

JST: Smart Systems and Devices

Volume 31, Issue 1, May 2021, 009-016

9

Android Malware Classification Using Deep Learning CNN

with Co-Occurrence Matrix Feature

Le Duc Thuan1,2, Hoang Van Hiep1*, Nguyen Kim Khanh1
1 Hanoi University of Science and Technology, Hanoi, Vietnam

2 Academy of Cryptography Techniques, Hanoi, Vietnam
Email: hiephv@soict.hust.edu.vn

Abstract

Recently, deep learning has been widely applying to speech and image recognition. Convolutional neural
network (CNN) is one of the main categories to do image classifications with very high accuracy. In Android
malware classification field, many works have been trying to convert Android malwares into “images” to
make them well-matched with the CNN input to take advantage of the CNN model. The performance,
however, is not significantly improved because simply converting malwares into images may lack several
important features of the malwares. This paper proposes a method for improving the feature set of Android
malware classification based on co-concurrence matrix (co-matrix). The co-matrix is established based on a
list of raw features extracted from .apk files. The proposed feature can take the advantage of CNN while
remaining important features of the Android malwares. Experimental results of CNN model conducted on a
very popular Android malware dataset, Drebin, prove the feasibility of our proposed co-matrix feature.

Keywords: Android Malware classification, Drebin, Co-Matrix, CNN.

1. Introduction*

As of April 2020, the market share of Android
operating system (OS) accounts for 70.68% on
mobile devices [1], which indicates the prevalence of
Android OS over the others. According to AV-Test
[2], in April 2020, there were more than 9 million
malwares discovered on operating systems, in which
1.29 million malwares were found in Android-based
platform. Although Android OS always offers
security updates periodically (currently Android 10 is
the newest), but with user habits that accept all
applications’ access requests, it is very likely that
their mobile phone might be injected with malware
and paved the way for hackers’ actions. Without
proper control of the app, the user is easily exposed to
safety threats.

Many applications containing malwares can
bypass the strict inspection of Google and make them
available on the Google Play Store [3]. Moreover, in
contrast to other platforms, Android allows users to
install an app from unverified sources such as third-
party websites or markets. This makes managing and
testing applications more challenging. In addition,
investigating an .apk file is more difficult than a
normal execution file because the information is not
only stored in one main file like Windows-based
system (PE file). Malware classification on the
Android platform is therefore still mandatory for the
software industry and a hot topic for the research
community as well.

ISSN: 2734-9373
https://doi.org/10.51316/jst.150.ssad.2021.31.1.2
Received: 17 November 2020; accepted: 10 March 2021

One of the most difficult issues when dealing
with Android malware classification problems is to
build up a good dataset, i.e., a dataset may have
various malware families and a balance of the number
of benign and malware files. Currently, there are two
popular Android malware datasets opening for
research groups, namely Drebin [4] and AMD [5].
These datasets include benign and malware-infected
set for analysis and testing. They have been being
used by many research groups from many prestigious
universities. Benign files are collected from the app
market and some other sources based on the
assumption that they are verified as clean. The dataset
is therefore a challenge for research teams working
on Android malware classification.

Recently, the convolution neuron network
(CNN) shows a great advantage in classification
problem. CNN was originally applied for image
classification (object identification, face
classification, medical imaging, etc.). CNN was then
applied to other classification problems such as
speech recognition, handwriting recognition, malware
classification, etc. By using a sequence of
convolution, CNN can learn the relationship among
pixels in an image, therefore it can help to increase
the final classification rate. In the malware analysis
field, to apply CNN, it is needed to find an effective
way to convert from a malware file into an “image”.
In other words, we need to extract features from
malware files and store them in a matrix-based
format. Many related works simply convert an .apk
file into a digital matrix (image) and treat it as input
for CNN [7-8]. This approach has two drawbacks as
follows: (i) CNN requires the size of all the input
“images” exactly the same but the size of .apk files

JST: Smart Systems and Devices

Volume 31, Issue 1, May 2021, 009-016

10

are unequal, some paddings or cuttings are therefore
required, this reshape may affect the final
classification rate; and (ii) the “image” converted
from an .apk file may lack several features of the
original one such as API function list, permission
request, and/or the relationship among API and
permission, etc. In this paper, we propose to use a co-
occurrence matrix (co-matrix) to represent the
features, in which, one element of the matrix shows
the concurrency of two different features. This idea
comes with the assumption that malware may never
call only one API (or request only one permission)
but some APIs (or request several permissions).
Therefore, the concurrence of API calling and/or
permission requesting can be used as a feature to
distinguish between a benign and a malware one. In
addition, the co-matrix is a matrix so that it is
perfectly fit as the input of the CNN. It is hoped that
this proposed co-matrix feature can help improve the
accuracy of classification.

Related works on Android malware
classification can be divided into two approaches:
based on conventional machine learning approach
and based on deep learning one. For the former
approach, D. Arp et al. has introduced a dataset
named Drebin which is widely used by many other
research groups later [4]. The dataset contains
5,560 malware files and 126,051 benign files. For
classification, the author proposed to use SVM with
feature sets including used permissions, suspicious
APIs, network addresses which are extracted from
API files. The classification rate is about 94%. Rana
M.S. et al. evaluated Random Forest algorithm [6]
with a part of Drebin dataset consisting of
5,560 malware files and 5,560 benign files (the
number of malware and benign files are equal). The
feature sets are almost the same as in [4] except API
strings and URLs are added. The highest
classification rate reached 97.24%. However, this
result is only for binary classification, i.e., malware or
benign.

For the deep learning approach, in [7], the authors
proposed a dynamic routing-based Capsule network
with feature sets are collected by simply converting
malware binary files into color images. The
performance of Capsule network is compared to the
one of CNN on two malware datasets: Windows and
Android dataset. The Android one is a part of Drebin
dataset (4,000 malware files consist of 20 families
and 6,000 benign files). The results indicated that the
performance of Capsule network is almost the same
as that of CNN in the case of Windows malware
dataset (96.5% and 96.8% of accuracy). On the other
hand, the performance of Capsule network is
significantly higher than that of CNN in the case of
Android dataset (classification rate is 99.3% with
CapNets and 79.3% with CNN model respectively).
Based on these results, can we conclude that CNN is
not suitable for Android malware classification? It is
hard to answer immediately but one point can be
figured out is that simply converting Android .apk
file to image file seems to take away the links
between important features of Android malware,
which leads to a worse result when using CNN.

Using the same idea of converting to image
format, T. H. Huang et al [8] proposed a color-
inspired CNN-based malware detection (R2-D2). The
system converts the byte code of classes.dex file from
Android archive to rgb color code and save it as a
color image with a fixed size. The image is then
input to CNN for automatic feature extraction and
training. The evaluated dataset was manually built
from Jan. 2017 to Aug. 2017 which contains
5,377 malware files and 6,249 benign files. Even
though the authors showed good accuracy of
classification (93%), evaluation on a self-build
dataset may have some biases.

Follow a different approach, Zhiwu Xu et al. [9]
did not convert .apk file into image but “.smali file”
(running code on Dalvik Virtual Machine). The
.smali file is then converted to digital matrix by using
Control Flow Graph (CFG) and Data Flow Graph
(DFG) algorithms. The digital matrix is treated as an

Fig. 1. System model for Android malware classification

JST: Smart Systems and Devices

Volume 31, Issue 1, May 2021, 009-016

11

input for the CNN model. The authors collect 24,485
benign files and 3,166 malware files for testing, and
50,501 benign files and 7,406 malware files for
training. Those files were collected from several
sources including Darvin, Drebin, VirusShare,
ContaigioDump. The accuracy of binary
classification is very precise, 99.5%. However, the
proposed method is only applying for malware
detection, not for malware classification.

In paper [10], Chenglin Li et al. have used two
datasets including 5,560 malwares of Drebin with
5600 benigns, and 24553 malwares of AMD with
16,753 benigns. The authors proposed a Factorization
algorithm, the feature set was the same as that used in
Drebin work [4], the classification results with Drebin
and AMD dataset were up to 99.46% and 99.05%
respectively. Other machine learning algorithms such
as SVM, NB-G, NB-B, NB-M, MLP. also produce
very high classification rates on the Drebin dataset,
especially MLP reached up to 99.73% rate. In these
papers, both the AndroidManifest.xml and
classes.dex files are used to convert into *.smali files,
these *.smali files are then used to extract internal
features. In the paper, the author also created a
correlation between the features and sought to choose
the appropriate algorithm for the dataset. However, it
is necessary to classify many families of malware
instead of just the two classes benign and malware.

In summary, the traditional machine learning
approach requires complex feature extraction work in
advance. The feature sets for Android malware
normally are API calls, permission requests, network
address, URL, etc. For the classification step, many
algorithms could be applied such as SVM, Decision
Tree, MLP, etc. The final classification result mainly
depends on the quality of extracting feature sets. On
the other hand, deep learning approach, the CNN,
does not require feature extraction in advance but
needs a large number of labeled samples. Moreover,
CNN requires an effective way to convert Android
.apk file into matrix-based format. Some works
indicate that simply converting Android .apk file to
image is not efficient.

This paper proposes to use co-matrix feature as
input to CNN. We evaluate the proposed feature by
evaluating the CNN in two scenarios: with and
without using co-matrix. Experiments are conducted
on the malware dataset provided by Drebin including
5,560 malware files of 179 families. To evaluate the
performance, we use metrics like ACC, F1, FPR, PR,
RC. It is found that when using the co-matrix, the
accuracy average of CNN increased from 95.78% to
96.23%.

The remaining of the paper is structured as
follows: in section 2, we show system modeling and
implementation idea. Section 3 describes in detail the
feature extraction process. Section 4 discusses the

machine learning algorithms used to classify benign
and malware families in this paper. In section 5, we
describe experimental results. Section 6 draws some
conclusions and points out future work.

2. Implementation Idea

Figure 1 shows the implementation idea of this
paper. To prove the effectiveness of co-concurrence
matrix feature, we set up two scenarios with and
without using co-matrix feature computation module.
The process is as follows:

- From .apk files, the raw feature extraction
module extracts features including API call
strings, and permission requests.

- For the baseline architecture, the raw features go
to the Normal matrix formation module. The
module converts the raw features, in string
format, into a vector by using a dictionary of
API calls and permission. Each element in the
vector has one of two values: 1 or 0 depending
on whether we can find the API or the
permission in the current .apk file or not. The
vector is then reshaped to a matrix which is
latter treat as the input of CNN. For the
proposed architecture, raw features go to the co-
matrix feature computation module. The module
forms a matrix based on the concurrence
appearance of two APIs or permissions in the
.API file.

JST: Smart Systems and Devices

Volume 31, Issue 1, May 2021, 009-016

12

- Next, CNN module is applied to learn the
features and to classify the apk files into benign
or specific malware families.

3. Features Extraction

3.1. Raw Feature Extraction

An .apk file is essentially a compressed file with
the following structure:
- META-INF/: this folder contains description

information from java jar file

- Res/: this folder contains the source material
- Libs/: this folder contains libraries

- AndroidManifest.xml: contains configuration
information about access rights and used
services.

- Classes.dex: this file contains java bytecode of
the .apk file

- Resources.asc: contains pre-complied resources
such as string, colors, styles.

Fig. 2. Output matrix with different size

To extract features from .apk files, we can
utilize many tools such as Apk tool, Dex2jar,
Baksmali, Androguard, Jadx, Jd-gui, Androidpytool.
In this paper, we use Androidpytool to extract
features. All the features are static analysis ones
extracted from two files: AndroidManifest.xml and
classes.dex.

 From the raw feature sets, we remove the
outliers by keeping only topmost 200 popular APIs
appearing in all .apk files. These features, in the form
of strings, are input of the next module in the process
chain as mentioned in Fig.1. Algorithm 1 illustrates
the implementation to convert from string features
into number vector.

3.2. Proposed Co-Matrix Feature Computation

After converting raw features in string form to a
vector of numbers. The next step is to reshape this
vector to a matrix which can be used as input of CNN
latter. This step may have a huge impact on the final
classification results. The reason is that the order of
features might be changed a lot when we reshape the
vector to different matrix size. Figure 2 illustrates an

example of forming output matrix with different
sizes. Due to the fact that a harmful malware tends to
call an API together with another one or a permission
request (e.g., the API CreateFile might be called
together with INTERNET_ACCESS permission in a
malware). CNN can learn the relationship between
these two elements if they are located close to each
other in the output matrix, i.e., in case of forming
matrix as k by k. In contrast, CNN may lose the
information if we form the output matrix in different
sizes, i.e., (k+1) by (k+1), as shown in Fig.2. Hence,
using CNN, the order of elements in the input vector
also affects the final classification rate.

Our proposed co-matrix can solve the problem
of input elements reordering because the co-matrix
focuses on the concurrence that appears between two
elements rather than a single element.

The co-matrix was first mentioned in 1957 when
linguist J.R Firth [15] referred to the relationship
between words in a sentence. A word is represented
semantically by the words around it, so the placement
of words will affect the meaning of the sentence. The
co-matrix is described as follows:

 Roses Are Red Sky Is blue
Roses 1 1 1 0 0 0
Are 1 1 1 0 0 0
Red 1 1 1 0 0 0
Sky 0 0 0 1 1 1
Is 0 0 0 1 1 1
blue 0 0 0 1 1 1

Here, the co-matrix is now connected in each
word of the paragraph. We apply this idea to the
Android malware features. The implementation of co-
concurrence matrix computation is described in
Algorithm 2.

Co-matrix is currently used in image
classification problems as in [16-19]. Co-matrix is
currently used in word recognition, image, or face
classification problems.

4. Malware Classification Based on CNN Model

CNN model has shown state-of-the-art
performance in many fields including image
recognition, natural language processing, and
malware classification [20, 21].

4.1. Input

The input is stated as a matrix of numbers, this
input matrix can have the form of vector or NxM
matrix. One or several matrices could be used as
input.

4.2. Convolutional Layer

The convolution layer uses a sliding matrix,
with the number of sliding matrix k is the number of
matrices in the convolutional layer. If the input is of

JST: Smart Systems and Devices

Volume 31, Issue 1, May 2021, 009-016

13

NxM matrix, then there are k NxM matrices in the
convolutional layer.

Each convolutional layer uses an activation
function to produce the result for pooling. Without
this function, a complete neural network will move in
a linear direction from a node’s input to its
corresponding output.

 ReLU function is used to transform the input to
the maximum of either zero or input itself and it is
defined by Equation (1).

0 w 0
Relu()

w 0
hen x

x
x hen x

<
=  ≥

(1)

4.3. Pooling Layer

Each matrix in the Convolutional layer will be
processed to reduce the number of features. Pooling
layer takes the representative for each matrix in
Convolutional layer based on Formula (2):

(,) ij
kij kpqp q

Y FUNC x
η∈

= (2)

where:

kijY : Output value k of mapping feature

kpqx : Element (p, q) stored pooling ijη .

FUNC is often used as MAX or Average.

4.4. Fully connected layers

When passing through all the convolutional
layer and pooling layer, the features will be
represented in vector form, namely flatten layer. The
neuron will proceed through the hidden layer to the
output layer. The neuron from flattening layer to
output layer will be fully connected via hidden layer.
For each connection from neuron A to neuron B, there
will a weight number, and the final weighted matrix
is the result of the training process.

The output layer is the labeling layer, which
decides which label is assigned to which file.
Softmax activation function is often used to compute
the jth output value according to Equation (3):

1

()
j

k

o

j n
o

k

ef z
e

=

=

∑

(3)

Figure 3 shows the CNN model used in this
paper. An input data can go through many CNN
models. We use two CNN models with each model
being a feature group with different dimensions of the
input matrix, after going through the convolutional
and pooling layers, the features will be combined
before putting into neural network to classify the
output. In this experiment, we use three convolution
and pooling layers to pre-process the input data, then
one flatten layer of the matrix to form a one-
dimensional vector and traverse the hidden layer of
1024 neurons and 180 output labels. Table 1
describes the use of the two-input CNN model when
applying co-matrix with two API and Permission
feature groups.

Fig. 3. CNN having multi convolutional networks

Table 1. Two CNN inputs

Input (I) 398x398 Input(II) 200x200

Conv_1(I) 398x398x32 Conv+1(II) 200x200x32

Pooling1(I) 199x199x32 Pooling_1(II) 100x100x32

Conv_2(I) + Pooling_2(I) 100x100x64 Conv_2(II) + Pooling_2(II) 50x50x64

Conv_3(I) + Pooling_3(I) 50x50x64 Conv_3(II) + Pooling_3(II) 25x25x64

Flatten (III) 50x50x64+25x25x64 = 200.000

Hidden (IV) 1024

Ouput (V) 180

JST: Smart Systems and Devices

Volume 31, Issue 1, May 2021, 009-016

14

5. Experiments

5.1. Experimental Setup

 This work uses Drebin dataset to evaluate the
proposed scheme. The dataset includes 5,438
malware files with 179 families and 6,732 benign
files including applications and games [22]. For
feature extraction, there are many internal feature
groups like permissions, APIs, services, urls, intents,
etc. However, in this work, we only focus on getting
permission and API features (including system calls
and function calls in the program).

 We used top 398 permissions and top 200 API
function calls that are used the most in all files.
Therefore, each .apk file will have 598 raw features.
We compute the co-matrix for each permission and
API group, which generating 158,404 permission
features and 40,000 API features. All features are
stored in a .csv file as input for machine learning
algorithms.
 The data is divided into two sets:

Set 1: 598 features based on permissions and API.

Set 2: 198,404 features after using the co-matrix of
598 features in set 1.

 These two sets were used as input to CNN
model. For each set we divided into groups using 10-
fold technique, i.e., dividing the data into 10 equal
parts of samples having both benign and malware,
with 80% for training, 10% for validation testing, and
10% for testing. We cross-tested 10 times and took
the average of the classification results.

5.2 Experimental Results

Experimental results according to 10-fold and
the average classification are shown in Table 2.

Table 2. Classification with CNN model

Set
CNN model (%)

Raw features Co-matrix features
1 93.59 93.26
2 95.68 95.98
3 96.12 97.48
4 95.29 97.07
5 96.97 96.86
6 97.1 96.06
7 97.41 97.14
8 97.47 97.24
9 95.38 96.77
10 92.00 94.46
ACC 95.78 96.23

Table 3. Measurements used

MEASURE DESCRIPTION
TP The malware is true
TN The benign is true
FP The malware is false
FN The benign is false

ACC (TP+TN)/(TP+TN+FP+FN)
PR TP/(TP+FP)
RC TP/(TP+FN)

F1-score 2*PR*RC/(PR+RC)
FPR FP/(FP+TN)

Table 4. Measurements evaluate effectiveness (%)

MEASURE CNN CNN with co-matrix
PR 97.6 98
RC 91.9 92.63
F1-score 94.66 95.25
FPR 1.56 1.3
ACC 95.78 96.23

It can be seen that using co-matrix has increased
the average ACC by 0.58%, and the classification
difference among 10-fold runs has also decreased
from 5.5 (using raw feature set) to 3.98 (using co-
matrix). It proved that the links between features did
affect the classification results. When using co-
matrix, both the quantity and quality of the feature
sets are improved. With this method, we do not need
to care about the trade-off between changing the
matrix size and the classification performance. The
input of co-matrix is a symmetric matrix [n x n], after
going through convolutional and pooling layer we
will obtain correlated neurons between benign and
malwares. The results will have better weight after
training.

We used some added metrics to evaluate the
effectiveness of proposed feature as shown in Table 3
and Table 4. It can be seen that the PR metric when
using co-matrix feature increased by 0.3% compared
with that of raw feature set. The F1-score metric is
also better, 0.58 when using co-matrix features.
Overall, using co-matrix feature improved the ACC
of the classification compared with using raw features
set. However, the drawback of the proposed co-
matrix feature is that the matrix size is quite large and
thus requires high computation cost.

We also test our proposed co-matrix feature
using another machine learning algorithm, Decision
Tree (DT). The classification results are shown in
Fig.4. As we can see, co-matrix is not so suitable for
DT because the classification rate with co-matrix

JST: Smart Systems and Devices

Volume 31, Issue 1, May 2021, 009-016

15

feature was 0.1% lower than that of raw feature. This
leads to a conclusion that co-matrix is good for CNN,
since in CNN, we have convolutional and pooling
layers that create the relationship among features. In
contrast, DT uses branches, so the co-matrix feature
makes the computation of branching more
complicated.

Fig.4. Classification results

6. Conclusion

In this study, we proposed to use co-concurrence
matrix to represent Android malware features. The
proposed co-concurrence matrix can be used as input
of CNN model. Experimental results show the
effectiveness of the proposed feature compared to the
baseline using raw features.

This paper focuses only on the feature set
improvement of Android malware but not the
modification of CNN model. In the future, we will
improve the feature sets by adding more features in
static analysis and dynamic analysis [23-25], hybrid
analysis [26-28]. We also plan to embed the co-
matrix since it is now quite spard.

References

[1] Mobile Operating System Market Share Worldwide.
Available:
https://gs.statcounter.com/os-market-
share/mobile/worldwide

[2] Statistics malware: available at
https://www.av-test.org/en/statistics/malware/

[3] Bernard Meyer, These camera apps with billions of
downloads might be stealing your data and infecting
you with malware. Available:
https://cybernews.com/security/popular-camera-apps-
steal-data-infect-malware

[4] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon,
and K. Rieck, Drebin: Effective and Explainable
Detection of Android Malware in Your
Pocket, Proceedings 2014 Network and Distributed
System Security Symposium, 2014
https://doi.org/10.14722/ndss.2014.23247

[5] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, Deep
Ground Truth Analysis of Current Android Malware,
Detection of Intrusions and Malware, and
Vulnerability Assessment, vol. 10327, pp. 252–276,
2017.
https://doi.org/10.1007/978-3-319-60876-1_12

[6] Md. S. Rana, S. S. M. M. Rahman, and A. H. Sung,
Evaluation of Tree Based Machine Learning
Classifiers for Android Malware
Detection, Computational Collective Intelligence, vol.
11056, pp. 377–385, 2018,
https://doi.org/10.1007/978-3-319-98446-9_35

[7] S. Wang, G. Zhou, J. Lu, and F. Zhang, A Novel
Malware Detection and Classification Method Based
on Capsule Network, Lecture Notes in Computer
Science, vol. 11632, pp. 573–584, 2019,
https://doi.org/10.1007/978-3-030-24274-9_52

[8] T. H. Huang and H. Kao, R2-D2: ColoR-inspired
Convolutional NeuRal Network (CNN)-based
AndroiD Malware Detections, 2018 IEEE
International Conference on Big Data (Big Data),
Seattle, WA, USA, 2018, pp. 2633-2642,
https://doi.org/10.1109/BigData.2018.8622324

[9] Z. Xu, K. Ren, S. Qin, and F. Craciun, CDGDroid:
Android Malware Detection Based on Deep Learning
Using CFG and DFG, in Formal Methods and
Software Engineering, 2018, vol. 11232, pp. 177–
193,
https://doi.org/10.1007/978-3-030-02450-5_11

[10] C. Li, K. Mills, D. Niu, R. Zhu, H. Zhang and H.
Kinawi, Android Malware Detection Based on
Factorization Machine, in IEEE Access, vol. 7, pp.
184008-184019, 2019,
https://doi.org/10.1109/ACCESS.2019.2958927

[11] R. Nix and J. Zhang, Classification of Android apps
and malware using deep neural networks, 2017
International Joint Conference on Neural Networks
(IJCNN), Anchorage, AK, 2017, pp. 1871-1878,
https://doi.org/10.1109/IJCNN.2017.7966078

[12] Y. Ding, W. Zhao, Z. Wang and L. Wang,
Automaticlly Learning Featurs Of Android Apps
Using CNN, 2018 International Conference on
Machine Learning and Cybernetics (ICMLC),
Chengdu, 2018, pp. 331-336,
https://doi.org/10.1109/ICMLC.2018.8526935

[13] Y. Jin, T. Liu, A. He, Y. Qu and J. Chi, Android
Malware Detector Exploiting Convolutional Neural
Network and Adaptive Classifier Selection, 2018
IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), Tokyo, 2018,
pp. 833-834,
https://doi.org/10.1109/COMPSAC.2018.00143

[14] A. Abderrahmane, G. Adnane, C. Yacine and G.
Khireddine, Android Malware Detection Based on
System Calls Analysis and CNN Classification, 2019
IEEE Wireless Communications and Networking
Conference Workshop (WCNCW), Marrakech,
Morocco, 2019, pp. 1-6,
https://doi.org/10.1109/WCNCW.2019.8902627

[15] Wikipedia, John Rupert Firth. Available:
https://en.wikipedia.org/wiki/John_Rupert_Firth

[16] T. Watanabe, S. Ito, and K. Yokoi, Co-occurrence
Histograms of Oriented Gradients for Pedestrian
Detection, in Advances in Image and Video
Technology, 2009, vol. 5414, pp. 37–47,
https://doi.org/10.1007/978-3-540-92957-4_4

JST: Smart Systems and Devices

Volume 31, Issue 1, May 2021, 009-016

16

[17] W. Gomez, W. C. A. Pereira and A. F. C. Infantosi,
Analysis of Co-Occurrence Texture Statistics as a
Function of Gray-Level Quantization for Classifying
Breast Ultrasound, in IEEE Transactions on Medical
Imaging, vol. 31, no. 10, pp. 1889-1899, Oct. 2012,
https://doi.org/10.1109/TMI.2012.2206398

[18] B. Pathak and D. Barooah, Textture analysis based on
the gray-level Co-occurrence matrix considering
possible orientations, International Journal of
Advanced Research in Electrical, Electronics and
Instrumentation Engineering, vol. 2, no. 9.

[19] A. Eleyan and H. Demirel, Co-occurrence based
statistical approach for face recognition, 2009 24th
International Symposium on Computer and
Information Sciences, Guzelyurt, 2009, pp. 611-615,
https://doi.org/10.1109/ISCIS.2009.5291895

[20] L.Đ. Thuan, P.V. Huong, L.T.H. Van, HQ. Cuong,
H.V. Hiep and N.K. Khanh, Improvement of feature
set based on Apriori algorithm in Android malware
classification using machine learning method, Nghiên
cứu khoa học và công nghệ quân sự, no. August, pp.
32–41, 2018, ISSN 1859 – 1043.

[21] L. D. Thuan, P. Van Huong, H. Van Hiep and N. Kim
Khanh, Improvement of feature set based on Apriori
algorithm in Android malware classification using
machine learning method, 2020 RIVF International
Conference on Computing and Communication
Technologies (RIVF), Ho Chi Minh City, Vietnam,
2020, pp. 1-7,
https://doi.org/10.1109/RIVF48685.2020.9140779

[22] https://archive.org/details/2018-02-random-apk-
collection.

[23] C.-W. Yeh, W.-T. Yeh, S.-H. Hung, and C.-T. Lin,
Flattened data in convolutional neural networks:
Using malware detection as case study, in Proc. Int.
Conf. Res. Adapt. Convergent Syst., 2016, pp. 130–
135,
https://doi.org/10.1145/2987386.2987406

[24] Mohammed K. Alzaylaee, Suleiman Y. Yerima, Sakir
Sezer, DL-Droid: Deep learning based android
malware detection using real devices, Computers &
Security, Volume 89, 2020, 101663, ISSN 0167-
4048, https://doi.org/10.1016/j.cose.2019.101663.

[25] P. Feng, J. Ma, C. Sun, X. Xu and Y. Ma, A Novel
Dynamic Android Malware Detection System With
Ensemble Learning, in IEEE Access, vol. 6, pp.
30996-31011, 2018,

 https://doi.org/10.1145/2987386.2987406

[26] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, ‘Droid-sec:
Deep learning in Android malware detection, in Proc.
ACM Conf. SIGCOMM, 2014, pp. 371–372,
https://doi.org/10.1145/2740070.2631434.

[27] Z. Yuan, Y. Lu and Y. Xue, Droiddetector: android
malware characterization and detection using deep
learning, in Tsinghua Science and Technology, vol.
21, no. 1, pp. 114-123, Feb. 2016,
https://doi.org/10.1109/TST.2016.7399288

[28] L. Xu, D. Zhang, N. Jayasena, and J. Cavazos,
HADM: Hybrid analysis for detection of malware, in
Proc. SAI Intell. Syst. Conf. Springer, 2016, pp. 702–
724.
https://doi.org/10.1007/978-3-319-56991-8_51

https://archive.org/details/2018-02-random-apk-collection
https://archive.org/details/2018-02-random-apk-collection
https://doi.org/10.1145/2740070.2631434

	1. Introduction0F
	2. Implementation Idea

