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Abstract 

The paper introduces fuzzy observer-based control for rotary inverted pendulum systems, renowned for their 
inherent instability and complexity. We leverage the Takagi-Sugeno (T-S) fuzzy model, which involves the 
incorporation of local linear models described by fuzzy rules, thus enabling precise and stable control. The 
Takagi-Sugeno (T-S) fuzzy model, a versatile framework renowned for its suitability in complex control 
systems, is central to our approach. The significance of observers in accurately estimating unmeasurable 
states is underlined, with a focus on elucidating the theoretical foundations of fuzzy observers and their role 
in bolstering control robustness. Additionally, we introduce the integration of Linear Matrix Inequalities (LMIs) 
and Parallel Distributed Compensation (PDC) for efficient determination of observer and control gains. These 
advanced tools work in tandem to empower T-S observer control, ensuring both precision and robustness. 
This paper shows the potential of fuzzy observer-based control and achieving stability and high-performance 
control of rotary inverted pendulum systems. The effectiveness of the proposed method is validated through 
simulation results. 
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1. Introduction* 

The rotary inverted pendulum has captivated the 
attention of control scientists due to its inherently 
unstable nature and diverse applications [1-3]. In the 
pursuit of controlling rotary inverted pendulum 
systems, researchers have explored various 
methodologies, including both classical linear control 
techniques and the advantages offered by nonlinear 
control. Nonlinear control methods offer a critical 
advantage in addressing the complex, nonlinear 
dynamics of the rotary inverted pendulum, where 
linear approaches often fall short [4]. 

Among these nonlinear control strategies, fuzzy 
control, a notable example, plays a pivotal role in 
managing the intricate and dynamic behavior of the 
rotary inverted pendulum [5, 6]. Its inherent 
adaptability and rule-based nature make fuzzy control 
particularly well-suited for taming the inherent 
instability of such systems and achieving precise 
control in control applications. As researching the field 
of fuzzy control, the Takagi-Sugeno (T-S) fuzzy model 
emerges as a compelling approach for addressing the 
complex dynamics [7, 8]. This methodology involves 
breaking down the system into local linear models, 
each described by fuzzy rules, which adapt to the 
varying operating conditions. By combining these 
local models, the T-S fuzzy control approach offers the 
capability to provide precise and stable control across 
a wide range of conditions, making it an appealing 
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choice for tackling the challenges posed by the rotary 
inverted pendulum. 

In the real-world control of systems such as the 
rotary inverted pendulum, practical constraints often 
hinder the direct measurement of certain critical states. 
These limitations stem from factors like sensor 
inaccuracies or physical restrictions. Consequently, 
employing an observer becomes not only a necessity 
but a pragmatic solution to estimate these 
unmeasurable states accurately. Observers play a 
crucial role in enhancing the robustness and 
effectiveness of control strategies in the face of these 
challenges. We delve into the theory of fuzzy 
observers and our approach draw inspiration from the 
well-established Takagi-Sugeno (T-S) model, 
renowned for its capacity to address complex, 
nonlinear systems. By constructing a fuzzy observer 
based on the T-S model, we seek to overcome the 
challenge of observability and showcase the practical 
advantages of employing fuzzy observer-based control 
within the framework of rotary inverted pendulum 
systems. 

In the realm of Takagi-Sugeno (T-S) observer 
control design, the complexity of the task necessitates 
the incorporation of advanced tools to derive observer 
gains and control gains efficiently. Linear Matrix 
Inequalities (LMIs) and Parallel Distributed 
Compensation (PDC) stand out as indispensable 
components of this process. LMIs provide a systematic 
and effective way to formulate and solve the problems 
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involved in determining observer gains [9, 10]. PDC 
[11, 12], on the other hand, facilitates the decoupled 
design of observer and control gains, enhancing the 
performance of the control system. The synergistic use 
of these techniques empowers the T-S observer control 
design to achieve precision and robustness in the 
challenging context of rotary inverted pendulum 
systems. This paper, therefore, seeks to contribute to 
the expanding domain of fuzzy control by providing 
insights into the application of fuzzy observer-based 
control and aim to highlight the potential of fuzzy 
control strategies in achieving stability and high-
performance control in the intricate domain of rotary 
inverted pendulum systems. 

2. Fuzzy Observer-Based Control Design 

In this section, we delve into the task of modeling 
the dynamic behavior of the rotary inverted pendulum 
(RIP). The state equation of the RIP is initially 
presented, offering a foundation for the subsequent 
analysis. Following the work in [7], we do the task of 
transforming the state equation into a Takagi-Sugeno 
(T-S) fuzzy model. This T-S fuzzy model, 
characterized by eight premise variables and an 256 
fuzzy rules, enables us to capture the nonlinear 
dynamics of the RIP system.  

 
Fig. 1.  RIP system 

 
The state equations for the RIP system in Fig. 1 

can be expressed as:  
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where φ ,θ   are angles of the pendulum and its arm. 

The values of ,  1,7id i =  are calculated using the 
following formulas: 
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where g  represents the gravitational acceleration, m  
signifies the mass of pendulum rod, l  denotes the 
length of pendulum rod, ar  is the length of pendulum 
arm, eqJ  corresponds the equivalent moment of inertia 
considering both the pendulum arm and gears, mJ  
indicates the moment of inertia of the motor rotor, aB  
represents the friction coefficient of the pendulum arm 
and rB  is the friction of pendulum rod, tK  signifies 
the torque constant, vK  denotes the motor velocity 

constant or back EMF constant, R  is the motor 
armature resistance, gK  represents the gearbox ratio, 

gn  is gearbox efficiency, mn  corresponds motor 
efficiency and mu is the control output. 

The following T-S fuzzy model can be used to 
describe the dynamic behaviour of the system: 
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in which  
T

x φ θ φ θ=     , T
y φ θ φ θ=      

r is number of fuzzy rules,  

i corresponds to the ith rule,  

h denotes the membership function,  

z signifies the premise variable, 

A, B are state matrices and 𝐴𝐴𝑖𝑖,𝐵𝐵𝑖𝑖  are the sub 
matrices of fuzzy system. 
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The membership function ( )ih z  has convex sum 

property like 
1
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with ( )i zϖ is grade of each fuzzy 

rules i , see [7]. 

Using the equation of state, it is possible to 
establish a T-S fuzzy model as illustrated below: 
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According to [7], the authors employed the T-S 
fuzzy model to regulate stability in the RIP system. In 
this work, the authors elucidated the process of 
selecting T-S fuzzy rules and ultimately recommended 
choosing 8 premise variables with 256 fuzzy rules. To 
formulate the T-S model, choose 8 premise variables 
following this format: 

( )

( )

12 2 2 2
1 1 5 2 1

3
4 5 1 4

2

2 2
3 3 5 2 1 3

4 2 7

2 3
2 6 1 1 5

5 2
1 2

2 4
6

7 2 3

4 3 4

3

3
3 ,

3
2

3

3 4

z d d d cos d sin

d d sin d d sin
z

z d d d cos sin d d sin
z d d cos

d d cos d cos sin d d cos sin
z

d d cos sin
d d cos sinz

z d d cos d

φ φ

φ φ
φ

φ φ φ φ
φ

φ θ φ φ θ φ φ

φ φ φ
φ φ

φ
φ

−
= − +

+
=

= − + +

= −

 + +
=   + 

= −

= +



 



( )
1 2

2 2
8 1 6 1 2 14 3 8

d sin

z d d d d cos sin d cos sin

φ φ

θ φ φ φ φ φ= − + +



 

 

Consequently, the matrix A and B  is updated as 
follows: 
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Hence, the T-S fuzzy model of the RIP system is 
characterized by 256 fuzzy rules, constructed from 8 
premise variables.  

3. Control Design 

In this section, we embark on the critical phase of 
control design for the RIP system. Our approach 
centres on constructing an observer control based on 
the T-S control model, specially tailored to the 
complex dynamics of the system. We will also delve 
into the development of a stability controller. The 
foundation of our control strategies lies in the adept use 
of Linear Matrix Inequalities (LMI) and Parallel 
Distributed Compensation (PDC), allowing us to 
design control solutions that not only ensure system 
stability but also offer performance guarantees. 
Through rigorous proof and analysis, we will 
demonstrate the effectiveness and reliability of these 
control methodologies in the intricate domain of RIP 
systems.   

Assumption 1 

The variables in the T-S fuzzy model are 
independent of the estimated state variables. It means 
that , , , , ( )i i i i iA B L C h z  can be determined without the 
need for state estimation.  

With above assumption, the continuous observer 
can be expressed as the following: 
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where x, y are the system’s state and output vectors and 
its estimated vector from observer ˆ ˆ,x y ; ( )

ih z  is the 
membership function; u is the system input. 

, , ,i i i iA B L C  are the system matrix, control, 
observation, and output matrices of the system. 

Define the estimation error of the observer as: 
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From equations (4), (6), and (7) we have: 

( )

1 1 1

1

1

1

1 1

( ) ( ) ( ) ( ) ( )

  ( )( )

ˆ( ) ( )

  ( )( )

  ( )

ˆ

( )( )

ˆ

r r r

i i i j j j j
i j j

r

i i i
i

r

i i i i
i

r

i i
i

r r

i j i i j
i j

h z A x e L h z C x h z C x e

x

h z A x B u

h z A B u L y y

h z A x

h z h z A L C e

e x

x

= = =

=

=

=

= =

− − + − −

= −

= +

− + + −

=

 
 


 

=



−


 

∑ ∑ ∑

∑

∑

∑

∑∑





 (8) 

The PDC controller is designed based on the state 
variables from observer as: 
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From equations (4), (7), and (9) we have: 
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Define [ ]Tx x eα = , and replace into (8) and 
(10), we obtain: 
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Theorem 1 

The system described by equation (12) is 
asymptotically stable if there exists a positive definite 
matrix P that satisfies the following equalities: 
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The roots to Theorem 1 will be obtained through 
the Lyapunov stability condition. The calculations will 
be performed using the Yalmip toolbox in Matlab. The 
Yalmip toolbox in Matlab facilitates the application of 
the Lyapunov stability condition by providing a user-
friendly interface for modeling and solving 
optimization problems in control theory. 

Proof 

Considering the Lyapunov function as 
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The system (12) is stable if and only if: 
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And the Theorem 1 is concluded. 

LMI-based Controller and Observer 

Suppose that the Assumption 1 is satisfied and 
assuming that 0i jB F e i j= ∀ ≤ , the matrix G ij  can be 
rewritten as  

0
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Choosing the following positive definite matrix P: 
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where 1 2,P P  are suitable positive definite matrices. 
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By denoting  i iM F X=  and 2i iN P L= , 
conditions (23), (25), (26), and (27) can be 
transformed as follows: 

    0T T T
i i i i i iXA M B A X B M− + − <  (28) 

              0          

T T T
i j i i i j

T T T
j i j j j i

XA M B A X B M

XA M B A X B M

− + −

+ − + − ≤

 (29) 
2 2 0T T T

i i i i i iA P C N P A N C− + − <  (30) 

2 2

2 2

 

0
                                    
                     

          
  

 )
  

s
      

 .t. ( ) (
     

T T T
i j i i i j

T T T
j i j j j i

i j

A P C N P A N C

A P C N P A N C
i j h z h z

− + −

+ − + − ≤

< ∩ ≠ ∅

 (31) 
Remark 

In (31), there exists the condition that:
 s.t. ( ) ( )i ji j h z h z< ∩ ≠ ∅ . This implies that the 

condition should be maintained for all i j< , excluding 
the case where i jh h∩ ≠ ∅ ,  ( ) ( )i jh z h z× = ∅ for all 

z , where ( )ih z  denotes the weight of the ith rule. This 
can be understood as i jh h∩ =∅  when the thi  rule 

and thj  rules do not overlap. 

The LMI conditions (28), (29), (30), and (31) can 
be used instead of the Theorem 1’s conditions. The 
variables 2, , ,i iX M P N  is obtained by using LMI 
technique. As a results, the controller and observers’ 
parameters are 1

i iF M X −=  and 1
2i iL P N−= . 

By constructing a common Lyapunov function 
for all subsystems of the T-S fuzzy system, overall 
system stability will be achieved when all subsystems, 
as described by (11), are stable. To attain stability in 
the subsystems, it is necessary to find a solution that 
simultaneously satisfies the conditions determined in 
(28-31). Simultaneously, with the existence of 
Assumption 1, the separation principle is applied to 
divide the overall system into two distinct parts, each 
performing separate tasks: stability control and 
observation. 

4. Simulation Results 

The simulation is carried out based on the 
following initial conditions: 

; ( )
3 3

[0;2 ] ( )
[ 2.5;0.5] ( / )
[ 0.5;5] ( / )

rad

rad
rad s

rad s

π πφ

θ π

φ

θ

  ∈ −    ∈
 ∈ −
 ∈ −





 (32) 

The parameters for the RIP system are derived 
from the parameters of the inverted pendulum of 
Quanser, as outlined in [7]. 

2

3 2

7 2

3

3

9.81 ( / );  
0.335 ( );  
0.125 ( );
0.215 ( );  

3.5842 10  ( );

3.87 10  ( );  
0.004 ( / );

7.67 10  ( / );  
0.0095 ( / );
7.67 10  ( / );  

2.6 ( );  
70;

a

eq

m

a

t

r

v

g

g m s
l m
m kg
r m

J kgm

J kgm
B Nms rad

K Nm A
B Nms rad
K Vs rad
R
K
n

−

−

−

−

=
=
=
=

= ×

= ×
=

= ×
=

= ×
= Ω
=

0.9;  
0.69.

g

mn





















 =


=

 

The upper and lower boundary of premise 
variables are obtained and provided in Table 1. 
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Table 1. The boundary of premise variables. 

Premise 
variables  

Boundary values 

minz  maxz  

1z  40.5665 10×  41.0583 10×  

2z  468.0000 10−×  471.0000 10−×  

3z  44.5624 10−− ×  417.0000 10−− ×  

4z  42.7447 10−− ×  48.6590 10−− ×  

5z  41.6960 10−×  411.0000 10−×  

6z  428.0000 10−− ×  411.0000 10−− ×  

7z  40.726 10−− ×  42.0343 10−×  

8z  412.000 10−− ×  48.9050 10−− ×  

 
The positive definite matrices 1 2,P P are: 

1

2

296244.26 73.73 40056.28 1802.78
73.73 0.05 9.98 0.46

40056.28 9.98 5427.31 248.47
1802.78 0.46 248.47 16.34

1138.62 180.21 176.01 247.25
180.21 506.56 4.44 19.24
176.01 4.44 32.81 50.78
247.25 19.24 50.7

P

P

 
 
 =
 
 
 

− −
− −

=
− −
− −

810

8 335.03

−









 
 
  ×
 
 
 

 (33) 

Finally, there are the selected rules: 

1st Rule 

1

1

1

0 0 1 0
0 0 0 1

;  
75.287 0 2.905 2.153
12.139 0 12.114 9.425

0
0

;
9.164

19.039

1.746 0.541 9.649 0.185
0.544 0.664 2.978 0.082

10
9.596 2.941 63.026 2.512
0.197 0.085 2.601 0.995

A

B

L

 
 
 =
 −
 
− − 
 
 
 =
 −
 
 

− − 
 − − = ×
 − −
 
− − 
[ ]

5

1 2302.21 0.57 310.42 14.39

;

F




















 = − − − −

 

 

 

16th rule 

16

16

16

0 0 1 0
0 0 0 1

75.287 0 2.905 0.768
29.357 0 1.795 12.207

0
0

9.164
19.039

1.751 0.551 9.637 0.203
0.546 0.667 2.975 0.087

1
9.630 3.005 62.951 2.626
0.199 0.086 2.599 0.999

A

B

L

 
 
 =
 − −
 
− − 
 
 
 =
 −
 
 

− − 
 − − = ×
 − −
 
− − 
[ ]

5

16

0

3360.54 0.84 454.04 20.99F = − − − −

 

64th rule 

 

64

64

64

0 0 1 0
0 0 0 1

75.287 0 4.829 0.768
29.357 0 1.795 12.207

0
0

18.329
19.039

1.754 0.552 9.642 0.204
0.547 0.668 2.977 0.087

9.645 3.010 62.979 2.632
0.199 0.087 2.601 0.995

A

B

L

 
 
 =
 − −
 
− − 
 
 
 =
 −
 
 

− − 
 − − = ×
 − −
 
− − 
[ ]

5

64

10

5362.43 1.33 725.61 33.53F = − − − −

 

128th rule 

128

128

128

0 0 1 0
0 0 0 1

72.187 0 4.829 0.768
29.357 0 1.795 12.207

0
0

18.329
19.039

1.755 0.553 9.644 0.204
0.544 0.668 2.977 0.087

9.655 3.014 62.993 2.634
0.198 0.087 2.601 0.999

A

B

L

 
 
 =
 − −
 
− − 
 
 
 =
 −
 
 

− − 
 − − =
 − −

− − 
[ ]

5

128

10

3937.38 0.98 532.47 24.68F

×



= − − − −
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256th rule 

256

256

256

0 0 1 0
0 0 0 1

38.540 0 2.578 0.410
15.673 0 0.958 6.517

0
0

9.785
10.165

1.766 0.552 9.647 0.208
0.507 0.667 2.979 0.089

9.722 3.008 63.025 2.662
0.202 0.087 2.603 1.002

A

B

L

 
 
 =
 − −
 
− − 
 
 
 =
 −
 
− 

− − 
 − − =
 − −

− − 
[ ]

5

256

1 2 256

10

5664.39 1.41 766.09 35.19

1 0 0 0
0 1 0 0
0 0 0
0 0 0

1
1

F

C C C C

×



= − − − −

 
 
 = = = = =
 
 
 



 

Specify the initial conditions of both the 
controller and observer as follows:  

(0) , 0, 0, 0 , (0) , , 0.2, 1
12 8 24

T T

c ox xπ π π   = = − −      
.  

Simultaneously, it's essential to consider that the 
actuator's voltage output is constrained within the 
range of [-24;24] V.  

Fig. 2 through Fig. 5 depict the outcomes of the 
observation board. Fig. 2 and Fig 3 illustrate the error 
of the system and the observed angle, while Fig. 4 and 
Fig. 5 present the velocity angle error of observer 
control. 

Analysing the figures referenced as Fig. 2, Fig. 3, 
Fig. 4, and Fig. 5 reveals a rapid convergence of the 
estimated values to the actual values within a relatively 
short timeframe. In approximately 0.5 milliseconds, all 
estimated states closely align with their real 
counterparts. Furthermore, the error variation is 
notably small, hovering around only 0.14 rad in the 
case of Fig. 2. Conversely, in the remaining scenarios, 
the error graphs steadily converge to zero, exhibiting 
no fluctuations beyond the initial conditions. This 
observation underscores the observer's effectiveness as 
it efficiently drives the error to zero before any 
alterations in the real states occur, all without incurring 
transient changes.

 
Fig. 2.  Error between the system and the observer of 
angleφ . 

 
Fig. 4.  Error between the system and the observer of 
angle velocityφ . 

 
Fig. 3.  Error between the system and the observer of 
angle θ . 

 
Fig. 5.  Error between the system and the observer of 
angle velocity θ . 
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Fig. 6.  Angular response φ  of controller and 
observer 

 
Fig. 8.  Angular velocity response φ  of controller and 
observer. 

 
Fig. 7.  Angular response θ  of controller and 
observer 

 

Fig. 9.  Angular velocity response θ  of controller and 
observer. 

 
Observing the Fig. 6, Fig. 7, Fig. 8, Fig. 9 

underscores the remarkable capability of the observer 
to faithfully track the controller's trajectory, even in 
scenarios where the initial conditions of the observer 
and controller differ. Furthermore, it is evident that the 
state variables of the actual system attain stability at 
distinct rates. Variables such as φ  and φ  reach 

stability within approximately 1s, while θ  stabilizes at 
around 35s and θ  requires a substantial 100s to reach 
true stability. 

In stark contrast, the observer swiftly follows the 
real trajectory in just about 0.5 milliseconds. 
Moreover, following stabilization, the estimated 
values remain consistently unaltered when subjected to 
control signals. This compellingly demonstrates the 
feasibility of utilizing observers to estimate states or 
disturbances, even when the initial conditions of these 
factors are unknown. An intriguing observation is the 
differing rates at which φ and φ attain their steady 
states in comparison to the relatively gradual return to 
the original position of θ . 

Analysis of the control signal graph in Fig. 10 
reveals an initial surge in control voltage to a 
maximum of 24 V, gradually approaching zero 
afterward. This behaviour is attributed to the need for 
voltage to stabilize φ  once its steady state is reached, 
thereby restoring θ  to its initial position. 

 
Fig. 10. Control signal. 



  
JST: Smart Systems and Devices 

Volume 34, Issue 1, January 2024, 042-050 

50 

Due to the modest voltage, the supplied torque 
remains relatively small, thus explaining the 100 s 
timeframe required for θ  to fully revert. Furthermore, 
it is noteworthy that even when control signals are 
restricted to match the actuator's response capacity, 
both the controller and observer continue to function 
effectively, underscoring the practical applicability of 
this approach. 

5. Conclusion 

This study shows a comprehensive integration of 
the control and observation of rotary inverted 
pendulum (RIP) systems, characterized by their 
inherent instability and complexity. Leveraging the 
Takagi-Sugeno (T-S) fuzzy model, we have 
successfully devised control strategies to the 
management of this systems. Through the integration 
of observers, we've demonstrated the ability to 
accurately estimate unmeasurable states. The results 
have shown the rapid convergence of estimated values 
to the actual system behavior, highlighting the 
efficiency of the observer control approach. The 
combination of LMI and PDC has further fortified the 
control framework, ensuring stability and control 
performance. This work contributes to the growing 
domain of fuzzy control, offering valuable insights 
into the potential of fuzzy observer-based control for 
achieving stability and high-performance control in the 
challenging domain of RIP systems. The results 
presented here offer promise for further advancements 
in the field and the development of control solutions 
for a wide range of complex systems. 
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