur, side-view, 
light-mode (IR), and long-hair and glasses, as 
illustrated in Fig. 5. The dataset is divided into two 
parts: 80% for the training set and 20% for the testing 
set. The fine-tuned model is then evaluated using a 
standard benchmark, namely the BLUFR [17]. The 
evaluation results show that the developed model has 
an impressive accuracy of 98.642% and a true positive 
rate of 97.9%, with a false acceptance rate of only 

0.0001. The obtained accuracy is high enough for 
practical applications. The VIT-T is a miniature 
version of the VIT. This will help to reduce the 
computational requirements of the inference process, 
allowing the system to be deployed on Jetson Nano's 
lightweight hardware.  

Aside from accuracy, the system's computational 
efficiency is the most important factor. Evaluation 
results of the computational performance of the Jetson 
Nano are shown in Table 2. The evaluation was 
performed on a test dataset containing 10141 images 
representing 1171 IDs that are collected on our real-
life deployment systems. In this evaluation, the total 
processing time for the overall proposed pipeline is 
calculated under different scenarios. The number of 
camera streams and the number of IDs are varied to 
test the computing time for each processing step, 
including the detection time, the recognition time, the 
matching time, and, as a result, the total processing 
time for one ID. Critical cases are considered. It is seen 
that for the fastest case, one ID on only one camera 
stream, the total processing time is only 165 ms. For 
the critical case, where a total of 40 IDs from                          
10 camera streams can be recognized in a total 
processing time of 458 ms for each ID, it can be 
concluded that the designed system has very high 
computational efficiency on the Jetson Nano since the 
overall processing pipeline was optimized and only 
lightweight models were developed. This shows a high 
potential for practical applications. 

 
Table 2. Computational performance evaluation results. 

No. of 
IDs 

No. of 
streams 

fps Detection 
time (ms) 

Recognition 
time (ms) 

Matching 
time (ms) 

Total time for 1 
ID (ms) 

Total no. of 
processed ID 

1 

1 9 111 44 10 165 1 
2 5 150 67 12 229 2 
3 4 194 82 13 289 3 
4 3 294 117 14 425 4 

5 

1 7 146 63 11 220 5 
2 4 206 96 14 316 10 
3 3 269 108 14 391 15 
4 2 324 120 15 459 20 

10 

1 6 162 69 12 243 10 
2 4 207 93 13 313 20 
3 3 268 106 14 388 30 
4 2 324 119 15 458 40 
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Fig. 5. Types of challenging conditions in the dataset 

Several discussions are given as following: 

1) Based on the test results, it is suggested that in 
practical applications, the hardware Jetson Nano 
can be efficiently used for the edge processing of 
four camera streams with full HD resolution. In 
this scenario, the processing consists only of face 
detection, anti-spoofing, and tracking. The 
detected face is then sent to the central computing 
server for further inference and matching. This 
can be called "hybrid edge-central computing." 

2) If we want to perform a full processing pipeline, 
only two camera streams with a maximal frame 
rate of 5 fps should be used. 

3) The computational workload can be reduced if 
we truncate several frames in the frame stream 

because the times for face feature extraction and 
matching are reduced. The number of frames to 
be truncated depends on the number of faces 
appearing in each camera frame. In fact, we use a 
queue for detected faces. At the same time, the 
recognition will be prioritized for the closest-
appearing face images to optimize real-time 
recognition. The old face images are piling up in 
the queue. If the queue is full, it will be deleted to 
ensure that there is no RAM overflow that 
crashes the app. 

The obtained results are compared to that of other 
published works [6-9]. Our results outperform others. 
For example, in [8], the authors also used the hardware 
Jetson Nano, the highest accuracy for face recognition 
is only 86.41% while our system reaches 98.642% of 
accuracy.  In [9], evaluations on Movidus NCS2 are 
reported. It is shown that the performance of the 
system reaches only 7.031 fps within accuracy of 93%. 
It is seen that our system has higher accuracy. 
Importantly, this is the first system which has a 
complete processing pipeline also including the face 
anti-spoofing. The optimization of a series of deep 
learning models in order to be able to run on Jetson 
Nano is a significant contribution. 

For user applications, a web server was 
developed to manage the results of the system. The 
graphical user interface is shown in Fig. 5. The web 
server contains both a back-end and a front-end. The 
back-end has a user database and modules to allow 
administration as well as let the normal user manage 
the results. This back-end can communicate with other 
functional systems via APIs. The front-end contains 
several tabs for statistics, dashboard, timeline, access 
control, device configuration, and import and export 
data tools 

 

 
 

Fig. 6. User application web server
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4. Conclusions and Outlook 

In this work, a complete, efficient, and accurate 
face recognition system has been successfully 
developed. For an accurate system, the processing 
pipeline must contain a certain number of processing 
units, where the preprocessing is of the greatest 
importance. Our system is computationally efficient 
since only lightweight models were developed and 
optimized. Furthermore, the computation of these 
models can be accelerated using the Jetson Nano. The 
application of Jetson Nano, on the one hand, allows for 
higher computational performance, with a maximum 
processing ability of 4 camera streams for 40 IDs in 
only 458 ms. On the other hand, the SDK DeepStream 
has the advantage of mixing several camera streams 
into a batch, which reduces the utilization of hardware 
resources and thus improves processing capacity. It 
can be concluded that the system is efficient and can 
be used for edge-processing applications. 

Several application guidelines can be developed 
based on the obtained results. First, the Jetson Nano 
can be efficiently used for the processing of two 
camera streams with full steps. In this case, the 
hardware can work independently without connecting 
to a central server for further processing, which allows 
for the high availability of the hybrid edge-central 
system. When the connection between the edge and the 
center is interrupted, the Jetson Nano can work in 
offline mode. Second, in case more camera streams 
need to be processed on site, the Jetson Nano should 
be used just for the detection, tracking, and anti-
spoofing steps. The metadata is then sent to the center 
for further processing. With this concept, the jetson 
can be used for a maximum of six camera streams. 
Also, the use of the hybrid edge-center computing 
architecture allows us to deploy a more accurate and 
powerful face feature extraction model at the center. 
This will lead to the ability to perform face recognition 
on very large-scale datasets with maximal accuracy 
and computational performance. 

In the future, the system will be extended in some 
directions. The use of the Jetson Nano has 
demonstrated that it has a high potential for use as an 
edge processing device. Thus, a thorough evaluation of 
the device in the concept of hybrid edge-central 
computing should be investigated. 
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