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Abstract 
Online advertising and advancements is a recent trend in marketing technology, in this context we consider a 
new form of contract which allows advertisers to specify in the Wifi system. Based on the structure of the 
system, we have to organize and manage resource allocation such that the guaranteed display is satisfied. 
We introduce a new mathematical model and develop an optimization framework that aims to optimize 
“fairness” of allocation each campaign over its targeted location. Because of large scale problem, the Dantzig-
Wolfe decomposition is proposed for solving it. Dantzig-Wolfe decomposition is a technique for dealing with 
large scale linear programming and modified to solve linear integer programming, nonlinear programming. 
Especially, it is used mostly in linear programming when its size is very large, and its structure is appropriate. 
The technique has been successfully applied in a variety of contexts. In this paper, we introduce a new model 
of a resource allocation problem in Wifi network and represent Dantzig-Wolfe decomposition for solving this 
problem by dividing the number of advertisement impressions when users access the Wifi network. The 
numerical simulation shows the efficiency of our proposed method. 
Keywords: Dantzig-Wolfe decomposition, resource allocation, wifi network, online advertising. 

 

1. Introduction* 

Wifi marketing refers to the use of Wifi 
technology to promote products, services, or a brand to 
potential customers. This type of marketing involves 
collecting data about Wifi users and using it to deliver 
targeted advertising, promotional messages, or other 
forms of content to their devices while they are 
connected to a Wifi network. Wifi marketing is 
typically done through a captive portal, which is a 
landing page that users are redirected to when they 
connect to a Wifi network. The captive portal can be 
customized with branding, advertising, and other types 
of content, and can also include a login process that 
requires users to provide some personal information or 
complete a survey before they can access the network. 
Wifi marketing has become increasingly popular in 
recent years because it allows businesses to engage 
with customers in a more targeted and personalized 
way. By collecting data about Wifi users, businesses 
can gain valuable insights into their preferences, 
behaviors, and needs, which can be used to create more 
effective marketing campaigns and improve the 
overall customer experience. 

Online advertising (see [1]), also known as digital 
advertising, is a form of advertising that uses the 
internet to promote products, services or brands. 
Online advertising is delivered through various digital 
channels such as search engines, social media, display 
advertising, email marketing, mobile advertising and 
video advertising. Online advertising provides 
businesses with the opportunity to reach a large and 
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diverse audience, as well as to target specific 
demographics based on factors such as age, gender, 
location, interests and online behavior. This makes 
online advertising a highly effective and cost-efficient 
way to reach potential customers. Online advertising 
has become increasingly important in recent years, as 
more and more people spend time online and less time 
consuming traditional media like TV, radio and print. 
As a result, businesses are shifting their advertising 
budgets towards digital channels, in order to reach 
their target audience where they are spending their 
time. Overall, online advertising has revolutionized the 
way businesses promote their products and services 
and is a critical component of any modern marketing 
strategy. 

Online graphical presentation promoting is a type 
of internet publicizing where sponsors can 
unequivocally or certainly target clients visiting Web 
pages, and show graphical (e.g., picture, video) 
advertisements to those clients (see [2]). Likewise with 
most types of web based publicizing (see [3]), one of 
the focal inquiries that emerges with regards to online 
graphical presentation  promoting  is  that  of resource 
allocation, i.e., deciding how to allocate 
supply/inventory (client visits) to request (advertiser 
campaigns) in order to upgrade for different publisher 
and advertiser destinations. However, even 
formulating the inventory allocation problem for 
online graphical display advertising is quite 
challenging (see [4-6]). 
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Allocating resources is frequently not fair in 
practice. Less or more, depending on the availability 
of resources. A network of free Wifi spots is 
maintained by a Wifi marketing company. The 
company’s resources are the number of users 
accessing this system. Advertisements for any partner 
brands will appear when users log in to the free Wifi 
system. To optimize the system, exposure must be 
scheduled across multiple locations and campaigns. 

The problem is to divide the number of 
advertisement impressions to users at places so that 
during the days when the campaign wants to display, 
the number of impressions at each day is as fair as 
possible. We concentrate on minimizing the sum of 
difference between advertisement impressions and 
average number of expected runs. This is a practical 
large-scale problem, so we introduce a new model of a 
resource allocation problem in Wifi network and 
proposed to use Dantzig-Wolfe decomposition to solve 
this problem. 

The remainder of the paper is organized as 
follows. In Section 2 we introduce a resource 
allocation problem in Wifi network and present a new 
mathematical model of this problem. A brief 
introduction of Dantzig-Wolfe Decomposition 
Algorithm is organized in Section 3. Section 4 shows 
the numerical experiment, and some conclusions are 
presented in Section 5. 

2. Resource Allocation Problem in Wifi Network 

 Resource allocation problem in Wifi networks 
refers to the challenge of efficiently distributing 
available network resources, such as bandwidth, 
power, and channel capacity… to multiple users who 
are competing for these resources (see [1, 5]). This is 
a critical issue in Wifi networks because there is often 
more demand for network resources than supply, and 
users have varying levels of priority and requirements 
for these resources. 

However, resource allocation in Wifi networks is 
a complex problem due to several factors such as 
varying network conditions, the presence of 
interference, and the number of users… As a result, 
resource allocation algorithms must be designed to be 
adaptive and dynamic, taking into account changing 
network conditions and user behavior to ensure 
optimal performance. In this paper, a resource 
allocation in Wifi networks related to Wifi maketing is 
introduced as follows. 

2.1. Problem 

A free Wifi system that displays advertisement 
when customers access at p places P = {P1, P2,..., Pp}. 
These places are divided into r sets of non-intersecting 
places T = T[1]∪ T[2] ∪ ... ∪ T[r] with T[t] ∩ T[k] = ∅
t ≠ k, 1 ≤ t, k ≤ r. Each place has the number of accesses 
from day 1 to day n is R11, R12,..., R1p, R21,..., R2p,..., 

Rn1,..., Rnp. There are m advertising campaigns,                        
Ci (i =1, 2, ..., m), needed to display at P on days 
1,2,...,n. For each campain Ci, let us set 

- qi is the number of expected runs of campaign Ci, 

- D(Ci) = Di = {
1 2
, ,...,

ni i ij j j } ⊂ {1, 2,…, n} is the 
set of days campaign Ci  will run, 

- P(Ci) = Pi = {
1 2
, ,...,

pi i ik k k } ⊂ {1, 2,..., p} is the 
set of places campaign Ci will run. 

The problem is finding ways to divide the 
number of advertisement impressions for each day and 
each campaign in the most fair manner. It mean that 
the target is the number of impressions per campaign 
per day, per location, proportional to the resource per 
day and per location respectively. The objective 
focuses on minimizing the sum of difference between 
advertisement impressions and average number of 
expected runs of each campain under the limited 
resources constraints. 

2.2. Model 

Consider each set of places to be a sub-problem 
of the original problem. At the tth set of places, t

ijkq is 
the number of advertisements of campaign i run on day 
j at place k ∈ T[t]. 

Select the objective function as the sum of 
difference between advertisement impressions and 
average number of expected runs of each campain. So 
that for the ki days running campaign Ci, the daily runs 
are as fair as possible, then we calculate the total across 
all advertising campaigns Ci. The objective function is 
selected as 

[ ]1 1
min

2
i i

r m
t ti
ijk ijkt

t i j D k P T t ijk

v
q a

a= = ∈ ∈ ∩

−∑∑∑ ∑       (1) 

where vi  is the priority of campaign Ci and the 
weighted average of expected runs of campaign each 
day at each place be: 

{ }
,

1, 2..., , ,
i i

i jkt
ijk i i

x D y P xy

q R
a i m j D k P

R∈ ∈

= ∀ ∈ ∈ ∈
∑

 

(1a)  

Suppose that t
ijky ≥0 satisfy: 

2
t t ti
ijk ijk ijkt

ijk

v
q a y

a
− ≤  (2) 

Then objective function (1) can be rewriten as: 

[ ]1 1
min

i i

r m
t
ijk

t i j D k P T t
y

= = ∈ ∈ ∩

⇔ ∑∑∑ ∑  (3) 

subject to the following set of constraints. Consider the 
places T[1], we have the set of constraints: 
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{ }1,2..., , , [1]i ii m j D k P T∀ ∈ ∈ ∈ ∩    

 
1

1 1 12 ijk
ijk ijk ijk

i

a
q y a

v
− ≤  (4) 

{ }1,2..., , , [1]i ii m j D k P T∀ ∈ ∈ ∈ ∩  
1

1 1 12 ijk
ijk ijk ijk

i

a
q y a

v
− − ≤ −  (5) 

{ }1,..., , [1]j n k T∀ ∈ ∈  

[ ]

1

1 1i i

m

ijk jk
i j D k P T

q R
= ∈ ∈ ∩

≤∑∑ ∑  (6) 

In a simialar way, we have the set of constraints 
for the set of places T[2], …, T[r], repestively. 

… 

{ }1,..., , , [ ]i ii m j D k P T r∀ ∈ ∈ ∈ ∩    

 
2 r

ijkr r r
ijk ijk ijk

i

a
q y a

v
− ≤  (7) 

{ }1,..., , , [ ]i ii m j D k P T r∀ ∈ ∈ ∈ ∩    
2 r

ijkr r r
ijk ijk ijk

i

a
q y a

v
− − ≤ −  (8) 

{ }1,..., , [ ]j n k T r∀ ∈ ∈  

[ ]1 i i

m
r
ijk jk

i j D k P T r
q R

= ∈ ∈ ∩

≤∑∑ ∑  (9) 

If { }[ ], 1,...,i ij D or k P T t t r∉ ∉ ∩ =  
0t

ijkq =                       (10) 

        { }
[ ]1

1,...,
i i

r
t
ijk i

t j D k P T t
q q i m

= ∈ ∈ ∩

= ∀ ∈∑∑ ∑        (11) 

, 0t t
ijk ijkq y ≥   (12) 

We have two constraints (4) and (5) represent for 
(2).  Constraint (6) represents the total number of ads 
displayed on day j at location k does not exceed the 
number of visitors on day j at the corresponding 
location k. For the set places T[r], we have the set of 
constraints as (7), (8) and (9). Constraints (10) show 
that if campaign Ci is not display on day j or at place k, 
the number of advertisements of campaign i run on day 
j or at place k is 0. Contraints (11) reperesents the total 
display of campain Ci equals to the number of expected 
runs. Constraints (12) are sign constraints. 

According to structure of linear programming 
with complicating constraints, for each independent 
set of places t (t=1,…, r) is a sub-problem t with the 
set of constraint similar as (4), (5), (6) for the set of 
place T[t]: 

[ ]1
min

i i

m
t
ijk

i j D k P T t
y

= ∈ ∈ ∩
∑∑ ∑                                (Pt) 

subject to 

{ }1,2..., , , [ ]i ii m j D k P T t∀ ∈ ∈ ∈ ∩    

 
2 t

ijkt t t
ijk ijk ijk

i

a
q y a

v
− ≤  (13)

  

{ }1,2..., , , [ ]i ii m j D k P T t∀ ∈ ∈ ∈ ∩    

2 t
ijkt t t

ijk ijk ijk
i

a
q y a

v
− − ≤ −                   (14) 

{ }1,..., , [ ]j n k T r∀ ∈ ∈  

[ ]1 1i i

m
t
ijk jk

i j D k P T
q R

= ∈ ∈ ∩

≤∑∑ ∑   (15) 

If { }[ ], 1,...,i ij D or k P T t t r∉ ∉ ∩ =  
 0t

ijkq = ,                 (16) 

 , 0t t
ijk ijkq y ≥ .                (17) 

And the complicating constraints (11), if these 
constraints are removed, the original problem be come 
a serial of separate r linear programming problem (Pt) 
(t=1, …, r), are explained as follows: 

{ }
[ ]1

1,...,
i i

r
t
ijk i

t j D k P T t
q q i m

= ∈ ∈ ∩

= ∀ ∈∑∑ ∑ .       

 (18) 
This problem is a large-scale linear programming 

problem, then we propose to use Dantzig-Wolfe 
Decomposition to decompose and solve a series of 
small linear programming problem to obtain the 
optimal solution. 

3. Dantzig - Wolfe Decomposition Algorithm 

The Dantzig-Wolfe Decomposition Algorithm, 
also known as the column generation algorithm, is a 
powerful optimization technique used to solve large-
scale linear programming problems. The algorithm 
was developed by George Dantzig and Philip Wolfe in 
the 1960s. The Dantzig-Wolfe Decomposition 
Algorithm works by breaking a large linear 
programming problem into smaller subproblems, 
which can be solved independently and in parallel. 
This approach is particularly useful for problems with 
a large number of variables or constraints, as it allows 
for more efficient use of computational resources (see 
[7-9]). The algorithm involves solving a master 
problem, which contains a subset of the original 
variables and constraints, and a set of subproblems, 
each of which contains a different subset of variables 
and constraints. The subproblems are then solved 
separately, and their solutions are combined to provide 
a solution to the master problem. This process is 
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repeated iteratively, with new variables and constraints 
added to the master problem until a feasible solution is 
found. The Dantzig-Wolfe Decomposition Algorithm 
is widely used in a variety of applications, including 
transportation and logistics, network design, and 
production planning. The algorithm has been shown to 
be highly effective in solving complex optimization 
problems, and it is often used in conjunction with other 
techniques, such as branch and bound or heuristics, to 
further improve solution quality and efficiency. 

3.1 Problem Structure 

Consider the linear programming problem: 

( ) ( ) ( )1

1 1 2 2

,...,
min ...

r

T T Tr r

x x
c x c x c x+ + +  (O) 

subject to 

A1x1                             = b1,  (19) 

                     A2x2                   = b2, (20) 
  ... 

                           Arxr  = br (21) 

      L1x1 + L2x2 + ... + Lrxr   = b0,  (22) 

 0 ≤ xi ≤ xi(up), i = 1, ..., r.  (23) 

where constraints (19) - (21) have a decomposable 
structure in r blocks, each of size ni  (i = 1,2,...,r), i.e, 
they can be written as 

     { }, , 1,..., .i i i in m n mi i ix A b i r×∈ ∈ ∈ ∀ ∈    

The structure of the matrix representing the 
problem (O) is described as shown in Fig. 1. The 
constraints (22) is seen as the last row in the matrix 
structure and they do not have decomposable structure, 
they are the complicating constraints. 

 
Fig. 1. Decomposable matrix with complicating 
constraints. 

Upper bounds xi(up) (i = 1, ..., r) are considered for 
all optimization variables xi (i = 1, ..., r). This 
assumption allows dealing with a compact feasible 
region, leading to a simpler theoretical analysis of the 
original problem. 

If ignoring complicating constraints, there will 
be a relaxed version of the original problem: 

( )1 ,..., 1
min

r

Tr
i i

x x i
c x

=
∑                                          (RP) 

subject to   Aixi   =  bi,     i=1, ...,r 

  0 ≤ xi ≤ x i(up), i=1, ..., r. 

Therefore, the decomposed ith sub-problem  
(i = 1,2, ..., r) is 

   ( )min
i

Ti i

x
c x                                             (RPi) 

subject to  Aixi   =  bi 

  0 ≤ xi ≤ x i(up). 

 
3.2 Decomposition 

3.2.1. Master problem: Let c = [c1 c2 ... cr] ∈ nR ,    
x = [x1 x2 ... xr], L = [L1 L2 ... Lr]. The feasible region of 
(RP) is 

  X = {x ∈ nR  | Ax = b, 0 ≤ x ≤ xup} 

and (O) problem is equivalent to the following 
problem: 

min T

x
c x        (O’) 

             subject to    ℒx=b0  

                                    𝑥𝑥 ∈ 𝑋𝑋 

Since X is a convex polyhedron, by polyhedral 
convex set representation theorem then 𝑥𝑥 can be 
represented as a convex combination of the vertices of 
X, so (O’) can be represented in the form of linear 
programming: 

min ( )T j
j

j J
c xα

∈
∑  (24) 

subject to   ( ) 0 ( )j
j

j J
x bα λ

∈

=∑   (25) 

                           1 ( )j
j J
α σ

∈

=∑  (26) 

                  αj ≥ 0      ∀j∈ J (27) 

where λ and σ are the corresponding dual variables,                   
J is the set of extreme points of X. 

Suppose that |J| = p, problem (24) - (27) is 
equivalent to the following problem called Master 
problem (MP) 

min ( )

1

p
T s

s
s

c xα
=
∑  (MP) 

subject to     ( ) 0

1
( )

p
s

s
s

x bα λ
=

=∑   (28) 
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1
1 ( )

p

s
s
α σ

=

=∑  (29) 

αs ≥ 0                  s = 1, ..., p.  (30) 

Note that, superindices of form (s) to refer to the 
sth extreme points in J. 

3.2.2 Relaxed problem: The reduced cost of the new 
weighting variable α corresponds to the tentative new 
basic feasible solution can be computed as 

( ) .
1

T T T Tx
c x c xλ σ λ σ

  − = − −    


       (31) 

If the tentative basic feasible solution is to be 
added to the set of previous ones, the reduced cost 
associated with its weighting variable should be 
negative and preferably a minimum. To find that 
minimum reduced cost and basic feasible solution, we 
solve the relaxed problem 

min (cT - λTℒ) x - σ (32) 

subject to   Ax = b,   0 ≤ x ≤ xup.  (33) 

This problem can also be expressed as 
independent subproblems according to the initial 
constraint blocks. Moreover, σ is a constant, so when 
removed, the solution of the problem does not change. 
Therefore, we have a new problem equivalent to the 
problem (32) - (33) as 

( )( )1 ,..., 1
min

r

r Ti T i i

x x i
c L xλ

=

−∑   (SP) 

subject to    Aixi = bi,             i=1, 2,..., r,          (34) 

         0 ≤ xi ≤ xi(up) i=1, 2,..., r.             (35) 

3.3 Dantzig - Wolfe Decomposition Algorithm 

The detailed steps of the algorithm are presented 
below: 

Step 0: Initialization. 

Let k = 1 - the iteration counter. 

Obtain p distinct solutions of the relaxed problem 
by solving p times each of the r sub-problems below: 

( )ˆmin
i

Ti i
sx

c x  

subject to    Aixi = bi    

                  0 ≤ xi ≤ xi(up) i=1, 2, ..., r.              

where, ( )ˆ 1,..., ; 1,...,i
sc i r s p= = are arbitrary cost 

coefficients to attain the p initial solutions of the r sub-
problems.  

Step 1: Solve master problem. 

Solve (MP), (28)-(30) problem obtain (k) (k)
1 p,...,α α  

and dual vari-ables λ(k), σ(k). 

Step 2: Solve relaxed problem. 

With λ(k) solve (SP), (34)-(35) obtain solution of 
relaxed problem x(k+1) = [(x1)(k+1) ... (xr)(k+1)] and 
objective function value 

( ) ( )( )( )( 1)( ) ( )

1

r T T kk i k i
i

i
g c L xλ

+

=

= −∑  

Step 3: Check STOP conditions. 

If g(k) ≥ σ(k), the original problem has an optimal 
solution 

         ( )( )* ( )

1
, 1,...,

p sj k j
s

s
x x j nα

=

= =∑  

and the algorithm concludes. 

Else if g(k) < σ(k), add x(k+1) to the set of extreme 
points. 

Update 

k ← k + 1  

p ← p + 1 

Return Step 1. 

4. Numerical Experiment 

The program was developed using Python 
language and CPLEX 12.8 solver on a personal 
computer with a Core i5-5200U 2.2GHz processor and 
16G RAM. 

4.1. Data 1 

To test the Dantzig - Wolfe Decomposition 
Algorithm, we consider a small data (Data1: 2 
campaigns and 2 places) given in Table 1. 

Table 1. Information of data 1 

 Day 1 Day 2 

place - p1 500 500 

place - p2 500 500 

Campaign Priority Start 
day 

End 
day 

 Total     Places 

c1 0.3 1 2  500     p1, p2 

c2 0.7 2 2  100     p1 

 

Consider two cases to compare results: 

- Problem does not decompose, i.e, only one set 
of places.  

- Problem decomposes into two sets of places, 
{p1} and {p2}. In this case, problem (3) - (12) is solved 
by the Dantzig - Wolfe Decomposition Algorithm..
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Table 2. Results after running data 1 

Campaign 
Day 1 Day 2 

Sum 
p1 p2 p1 p2 

c1 125 125 125 125 500 
c2 0 0 100 0 100 

TH1. The result of the non-decomposition problem. 

Campaign 
Day 1 Day 2 

Sum 
p1 p2 p1 p2 

c1 125 125 125 125 500 
c2 0 0 100 0 100 

TH2. The result of the decomposition problem    

 
Table 3. Results after running data 2 

Campaign q 
[51] [25, 26] 

Sum Error Sum Error 
c0 100000 100000 0.0 100016 0.00016 
c1 98310 98310 0.0 98311 0.00001 
c2 18342 18342 0.0 18037 0.01663 
c3 89585 89585 0.0 89585 0.0 
c4 84370 84370 0.0 78758 0.06652 
c5 100000 100000 0.0 99999 0.00001 
c6 100000 100000 0.0 100003 0.00003 
c7 100000 100000 0.0 100003 0.00003 
c8 95774 95774 0.0 95772 0.00002 
c9 100000 100000 0.0 100001 0.00001 

 

Campaign q 
[10, 41] [41, 10] 

Sum Error Sum Error 
c0 100000 100015 0.00015 100016 0.00016 
c1 98310 98310 0.0 98311 0.00001 
c2 18342 18128 0.01167 18057 0.01554 
c3 89585 89585 0.0 89585 0.0 
c4 84370 78667 0.0676 78738 0.06675 
c5 100000 100000 0.0 100001 0.00001 
c6 100000 100005 0.00005 100003 0.00003 
c7 100000 100003 0.00003 100004 0.00004 
c8 95774 95772 0.00002 95772 0.00002 
c9 100000 100001 0.00001 100000 0.0 

 

Campaign q 
[13, 13, 13, 12] [2, 3, 4, 42] 

Sum Error Sum Error 
c0 100000 100017 0.00017 100017 0.00017 
c1 98310 98311 0.00001 98312 0.00002 
c2 18342 18342 0.0 18098 0.01330 
c3 89585 89585 0.0 89585 0.0 
c4 84370 78453 0.07013 78697 0.06724 
c5 100000 100001 0.00001 99999 0.00001 
c6 100000 100004 0.00004 100004 0.00004 
c7 100000 100004 0.00004 100003 0.00003 
c8 95774 95772 0.00002 95772 0.00002 
c9 100000 100001 0.00001 99999 0.00001 
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According to the structure of problem (3) - (12) 
have two following accses: 

Case 1: We need to find the value of variables:  
1 1 1 1 1
111 112 121 122 221, , , , 0q q q q q ≥  

 and solutions of this problem in this case are  
1 1 1 1 1
111 112 121 122 221125, 100q q q q q= = = = =  

Case 2: We need to find the value of two sets of 
variables: 

{ } { }1 1 1 2 2
111 121 221 112 122, , ,q q q and q q . They are 

{125,125,100} and {125,125}. 

The solution of the problem presented as required 
by the campaigns is shown in the following Table 2, 
which shows that either the non-decomposition 
problem or decomposition problem are guaranteed to 
run on time and sufficient number of required 
campaigns. 

4.2. Data 2 

We will increase the size of the problem:               
10 campaigns, run in 51 days, at 51 places (Data 2). 
The result of this case is shown in Table 3. 

Table 3 shows good results, due to the 
convergence properties of the Dantzig - Wolfe 
Decomposition Algorithm, which has been shown for 
the linear programming problem, the error between the 
total number of campaigns run and the number of 
requests is small (0 - 7%): 

- When we consider a special case, the problem 
has only one set of places ([51]) and shape is  
8640 × 6702. In this case, the problem has a nearly 
complete solution and error of campaigns are 0%. It 
means that the result of solving the original linear 
programming is almost the same with using Dantzig - 
Wolfe Decomposition Algorithm. 

- Decompose 51 places into 2 sets of places 
with 3 cases [25,26], [10,41], [41,10] and into 4 sets of 
places with 2 cases [13,13,13,12], [2,3,4,42]; 
classifying the places into equal or unequal sets, the 
results are quite stable. 

From the numerical simulation, we see that for 
various ways to decompose and using Dantzig - Wolfe 
Decomposition, the results are quite good: all the gap 
are less than 0.1 (10%), 52/60 datasets have gap less 
than 1% (the bold errors in Table 3). The results is 
promissing to apply this method to the large-scale 
problem.  

5. Conclusion 

In this paper, we proposed a new model for 
allocating and serving online advertising for the Wifi 
marketing company. 

Our structure brings a client level viewpoint into 
the normal total displaying of the advertisement 
allocation problem in the Wifi networt systerm. Our 
formulation can optimize for the allocation of each 
campaign in its targeted locations. We showed that the 
problem can be solved efficiently using Dantzig-Wolfe 
Decomposition Algorithm and promising to apply in 
the very large-scale problem. 
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