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Abstract 

The paper presents an approach for effective skin lesion segmentation from dermatoscopic images. Aiming 
at transferring the weights trained from a network originally designed for image classification task, this study 
proposes to utilize the first layers of EfficientNet as the encoding layers of a U-Net based architecture. Besides, 
we introduce an encoder-decoder double skip connection scheme, a new skip connection architecture for 
extracting useful spatial details of skin lesions from the encoding layers. By the double skip scheme, the 
approach not only fuses information from the encounter layer in the encoder path to the corresponding layer 
in the decoder path, but also takes into account information of the proceeding encoding layer. In addition, we 
propose a new decoder network using the Residual blocks and Convolutional Block Attention Module (CBAM) 
blocks to handle the gradient vanishing problem as well as penalize the weight of each layer. The proposed 
Encoder-Decoder Double Skip with the Unet architecture, namely EDDS-Unet, has shown promising 
performance when evaluated on the official ISIC 2017 challenge and the PH2 databases. The proposed 
method achieves high evaluation scores with the Dice Similarity Coefficients of 0.907 for the ISIC 2017 and 
0.950 for the PH2 databases without pre-or post-processing steps. 
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1. Introduction1 

Image segmentation is of paramount importance 
in enormous image processing, and object recognition 
applications, especially in medical image analysis [1]. 
Having the segmented objects, it is possible to analyze 
the changes in sizes and shapes of interested objects. 
In the case of skin cancer diagnosis, skin lesion 
segmentation (SLS) from dermoscopic images is a 
central component of the computer-aided diagnosis 
system that helps experts in the analysis process [2]. 
However, obtaining accurate segmentation results for 
skin lesions is nontrivial since the lesions often have 
irregular and blurred edges. In addition, the presence 
of artifacts as well as cutaneous features like hairs, air 
bubbles, blood vessels, and ink frames also causes 
difficulties for the segmentation task [3]. 

In recent years, advances in deep learning, 
specifically convolutional neural networks (CNNs) 
contribute significant development in not only 
classification works but also segmentation works. In 
deep learning-based segmentation tasks, Ronneberger 
et al. [4] introduced the U-Net architecture which has 
been a remarkable model for segmenting medical 
images. U-Net owes its name to its symmetric U-shape 
that consists of three main parts: encoder, decoder, and 
the skipped connection encoder-decoder. The U-Net 
has been a popular network for image segmentation 
and has also been adapted to other image processing 
fields such as image translation, image saliency 
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detection. The CNN approach and its variants have 
also shown promising success for medical image 
segmentation issues [5]. In particular, for SLS, a vast 
number of CNN-based methods have been presented. 
For instance, inspired from deep residual networks, Yu 
et al. [6] introduced a technique for both SLS and 
melanoma classification problems. Yuan et al. [7] 
introduced as a new loss function called the Jaccard 
distance for training the deep FCN model for SLS. 
Based on the U-Net structure, Tang et al. [8] 
introduced a multi-stage scheme for segmenting skin 
lesion images. More recently, Ünver and Ayan [9] 
have proposed a real-time algorithm for skin 
segmentation by integrating the YOLO with GrabCut 
approaches. Du et al. [10] showed that the contextual 
information is effectively disseminated to higher 
resolution layers due to the plenty of feature maps in 
the decoder part. Tran and Pham [11] proposed a new 
CNN model in which the fuzzy energy-based shape 
distance is used as a new loss function for skin lesion 
segmentation. The crucial benefit of the U-Net 
architecture makes it suitable for many biomedical 
segmentation problems. A good review for skin lesion 
segmentation by CNN approach can be found at [12]. 
Inspired by the successes of the U-Net architecture [4] 
and EfficientNet [13] for image classification tasks, in 
the current study, we proposed an approach network 
with the new idea of a double skip connection encoder-
decoder scheme, namely EDDS, which stands for 
encoder-decoder double skip connection scheme. To 
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this end, we leverage the power of EfficientNet in 
extracting informative features for the encoder path 
and simultaneously increase the layer in the bottleneck 
layer, combining with the Convolutional Block 
Attention Module (CBAM) block [14] to penalize the 
weight for each layer. Besides, the decoder path is also 
rebuilt by modifying Residual block after using the 
proposed way of skip connection layers from the 
encoder path, which is different from the traditional 
method [4] that uses a single skip connection extracted 
from the encoder to the decoder of the same resolution 
layers. Moreover, in addition to using the traditional 
skip connection, we also use an additional connection 
from the preceding layer. In this way, the model could 
retain crucial spatial information. Since a manipulation 
detection approach needs to also analyze higher-level 
image cues along with detecting smooth edges, a 
combination of spatial resolution cues from different 
layers would potentially boost detection performance. 
In this regard, the proposed framework uses a fusion 
of low-level and preceding level representations for 
manipulation detection. Instead of a simple 
concatenation, we added the CBAM block [14] after 
fusing to weight each skip layer to get better 
performance. 

For segmentation performance validation, we 
apply the approach to the official ISIC 2017 Challenge 
and PH2 datasets. The numerical results are assessed 
using standard Dice (DSC) and Jaccard similarity 
coefficients and statistical parameters, including 
accuracy, sensitivity, and specificity. Comparative 
experiments illustrate that our proposed technique 
attains remarkably high accuracy and outperforms 
other state-of-the-art (SOTA) methods. In particular, 
for the official ISIC 2017 challenge data, the proposed 
approach achieves the DSC of 0.907 without using any 
pre-/post-processing stages, the highest score reported 
so far, to the best of our survey. 

Contributions of this study can be pointed out as: 
First, we introduce a double encoder-decoder skip 
connection scheme to improve accuracy. Second, we 
propose rebuilding the decoder part of the U-Net 
architecture by modifying Residual block after using 
the proposed skip connection layers from the encoder 
path. Third, we utilize the EfficientNet layers as 
encoding layers of the proposed U-Net architecture. 

2. Material and Methods 

2.1. Network Architecture 

This section illustrates the network architecture 
presented in Fig. 1, which includes two paths: encoders 
and decoders. The role of the encoder path is to 
compress meaningful features to enhance the model's 
performance. Since training a complicated model from 
scratch with plenty of parameters demand a large 
dataset, in this work, we utilize the idea of transfer 
learning by exploiting pre-trained EfficientNetB3 
layers [13] as the encoder path.  

 
Fig. 1. The architecture of the encoder-decoder double 
skip connection scheme (EDDS-Unet).  

However, collecting an immense amount of 
labelled data is challenging, especially in the case of 
medical images. Therefore, the idea of transfer 
learning could help in inheriting the capacity of pre-
trained models for new problems with the limited 
amount of data and annotations work. 

From that point, the first five blocks of 
EfficientB3 are employed as pre-trained models to 
construct the encoder path. More specifically, the first 
layer consists of convolutional 3×3, a batch 
normalization (BatchNorm) layer, and Swish 
activation. Then five improved structures of 
MobileNetV2 convolutional blocks are added with 
Swish activation, rather than ReLU activation as in the 
original block. In addition, the squeeze-and-excited 
phase [13] is utilized inside to increase the network 
representational ability via dynamic channel-wise 
feature re-calibration. Besides, the head part of 
EffiecientNet is modified by substituting the last 
Global Average Pooling layer and all Dense layers by 
two convolutional 1×1 filters, a BatchNorm, and then 
a Leaky ReLU, which is constructed according to the 
Residual block of ResNet [15]. The detailed structures 
of Encoder and sub-blocks of the Encoder block, as 
well as the BottleNeck of the proposed scheme, are 
presented in Fig. 2. 

Regarding the decoder path, the output of the 
previous encoding layer is firstly upsampled, which is 
then concatenated with the feature maps copied from 
the corresponding encoder path with the same size via 
skip connection structure. Unlike the conventional 
skipped connection encoder-decoder, in our proposed 
skip connection scheme, along with feature maps from 
the corresponding layer in the encoder, the feature 
maps from the preceding encoder layer are also fused 
in skip connection layer after being downsampled to a 
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similar size, as in the gray blocks in Fig. 1. In other 
words, our proposed model processes two types of 
feature maps. 

 
Fig. 2. Structures of (a) the Encoder and (b) sub-blocks 
of the Encoder block and the BottleNeck of the 
proposed scheme.  

 

 
Fig. 3. The structure of the Decoder in the proposed 
scheme.  

Let b b bF W H
eX R × ×∈  denote the set of output 

feature maps copied from the thb Mobile Block in 
encoder, and b b bF W H

dX R × ×∈ . It is worth to mention 
that  11 2b d bW W W −= = × and 11 2b d bH H H −= = × . 
Firstly, dX is passed to an up-convolutional layer 
where an up-sampling and a 2×2 convolution 
operation are performed. In this way, the size of each 
feature map is increased, denoted up

bX , while the 
number of feature channels is reduced, i.e., 1eX − is 
downsampled to 1 .b b bF W Hdown

eX R × ×
− ∈ Following that,

up
bX  is concatenated with 1

down
eX − and eX to yield d

cX . 
Next, d

cX is fed to the modified version of the Residual 

block, which has two sub-blocks containing 
convolutional 3×1 and 1×3 filters, followed by Leaky 
ReLU and then a BatchNorm. After that, the output is 
added with input to integrate the memory or 
information from the first model's layers to the final 
one, producing d

cX . Finally, d
cX goes through CBAM 

block [14] with a ratio of 8, which increases a small 
number of parameters for each channel so that the 
network can refine the importance of each feature map 
with minor cost computing. Consequently, it helps 
discard redundant information while enhancing 
necessary features in up-sampling operations. More 
details about the decoder structure are presented in 
Fig.  3. 

2.2. Training 

The proposed neural network is trained with the 
TPUv2 on Google Colab and programmed with the 
TensorFlow framework. As mentioned in the previous 
subsection, we employ the idea of transfer learning in 
the encoders. To show the effectiveness of using a pre-
trained weight, we also compare the approach when 
trained from scratch with the mini-batch size of 64. In 
more detail, in the case of using pre-trained weights, 
we used weights from ImageNet. For this case, we run 
the first 100 epochs with the encoder weights frozen 
and use the Nadam optimization algorithm with 
default configuration (learning rate (LR) begin with 
0.001). Additionally, the LR would be reduced by 30% 
if the validation performance was not enhanced for 
five epochs. An early stopping callback would be 
applied if the average loss of the training process did 
not decrease for 16 consecutive epochs. Then, we 
unfreeze the encoder path and continue training the 
whole model with the learning rate set to 0.0005 in 
order to prevent wreaking havoc on the representations 
learned by the model so far. The number of epochs for 
training is 50, but the process would be stopped early 
if the validation performance was not enhanced for 21 
epochs. Hence, the total iteration maximum number is 
150. In terms of training from scratch, we train the 
whole model in 250 epochs with the Nadam optimizer 
(LR set to 0.001 initially). Eventually, the training 
process lasted approximately 5 hours, and each sample 
took nearly one second to segment in the testing phase. 

2.3. Loss Function 

In this study, for training the network, we employ 
the variant of the Tversky loss function for handling 
extremely imbalanced database as well as small 
regions of interest in skin lesions. The Tversky loss is 
inspired by the Tversky similarity index (TI) [16], a 
generalization of the DSC expressed as the following:   
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where icp  is the probability that pixel i  in the 
predicted label belongs to the lesion class c , and icp  
refers to the probability the pixel  belongs to non-
lesion class c . The same applied to the pixel of the 
ground truth icg  and icg . In the current work, we 
adopt the Focal Tversky Loss (FTL) in [16] as: 

 ( )
1

1c c
c

FTL TI γ= −∑  (2) 

where hyperparameter 0.7, 0.3, and 4 3α β γ= = =  
as suggested by [16]. 

3. Experimental Results 

3.1. Dataset 

In this work, we first evaluate the method on part 
I of the ISIC 2017 database [17] which contains 2000 
dermoscopic training images and the corresponding 
lesion masks. The validation set contains 150 skin 
mirror-image pairs, including dermoscopic images and 
corresponding segmentation masks. The test data 
consists of 600 image pairs, with the test images used 
for the testing phase and the ground truth masks used 
for segmentation evaluation. The images and masks 
have the different sizes, varying from 540×722 to 
4499×6748 pixels. In addition, we also evaluate the 
proposed approach with the PH2 dataset [18] which 
includes 200 image pairs of the size of 768×560. Each 
image pair includes a skin lesion dermoscopic image 
with a given mask from expert annotation. For 
efficient computation for training and reducing 
memory usage, we scaled all images and masks to 
192×256 then divided them by 255 to normalize the 
data. To increase the number of training data, we 
horizontally and vertically flip the training images and 
their corresponding ground truth masks. 

3.2. Performance Evaluation 

The Jaccard Coefficient (JAC), Dice Similarity 
Coefficient (DSC), the Accuracy (Acc), the Sensitivity 
(Sen), and the Specificity (Spe) are taken into 
implementation to evaluate the effectiveness of the 
proposed approach. The formulations of these 
evaluation metrics are expressed as follows: 

 2
2
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where TP , FN , TN , and FP  are the number of true 
positives, false negatives, true negatives and false 
positives, respectively. 

3.3. Results 

3.3.1. Results on ISIC 2017 challenge dataset 

Some representative obtained results on the 
official ISIC 2017 testing dataset are presented in 
Fig.  4. In this figure, input images are indicated in the 
first column, the obtained results and ground truths are 
provided in the succeeding columns of the figure. The 
overlays between predictive segmentations and the 
ground truth masks are given in the last column. The 
segmentations as well as the overlays show good 
agreements between the predictive labels and ground 
truths. 

 
Fig. 4. Representative segmentation results on the 
ISIC2017 database. From left to right: Input images, 
predicted masks, ground truths, and the overlays 
between the predictions and ground truths. 

 
To quantify the performance of our technique, we 

compared segmentation scores, including JAC and 
DSC, to those reported in previous work. For the ISIC 
2017 challenge database, we compared the results with 
those reported in Tschandl et al. [19], Tu et al. [2], 
Song et al. [20], Zafar et al. [21], Xie et al. [22], 
Jahanifar et al. [23]. We presented the average Dice 
and Jaccard similarity scores of comparative methods 
for the data set in Table 1. In [21], the Res-Unet, which 
is a combination of the ResNet and the U-Net, achieves 
the DSC of 0.858 and the JAC of 0.772.  

i
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Table 1. Comparative segmentation with other state-
of-the-arts on the ISIC2017 database 

Table 2. Comparative segmentation with other state-
of-the-arts on the PH2 database 

Method DSC JAC 

Yuan et al. [7] 0.915 0.815 

Bi et al. [24] 0.921 0.859 

Xue et al. [25] 0.924 0.851 

Tu et al. [2]  0.932 0.863 

  Proposed EDDS-Unet   0.950  0.906 

 
However, Tschandl et al. [19] proposed an 

encoder-decoder architecture employing ResNet34 
with transfer learning approach as encoding layers, 
which outperforms previous works with the DSC of 
0.886. On the other hand, by comparing quantitatively, 
the proposed approach achieves the most remarkable 
segmentation results in terms of both DSC and JAC 
scores (0.907 and 0.841, respectively). This illustrates 
the effectiveness of our EDDS-Unet for SLS. 

3.3.2. Results on PH2 dataset 

Like the case of the ISIC 2017 database, the 
experiments on the PH2 data [18] are also evaluated 
the segmentation performance by our approach 
further. Some representative results on the test images 
of PH2 data using the proposed EDDS-Unet 
architecture are shown in Fig. 5. As can be observed 
from this figure, the obtained prediction masks are 
well agreed with the ground truth masks, with high 
overlaps between the two masks of each image in the 
last column of this figure. 

 
Fig. 5.  Representative segmentation results on the 
PH2 database. From left to right: Input images, 
predicted masks, ground truths, and the overlays 
between the predictions and ground truths. 

For the PH2 database, we compared results with 
DSC and JAC scores from the following works: Yuan 
et al. [7], Bi et al. [24], Xue et al. [25], and Tu et al. 
[2]. In this case, we used the same strategy as Tu et al. 
[2] for training to utilize 50 images for training, 50 
images for validation, and the remaining 100 images 
for the testing stage. The quantitative results are 
represented in Table 2. As the observation from 
Table 2, all existing methods are evidently superior on 
segmenting skin lesions of the PH2 dataset with the 
DSC all over 0.910. However, it is worth emphasizing 
that our result has the dominant ability in handling SLS 
(0.950 DSC and 0.906 JAC), which again 
demonstrates the efficacy of the proposed approach. 

4. Ablation Studies 

To further show the performance of our double 
skip connection (EDDS-Unet), we compare the results 
when removing the second connection (the connection 
with Downsample in Fig. 1). The model with second 
connection ablation is called EDSS (stand for encoder-
decoder with single skip connection). The two 
schemes, EDDS and EDSS, are conducted using the 
proposed network architecture with the same training 
protocol and data. In addition, the process for the two 
schemes is also evaluated when training from scratch 
and reusing the pre-trained weight from ImageNet. 
Some representative results of the two approaches are 
represented in Fig. 6. As shown in the figure, 
prediction results by the EDDS scheme most agree 
with the ground truths even with challenging images, 
especially when using the pre-trained weights, as 
obviously shown in the third, fifth, and last rows. 

For quantitative comparison, we provided 
evaluation scores for two schemes in the cases of 
training from scratch and using pre-trained weights in 
Table 3. The two standard evaluation metrics, 
including DSC and JAC, are used for comparison. In 
addition, we also compute the Accuracy, Sensitivity, 
and Specificity. As we can see from Table 3, the 
double skip connection scheme (EDDS-Unet) gives 
the best scores for all metrics and parameters, 
especially for the Dice and Jaccard scores. 

Method DSC JAC 

Zafar et al. [21] 0.858 0.772 

Tu et al. [2] 0.862 0.768 

Song et al. [20] 0.856 0.765 

Xie et al. [22] 0.879 0.800 

Jahanifar et al. [23] 0.879 0.806 

Tschandl et al. [19] 0.886 0.813 

  Proposed EDDS-Unet  0.907 0.841 
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Table 3. Performance metrics on the ISIC2017 
database of the proposed encoder-decoder double skip 
connection scheme (EDDS-Unet) in comparison with 
those by the traditional single skip connection scheme 
(EDSS-Unet) for all test data 

Metric  Single 
skip, 
 from 
scratch 

Single 
skip, 
pretrained 

Double 
skip,  
from 
scratch 

Double 
skip, 
pretrained 

DSC  0.841 0.862 0.866 0.907 

JAC  0.752 0.776 0.784 0.841 

Acc  0.929 0.942 0.943 0.967 

Sen  0.802 0.827 0.847 0.927 

Spe  0.968 0.978 0.972 0.980 
 

 
Fig. 6. Representative results on the ISIC2017 
database (a) Input images; (b) by EDSS-Unet when 
trained from scratch; (c) by EDSS-Unet using pre-
trained; (d) by EDDS-Unet when trained from scratch; 
(e) by EDDS-Unet using pre-trained. 

For further comparison, we also plot the Receiver 
Operating Characteristic (ROC) curves along with 
Area Under Curve (AUC) values using the above 
schemes in Fig. 7. We can see from the figure that the 
proposed approach with the double skip connection 
scheme and using the pre-trained weights obtained the 
best ROC curve and the highest AUC value, 0.971, 
compared to 0.939 when using the traditional kip 
connection scheme. 

In PH2 database experiment, the comparative 
segmentation results when using the double and single 
skip connections, EDDS and EDSS-Unet, when 
trained from scratch and using the pre-trained weights, 
are also compared. Some representative results are 
given in this experiment are provided in Fig. 8.  

 
Fig. 7. The ROC curves and AUC values for ISIC2017 
database using the studied model in the cases of using 
double skip (EDDS-Unet) and using a single skip 
(EDSS-Unet) for all test data. 

 

 
Fig. 8. Results on the PH2 database. (a) Input images; 
(b) by EDSS-Unet trained from scratch; (c) by EDSS-
Unet using pre-trained; (d) by EDDS-Unet trained 
from scratch; (e) by EDDS-Unet using pre-trained 

As can be observed from the figure, though all 
approaches obtain satisfactory segmentation results, 
the segmentation contours obtained by the double skip 
scheme most closely match the ground truth contours 
created by experts, as obviously shown in the first and 
third rows of Fig. 8. 

Moreover, in addition to the qualitative 
comparison, the quantitative evaluations are also 
assessed for the two schemes with the two training 
cases, from scratch and using pre-trained weights. The 
segmentation scores and parameters are given in 
Table 4. This table shows that the double skip scheme 
achieves higher DSC and JAC scores and specificity 
parameters than the traditional single skip connection 
scheme. 
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Table 4. Performance metrics on the PH2 database of 
the proposed EDDS-Unet compared with those of 
EDSS-Unet for all test data.  

Metric          Single 
skip, 

    from 
scratch 

Single skip, 
pretrained 

Double               
skip, 
from 
scratch 

Double skip, 
pretrained 

DSC 0.924 0.930  0.932 0.950 

JAC 0.863 0.873 0.876 0.906 

Acc 0.95 0.956 0.955 0.972 

Sen 0.967 0.962 0.937 0.970 

Spe 0.943 0.953 0.963 0.974 

 
Fig. 9. The ROC curves and AUC values for PH2 
database using the studied model in the cases of using 
double skip (EDDS-Unet) and using a single skip 
(EDSS-Unet) for all test data. 

Furthermore, the ROC curves along with AUC 
values for all comparative approaches are also plotted 
in Fig. 9. The figure shows that the AUC values 
obtained by the proposed Unet-based architecture are 
all very high, more than 0.977. Nevertheless, the 
values obtained by the double skip connection are also 
higher than those obtained by using the single skip 
connection scheme. 

5. Conclusion 

We have presented a new approach for automated 
segmenting skin lesions. The proposed architecture 
reuses the first layers from the EfficientNet, originally 
built for the image classification task, for the encoding 
layers of the modified U-Net architecture. We also 
introduce a new skipped connection encoder-decoder 
to the network by fusing feature maps from the 
interrelated encoder layer and the preceding layer. In 
addition, we insert modified ResNet blocks and 
CBAM blocks into the decoding path. Experimental 
results on ISIC 2017 and the PH2 database show 
effective skin lesion segmentation with higher Dice 
and Jaccard similarity indexes than those reported by 
previous works. Finally, our proposed model, in 
addition to the skin lesion segmentation problem, can 
be extended to other segmentation applications. 
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