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Abstract 

Recently, deep learning has been widely applying to speech and image recognition. Convolutional neural 
network (CNN) is one of the main categories to do image classifications with very high accuracy. In Android 
malware classification field, many works have been trying to convert Android malwares into “images” to 
make them well-matched with the CNN input to take advantage of the CNN model. The performance, 
however, is not significantly improved because simply converting malwares into images may lack several 
important features of the malwares. This paper proposes a method for improving the feature set of Android 
malware classification based on co-concurrence matrix (co-matrix). The co-matrix is established based on a 
list of raw features extracted from .apk files. The proposed feature can take the advantage of CNN while 
remaining important features of the Android malwares. Experimental results of CNN model conducted on a 
very popular Android malware dataset, Drebin, prove the feasibility of our proposed co-matrix feature. 
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1. Introduction* 

As of April 2020, the market share of Android 
operating system (OS) accounts for 70.68% on 
mobile devices [1], which indicates the prevalence of 
Android OS over the others. According to AV-Test 
[2], in April 2020, there were more than 9 million 
malwares discovered on operating systems, in which 
1.29 million malwares were found in Android-based 
platform. Although Android OS always offers 
security updates periodically (currently Android 10 is 
the newest), but with user habits that accept all 
applications’ access requests, it is very likely that 
their mobile phone might be injected with malware 
and paved the way for hackers’ actions. Without 
proper control of the app, the user is easily exposed to 
safety threats. 

Many applications containing malwares can 
bypass the strict inspection of Google and make them 
available on the Google Play Store [3]. Moreover, in 
contrast to other platforms, Android allows users to 
install an app from unverified sources such as third-
party websites or markets. This makes managing and 
testing applications more challenging. In addition, 
investigating an .apk file is more difficult than a 
normal execution file because the information is not 
only stored in one main file like Windows-based 
system (PE file). Malware classification on the 
Android platform is therefore still mandatory for the 
software industry and a hot topic for the research 
community as well. 
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One of the most difficult issues when dealing 
with Android malware classification problems is to 
build up a good dataset, i.e., a dataset may have 
various malware families and a balance of the number 
of benign and malware files. Currently, there are two 
popular Android malware datasets opening for 
research groups, namely Drebin [4] and AMD [5]. 
These datasets include benign and malware-infected 
set for analysis and testing. They have been being 
used by many research groups from many prestigious 
universities. Benign files are collected from the app 
market and some other sources based on the 
assumption that they are verified as clean. The dataset 
is therefore a challenge for research teams working 
on Android malware classification. 

Recently, the convolution neuron network 
(CNN) shows a great advantage in classification 
problem. CNN was originally applied for image 
classification (object identification, face 
classification, medical imaging, etc.). CNN was then 
applied to other classification problems such as 
speech recognition, handwriting recognition, malware 
classification, etc. By using a sequence of 
convolution, CNN can learn the relationship among 
pixels in an image, therefore it can help to increase 
the final classification rate. In the malware analysis 
field, to apply CNN, it is needed to find an effective 
way to convert from a malware file into an “image”. 
In other words, we need to extract features from 
malware files and store them in a matrix-based 
format. Many related works simply convert an .apk 
file into a digital matrix (image) and treat it as input 
for CNN [7-8]. This approach has two drawbacks as 
follows: (i) CNN requires the size of all the input 
“images” exactly the same but the size of .apk files 
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are unequal, some paddings or cuttings are therefore 
required, this reshape may affect the final 
classification rate; and (ii) the “image” converted 
from an .apk file may lack several features of the 
original one such as API function list, permission 
request, and/or the relationship among API and 
permission, etc. In this paper, we propose to use a co-
occurrence matrix (co-matrix) to represent the 
features, in which, one element of the matrix shows 
the concurrency of two different features. This idea 
comes with the assumption that malware may never 
call only one API (or request only one permission) 
but some APIs (or request several permissions). 
Therefore, the concurrence of API calling and/or 
permission requesting can be used as a feature to 
distinguish between a benign and a malware one. In 
addition, the co-matrix is a matrix so that it is 
perfectly fit as the input of the CNN. It is hoped that 
this proposed co-matrix feature can help improve the 
accuracy of classification.  

Related works on Android malware 
classification can be divided into two approaches: 
based on conventional machine learning approach 
and based on deep learning one. For the former 
approach, D. Arp et al. has introduced a dataset 
named Drebin which is widely used by many other 
research groups later [4]. The dataset contains             
5,560 malware files and 126,051 benign files. For 
classification, the author proposed to use SVM with 
feature sets including used permissions, suspicious 
APIs, network addresses which are extracted from 
API files. The classification rate is about 94%. Rana 
M.S. et al. evaluated Random Forest algorithm [6] 
with a part of Drebin dataset consisting of           
5,560 malware files and 5,560 benign files (the 
number of malware and benign files are equal). The 
feature sets are almost the same as in [4] except API 
strings and URLs are added. The highest 
classification rate reached 97.24%. However, this 
result is only for binary classification, i.e., malware or 
benign.  

For the deep learning approach, in [7], the authors 
proposed a dynamic routing-based Capsule network 
with feature sets are collected by simply converting 
malware binary files into color images. The 
performance of Capsule network is compared to the 
one of CNN on two malware datasets: Windows and 
Android dataset. The Android one is a part of Drebin 
dataset (4,000 malware files consist of 20 families 
and 6,000 benign files). The results indicated that the 
performance of Capsule network is almost the same 
as that of CNN in the case of Windows malware 
dataset (96.5% and 96.8% of accuracy). On the other 
hand, the performance of Capsule network is 
significantly higher than that of CNN in the case of 
Android dataset (classification rate is 99.3% with 
CapNets and 79.3% with CNN model respectively). 
Based on these results, can we conclude that CNN is 
not suitable for Android malware classification? It is 
hard to answer immediately but one point can be 
figured out is that simply converting Android .apk 
file to image file seems to take away the links 
between important features of Android malware, 
which leads to a worse result when using CNN. 

Using the same idea of converting to image 
format, T. H. Huang et al [8] proposed a color-
inspired CNN-based malware detection (R2-D2). The 
system converts the byte code of classes.dex file from 
Android archive to rgb color code and save it as a 
color image with a fixed size.  The image is then 
input to CNN for automatic feature extraction and 
training. The evaluated dataset was manually built 
from Jan. 2017 to Aug. 2017 which contains                
5,377 malware files and 6,249 benign files. Even 
though the authors showed good accuracy of 
classification (93%), evaluation on a self-build 
dataset may have some biases. 

Follow a different approach, Zhiwu Xu et al. [9] 
did not convert .apk file into image but “.smali file” 
(running code on Dalvik Virtual Machine). The 
.smali file is then converted to digital matrix by using 
Control Flow Graph (CFG) and Data Flow Graph 
(DFG) algorithms. The digital matrix is treated as an

 

 
Fig. 1. System model for Android malware classification 
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input for the CNN model. The authors collect 24,485 
benign files and 3,166 malware files for testing, and 
50,501 benign files and 7,406 malware files for 
training. Those files were collected from several 
sources including Darvin, Drebin, VirusShare, 
ContaigioDump. The accuracy of binary 
classification is very precise, 99.5%. However, the 
proposed method is only applying for malware 
detection, not for malware classification.  

In paper [10], Chenglin Li et al. have used two 
datasets including 5,560 malwares of Drebin with 
5600 benigns, and 24553 malwares of AMD with 
16,753 benigns. The authors proposed a Factorization 
algorithm, the feature set was the same as that used in 
Drebin work [4], the classification results with Drebin 
and AMD dataset were up to 99.46% and 99.05% 
respectively. Other machine learning algorithms such 
as SVM, NB-G, NB-B, NB-M, MLP. also produce 
very high classification rates on the Drebin dataset, 
especially MLP reached up to 99.73% rate. In these 
papers, both the AndroidManifest.xml and 
classes.dex files are used to convert into *.smali files, 
these *.smali files are then used to extract internal 
features. In the paper, the author also created a 
correlation between the features and sought to choose 
the appropriate algorithm for the dataset. However, it 
is necessary to classify many families of malware 
instead of just the two classes benign and malware. 

In summary, the traditional machine learning 
approach requires complex feature extraction work in 
advance. The feature sets for Android malware 
normally are API calls, permission requests, network 
address, URL, etc. For the classification step, many 
algorithms could be applied such as SVM, Decision 
Tree, MLP, etc. The final classification result mainly 
depends on the quality of extracting feature sets. On 
the other hand, deep learning approach, the CNN, 
does not require feature extraction in advance but 
needs a large number of labeled samples. Moreover, 
CNN requires an effective way to convert Android 
.apk file into matrix-based format. Some works 
indicate that simply converting Android .apk file to 
image is not efficient.  

This paper proposes to use co-matrix feature as 
input to CNN. We evaluate the proposed feature by 
evaluating the CNN in two scenarios: with and 
without using co-matrix. Experiments are conducted 
on the malware dataset provided by Drebin including 
5,560 malware files of 179 families. To evaluate the 
performance, we use metrics like ACC, F1, FPR, PR, 
RC. It is found that when using the co-matrix, the 
accuracy average of CNN increased from 95.78% to 
96.23%. 

The remaining of the paper is structured as 
follows: in section 2, we show system modeling and 
implementation idea. Section 3 describes in detail the 
feature extraction process. Section 4 discusses the 

machine learning algorithms used to classify benign 
and malware families in this paper. In section 5, we 
describe experimental results. Section 6 draws some 
conclusions and points out future work. 

2. Implementation Idea 

Figure 1 shows the implementation idea of this 
paper. To prove the effectiveness of co-concurrence 
matrix feature, we set up two scenarios with and 
without using co-matrix feature computation module. 
The process is as follows:  

- From .apk files, the raw feature extraction 
module extracts features including API call 
strings, and permission requests. 

- For the baseline architecture, the raw features go 
to the Normal matrix formation module.  The 
module converts the raw features, in string 
format, into a vector by using a dictionary of 
API calls and permission. Each element in the 
vector has one of two values: 1 or 0 depending 
on whether we can find the API or the 
permission in the current .apk file or not. The 
vector is then reshaped to a matrix which is 
latter treat as the input of CNN. For the 
proposed architecture, raw features go to the co-
matrix feature computation module. The module 
forms a matrix based on the concurrence 
appearance of two APIs or permissions in the 
.API file.   
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- Next, CNN module is applied to learn the 
features and to classify the apk files into benign 
or specific malware families.  

3. Features Extraction 

3.1. Raw Feature Extraction 

An .apk file is essentially a compressed file with 
the following structure: 
- META-INF/: this folder contains description 

information from java jar file 

- Res/: this folder contains the source material 
- Libs/: this folder contains libraries 

- AndroidManifest.xml: contains configuration 
information about access rights and used 
services. 

- Classes.dex: this file contains java bytecode of 
the .apk file 

- Resources.asc: contains pre-complied resources 
such as string, colors, styles. 

 
Fig. 2. Output matrix with different size 

To extract features from .apk files, we can 
utilize many tools such as Apk tool, Dex2jar, 
Baksmali, Androguard, Jadx, Jd-gui, Androidpytool. 
In this paper, we use Androidpytool to extract 
features. All the features are static analysis ones 
extracted from two files: AndroidManifest.xml and 
classes.dex. 

 From the raw feature sets, we remove the 
outliers by keeping only topmost 200 popular APIs 
appearing in all .apk files. These features, in the form 
of strings, are input of the next module in the process 
chain as mentioned in Fig.1. Algorithm 1 illustrates 
the implementation to convert from string features 
into number vector.  

3.2. Proposed Co-Matrix Feature Computation 

After converting raw features in string form to a 
vector of numbers. The next step is to reshape this 
vector to a matrix which can be used as input of CNN 
latter. This step may have a huge impact on the final 
classification results. The reason is that the order of 
features might be changed a lot when we reshape the 
vector to different matrix size. Figure 2 illustrates an 

example of forming output matrix with different 
sizes. Due to the fact that a harmful malware tends to 
call an API together with another one or a permission 
request (e.g., the API CreateFile might be called 
together with INTERNET_ACCESS permission in a 
malware). CNN can learn the relationship between 
these two elements if they are located close to each 
other in the output matrix, i.e., in case of forming 
matrix as k by k. In contrast, CNN may lose the 
information if we form the output matrix in different 
sizes, i.e., (k+1) by (k+1), as shown in Fig.2. Hence, 
using CNN, the order of elements in the input vector 
also affects the final classification rate.  

Our proposed co-matrix can solve the problem 
of input elements reordering because the co-matrix 
focuses on the concurrence that appears between two 
elements rather than a single element.  

The co-matrix was first mentioned in 1957 when 
linguist J.R Firth [15] referred to the relationship 
between words in a sentence. A word is represented 
semantically by the words around it, so the placement 
of words will affect the meaning of the sentence. The 
co-matrix is described as follows: 

 Roses  Are Red Sky Is blue 
Roses 1 1 1 0 0 0 
Are 1 1 1 0 0 0 
Red 1 1 1 0 0 0 
Sky 0 0 0 1 1 1 
Is 0 0 0 1 1 1 
blue 0 0 0 1 1 1 

Here, the co-matrix is now connected in each 
word of the paragraph. We apply this idea to the 
Android malware features. The implementation of co-
concurrence matrix computation is described in 
Algorithm 2. 

Co-matrix is currently used in image 
classification problems as in [16-19]. Co-matrix is 
currently used in word recognition, image, or face 
classification problems. 

4. Malware Classification Based on CNN Model 

CNN model has shown state-of-the-art 
performance in many fields including image 
recognition, natural language processing, and 
malware classification [20, 21]. 

4.1. Input 

The input is stated as a matrix of numbers, this 
input matrix can have the form of vector or NxM 
matrix. One or several matrices could be used as 
input.  

4.2. Convolutional Layer 

The convolution layer uses a sliding matrix, 
with the number of sliding matrix k is the number of 
matrices in the convolutional layer. If the input is of  
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NxM matrix, then there are k NxM matrices in the 
convolutional layer.  

Each convolutional layer uses an activation 
function to produce the result for pooling. Without 
this function, a complete neural network will move in 
a linear direction from a node’s input to its 
corresponding output. 

 ReLU function is used to transform the input to 
the maximum of either zero or input itself and it is 
defined by Equation (1). 

0 w 0
Relu( )

w 0
hen x

x
x hen x

<
=  ≥

 
 

(1) 

4.3. Pooling Layer 

Each matrix in the Convolutional layer will be 
processed to reduce the number of features. Pooling 
layer takes the representative for each matrix in 
Convolutional layer based on Formula (2):  

( , ) ij
kij kpqp q

Y FUNC x
η∈

=                    (2) 

where: 

kijY : Output value k of mapping feature 

kpqx : Element (p, q) stored pooling ijη . 

FUNC is often used as MAX or Average. 

4.4. Fully connected layers 

When passing through all the convolutional 
layer and pooling layer, the features will be 
represented in vector form, namely flatten layer. The 
neuron will proceed through the hidden layer to the 
output layer. The neuron from flattening layer to 
output layer will be fully connected via hidden layer. 
For each connection from neuron A to neuron B, there 
will a weight number, and the final weighted matrix 
is the result of the training process.  

The output layer is the labeling layer, which 
decides which label is assigned to which file. 
Softmax activation function is often used to compute 
the jth output value according to Equation (3): 
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Figure 3 shows the CNN model used in this 
paper. An input data can go through many CNN 
models. We use two CNN models with each model 
being a feature group with different dimensions of the 
input matrix, after going through the convolutional 
and pooling layers, the features will be combined 
before putting into neural network to classify the 
output. In this experiment, we use three convolution 
and pooling layers to pre-process the input data, then 
one flatten layer of the matrix to form a one-
dimensional vector and traverse the hidden layer of 
1024 neurons and 180 output labels. Table 1 
describes the use of the two-input CNN model when 
applying co-matrix with two API and Permission 
feature groups. 

 
Fig. 3. CNN having multi convolutional networks 

 
Table 1. Two CNN inputs 

Input (I) 398x398 Input(II) 200x200 

Conv_1(I) 398x398x32 Conv+1(II) 200x200x32 

Pooling1(I) 199x199x32 Pooling_1(II) 100x100x32 

Conv_2(I) + Pooling_2(I) 100x100x64 Conv_2(II) + Pooling_2(II) 50x50x64 

Conv_3(I) + Pooling_3(I) 50x50x64 Conv_3(II) + Pooling_3(II) 25x25x64 

Flatten (III) 50x50x64+25x25x64 = 200.000 

Hidden (IV) 1024 

Ouput (V) 180 
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5. Experiments 

5.1. Experimental Setup 

 This work uses Drebin dataset to evaluate the 
proposed scheme. The dataset includes 5,438 
malware files with 179 families and 6,732 benign 
files including applications and games [22]. For 
feature extraction, there are many internal feature 
groups like permissions, APIs, services, urls, intents, 
etc. However, in this work, we only focus on getting 
permission and API features (including system calls 
and function calls in the program).  

 We used top 398 permissions and top 200 API 
function calls that are used the most in all files. 
Therefore, each .apk file will have 598 raw features. 
We compute the co-matrix for each permission and 
API group, which generating 158,404 permission 
features and 40,000 API features. All features are 
stored in a .csv file as input for machine learning 
algorithms.  
 The data is divided into two sets: 

Set 1: 598 features based on permissions and API. 

Set 2: 198,404 features after using the co-matrix of 
598 features in set 1. 

 These two sets were used as input to CNN 
model. For each set we divided into groups using 10-
fold technique, i.e., dividing the data into 10 equal 
parts of samples having both benign and malware, 
with 80% for training, 10% for validation testing, and 
10% for testing. We cross-tested 10 times and took 
the average of the classification results. 

5.2 Experimental Results 

Experimental results according to 10-fold and 
the average classification are shown in Table 2. 

Table 2. Classification with CNN model 

Set 
CNN model (%) 

Raw features Co-matrix features 
1 93.59 93.26 
2 95.68 95.98 
3 96.12 97.48 
4 95.29 97.07 
5 96.97 96.86 
6 97.1 96.06 
7 97.41 97.14 
8 97.47 97.24 
9 95.38 96.77 
10 92.00 94.46 
ACC 95.78 96.23 

 

Table 3. Measurements used 

MEASURE DESCRIPTION 
TP The malware is true 
TN The benign is true 
FP The malware is false 
FN The benign is false 

ACC (TP+TN)/(TP+TN+FP+FN) 
PR TP/(TP+FP) 
RC TP/(TP+FN) 

F1-score 2*PR*RC/(PR+RC) 
FPR FP/(FP+TN) 

 

Table 4. Measurements evaluate effectiveness (%) 

MEASURE CNN CNN with co-matrix 
PR 97.6 98 
RC 91.9 92.63 
F1-score 94.66 95.25 
FPR 1.56 1.3 
ACC 95.78 96.23 

It can be seen that using co-matrix has increased 
the average ACC by 0.58%, and the classification 
difference among 10-fold runs has also decreased 
from 5.5 (using raw feature set) to 3.98 (using co-
matrix). It proved that the links between features did 
affect the classification results. When using co-
matrix, both the quantity and quality of the feature 
sets are improved. With this method, we do not need 
to care about the trade-off between changing the 
matrix size and the classification performance. The 
input of co-matrix is a symmetric matrix [n x n], after 
going through convolutional and pooling layer we 
will obtain correlated neurons between benign and 
malwares. The results will have better weight after 
training. 

We used some added metrics to evaluate the 
effectiveness of proposed feature as shown in Table 3 
and Table 4. It can be seen that the PR metric when 
using co-matrix feature increased by 0.3% compared 
with that of raw feature set. The F1-score metric is 
also better, 0.58 when using co-matrix features. 
Overall, using co-matrix feature improved the ACC 
of the classification compared with using raw features 
set. However, the drawback of the proposed co-
matrix feature is that the matrix size is quite large and 
thus requires high computation cost.  

We also test our proposed co-matrix feature 
using another machine learning algorithm, Decision 
Tree (DT). The classification results are shown in 
Fig.4. As we can see, co-matrix is not so suitable for 
DT because the classification rate with co-matrix 
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feature was 0.1% lower than that of raw feature. This 
leads to a conclusion that co-matrix is good for CNN, 
since in CNN, we have convolutional and pooling 
layers that create the relationship among features. In 
contrast, DT uses branches, so the co-matrix feature 
makes the computation of branching more 
complicated.  

 
Fig.4. Classification results 

6. Conclusion 

In this study, we proposed to use co-concurrence 
matrix to represent Android malware features. The 
proposed co-concurrence matrix can be used as input 
of CNN model. Experimental results show the 
effectiveness of the proposed feature compared to the 
baseline using raw features.  

This paper focuses only on the feature set 
improvement of Android malware but not the 
modification of CNN model. In the future, we will 
improve the feature sets by adding more features in 
static analysis and dynamic analysis [23-25], hybrid 
analysis [26-28]. We also plan to embed the co-
matrix since it is now quite spard.  

References 

[1] Mobile Operating System Market Share Worldwide. 
Available:  
https://gs.statcounter.com/os-market-
share/mobile/worldwide 

[2] Statistics malware: available at 
https://www.av-test.org/en/statistics/malware/  

[3] Bernard Meyer, These camera apps with billions of 
downloads might be stealing your data and infecting 
you with malware. Available: 
https://cybernews.com/security/popular-camera-apps-
steal-data-infect-malware 

[4] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, 
and K. Rieck, Drebin: Effective and Explainable 
Detection of Android Malware in Your 
Pocket, Proceedings 2014 Network and Distributed 
System Security Symposium, 2014 
https://doi.org/10.14722/ndss.2014.23247 

[5] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, Deep 
Ground Truth Analysis of Current Android Malware, 
Detection of Intrusions and Malware, and 
Vulnerability Assessment, vol. 10327, pp. 252–276, 
2017. 
https://doi.org/10.1007/978-3-319-60876-1_12 

[6] Md. S. Rana, S. S. M. M. Rahman, and A. H. Sung, 
Evaluation of Tree Based Machine Learning 
Classifiers for Android Malware 
Detection, Computational Collective Intelligence, vol. 
11056, pp. 377–385, 2018, 
https://doi.org/10.1007/978-3-319-98446-9_35 

[7] S. Wang, G. Zhou, J. Lu, and F. Zhang, A Novel 
Malware Detection and Classification Method Based 
on Capsule Network, Lecture Notes in Computer 
Science, vol. 11632, pp. 573–584, 2019,  
https://doi.org/10.1007/978-3-030-24274-9_52 

[8] T. H. Huang and H. Kao, R2-D2: ColoR-inspired 
Convolutional NeuRal Network (CNN)-based 
AndroiD Malware Detections, 2018 IEEE 
International Conference on Big Data (Big Data), 
Seattle, WA, USA, 2018, pp. 2633-2642,  
https://doi.org/10.1109/BigData.2018.8622324 

[9] Z. Xu, K. Ren, S. Qin, and F. Craciun, CDGDroid: 
Android Malware Detection Based on Deep Learning 
Using CFG and DFG, in Formal Methods and 
Software Engineering, 2018, vol. 11232, pp. 177–
193,  
https://doi.org/10.1007/978-3-030-02450-5_11 

[10] C. Li, K. Mills, D. Niu, R. Zhu, H. Zhang and H. 
Kinawi, Android Malware Detection Based on 
Factorization Machine, in IEEE Access, vol. 7, pp. 
184008-184019, 2019,  
https://doi.org/10.1109/ACCESS.2019.2958927 

[11] R. Nix and J. Zhang, Classification of Android apps 
and malware using deep neural networks, 2017 
International Joint Conference on Neural Networks 
(IJCNN), Anchorage, AK, 2017, pp. 1871-1878,  
https://doi.org/10.1109/IJCNN.2017.7966078 

[12] Y. Ding, W. Zhao, Z. Wang and L. Wang, 
Automaticlly Learning Featurs Of Android Apps 
Using CNN, 2018 International Conference on 
Machine Learning and Cybernetics (ICMLC), 
Chengdu, 2018, pp. 331-336,  
https://doi.org/10.1109/ICMLC.2018.8526935 

[13] Y. Jin, T. Liu, A. He, Y. Qu and J. Chi, Android 
Malware Detector Exploiting Convolutional Neural 
Network and Adaptive Classifier Selection, 2018 
IEEE 42nd Annual Computer Software and 
Applications Conference (COMPSAC), Tokyo, 2018, 
pp. 833-834,  
https://doi.org/10.1109/COMPSAC.2018.00143 

[14] A. Abderrahmane, G. Adnane, C. Yacine and G. 
Khireddine, Android Malware Detection Based on 
System Calls Analysis and CNN Classification, 2019 
IEEE Wireless Communications and Networking 
Conference Workshop (WCNCW), Marrakech, 
Morocco, 2019, pp. 1-6,  
https://doi.org/10.1109/WCNCW.2019.8902627 

[15]  Wikipedia, John Rupert Firth. Available: 
https://en.wikipedia.org/wiki/John_Rupert_Firth 

[16] T. Watanabe, S. Ito, and K. Yokoi, Co-occurrence 
Histograms of Oriented Gradients for Pedestrian 
Detection, in Advances in Image and Video 
Technology, 2009, vol. 5414, pp. 37–47,  
https://doi.org/10.1007/978-3-540-92957-4_4 



 
JST: Smart Systems and Devices 

Volume 31, Issue 1, May 2021, 009-016 
   

16 

[17] W. Gomez, W. C. A. Pereira and A. F. C. Infantosi, 
Analysis of Co-Occurrence Texture Statistics as a 
Function of Gray-Level Quantization for Classifying 
Breast Ultrasound, in IEEE Transactions on Medical 
Imaging, vol. 31, no. 10, pp. 1889-1899, Oct. 2012,  
https://doi.org/10.1109/TMI.2012.2206398 

[18] B. Pathak and D. Barooah, Textture analysis based on 
the gray-level Co-occurrence matrix considering 
possible orientations, International Journal of 
Advanced Research in Electrical, Electronics and 
Instrumentation Engineering, vol. 2, no. 9. 

[19] A. Eleyan and H. Demirel, Co-occurrence based 
statistical approach for face recognition, 2009 24th 
International Symposium on Computer and 
Information Sciences, Guzelyurt, 2009, pp. 611-615,  
https://doi.org/10.1109/ISCIS.2009.5291895 

[20] L.Đ. Thuan, P.V. Huong, L.T.H. Van, HQ. Cuong, 
H.V. Hiep and N.K. Khanh, Improvement of feature 
set based on Apriori algorithm in Android malware 
classification using machine learning method, Nghiên 
cứu khoa học và công nghệ quân sự, no. August, pp. 
32–41, 2018, ISSN 1859 – 1043. 

[21] L. D. Thuan, P. Van Huong, H. Van Hiep and N. Kim 
Khanh, Improvement of feature set based on Apriori 
algorithm in Android malware classification using 
machine learning method, 2020 RIVF International 
Conference on Computing and Communication 
Technologies (RIVF), Ho Chi Minh City, Vietnam, 
2020, pp. 1-7,  
https://doi.org/10.1109/RIVF48685.2020.9140779 

[22] https://archive.org/details/2018-02-random-apk-
collection. 

[23] C.-W. Yeh, W.-T. Yeh, S.-H. Hung, and C.-T. Lin, 
Flattened data in convolutional neural networks: 
Using malware detection as case study, in Proc. Int. 
Conf. Res. Adapt. Convergent Syst., 2016, pp. 130–
135,  
https://doi.org/10.1145/2987386.2987406 

[24] Mohammed K. Alzaylaee, Suleiman Y. Yerima, Sakir 
Sezer, DL-Droid: Deep learning based android 
malware detection using real devices, Computers & 
Security, Volume 89, 2020, 101663, ISSN 0167-
4048, https://doi.org/10.1016/j.cose.2019.101663. 

[25] P. Feng, J. Ma, C. Sun, X. Xu and Y. Ma, A Novel 
Dynamic Android Malware Detection System With 
Ensemble Learning, in IEEE Access, vol. 6, pp. 
30996-31011, 2018,  

  https://doi.org/10.1145/2987386.2987406 

[26] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, ‘Droid-sec: 
Deep learning in Android malware detection, in Proc. 
ACM Conf. SIGCOMM, 2014, pp. 371–372, 
https://doi.org/10.1145/2740070.2631434. 

[27] Z. Yuan, Y. Lu and Y. Xue, Droiddetector: android 
malware characterization and detection using deep 
learning, in Tsinghua Science and Technology, vol. 
21, no. 1, pp. 114-123, Feb. 2016,  
https://doi.org/10.1109/TST.2016.7399288 

[28] L. Xu, D. Zhang, N. Jayasena, and J. Cavazos, 
HADM: Hybrid analysis for detection of malware, in 
Proc. SAI Intell. Syst. Conf. Springer, 2016, pp. 702–
724. 
https://doi.org/10.1007/978-3-319-56991-8_51  

 

 

https://archive.org/details/2018-02-random-apk-collection
https://archive.org/details/2018-02-random-apk-collection
https://doi.org/10.1145/2740070.2631434

	1. Introduction0F
	2. Implementation Idea

