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Abstract 

We constitute a control system for overhead crane with simultaneous motion of trolley and payload hoist to 
destinations and suppression of payload swing. Controller core made by sliding mode control (SMC) assures 
the robustness. This control structure is inflexible since using fixed gains. For overcoming this weakness, we 
integrate variable fractional-order derivative into SMC that leads to an adaptive system with adjustable 
parameters. We use Mittag–Leffler stability, an enhanced version of Lyapunov theory, to analyze the 
convergence of closed-loop system. Applying the controller to a practical crane shows the efficiency of 
proposed control approach. The controller works well and keeps the output responses consistent despite the 
large variation of crane parameters.  
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1. Introduction* 

Using frequently in industrial transportation, an 
overhead crane is equipped with three mechanisms 
for lifting and transferring material and package in 
factories. The modern cranes speedy run or/and 
combine the motions for increasing productivity. This 
causes imprecise motions and large swing of payload 
if cranes do not have suitable control strategies. Many 
control algorithms were proposed for overhead cranes 
[1-18]. The articles [1-12] in connection to control of 
overhead cranes were published from linear control 
[1], feedback linearization [2], pole-placement [3], 
linear quadratic optimal control [4], to complicated 
nonlinear control [5], model predict control [6], 
adaptive control approach [7-8], robust control 
methods [9-10], and modern control techniques such 
as fuzzy logic [11], neural networks [12]. Focusing 
on robust controls, SMC [13] is a control approach 
which works effectively for cranes. SMC does not 
require much the modelling precision. It may work 
well with un-modeled dynamics. Additionally, it 
shows the robustness when the system faces 
disturbances and uncertainties. Its advanced versions 
such as terminal SMC [14], fast terminal SMC [15] 
make quick finite-time convergence. SMC can 
combine with fuzzy [16], neural network [17], self-
tuning control [18] to achieve both robust and 
adaptive features. Accordingly, adaptive mechanisms 
are supplemented for estimating uncertainties, 
unknown factors, and disturbances. On the upside, 
fractional calculus has been widely applied to control 
engineering in the recent years [22]. Instead of using 
fixed first/second-order derivatives for feedback 
signals, fractional-derivative (FD) makes flexible 
control structure in which it is tunable to get optimal 

 
ISSN: 2734-9373 
https://doi.org/10.51316/jst.150.ssad.2021.31.1.9 
Received: 12 January 2021; accepted: 11 March 2021  

performance. This study utilizes strong points of both 
SMC and FD. We create a flexibly robust controller 
by integrating FD into SMC core. The controller 
tracks trolley and hoist payload to desired positions, 
concurrently keeps the payload swing small at 
transient state, and suppresses this swing at steady 
state. Such the combination applied for overhead 
cranes has not been has not been released until 
recently. Proposed control system shows the 
following advantages: 

(i) The controller well immunizes disturbances 
and is robust with uncertainties due to the action of 
SMC structures. 

(ii) Due to using variable FD, control structure 
may vary flexibility to adapt with uncertain 
environment. Tuning FD orders may get the optimal 
system responses. 

In fact, control formulation of cranes is 
classified into low-level control (LLC) and high-level 
planning (HLP). LLC deals with precise tracking 
trolley and crane to destinations while keeping 
payload swing small and vanishing at steady-state. 
HLP develops algorithms for motion planning and 
trajectories to prevent the obstacles. At modern crane, 
two control options may be combined. 

This study focuses on LLC. We organize the 
article as follows. Section 2 provides concept of 
fractional calculus [7] and stability theory for 
fractional systems [8-10]. Section 3 describes 
physical features of an overhead crane through its 
dynamic model. Section 4 designs controller by 
combining SMC with FD, analyzing crane stability 
with Mittag–Leffler sense [9] is also included. 
Section 5 tests the control algorithms on a practical 
overhead crane, analyzes and discusses the 
application results. Finally, several conclusions and 
remarks are represented in Section 6.  
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Fig. 1. 2D motion of an overhead crane. 

 
2. Fractional Derivative in Control 

We utilize the concept of fractional calculus and 
related topic to design control system. The following 
definition, theorem, and lemma will be applied for 
analyzing and constituting the control algorithm at 
the next sections: 

Definition 1 [19]: Fractional-order α derivative 
of function f(t) with time defined by Caputo is given 
as 
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gamma function.  

Lemma 1 [20]: Let x(t)∈Rn be a state vector. 
The inequality  

0.5 ( )T T
t tD Dα α≤x Qx x Q x  (2) 

is held for every positive definite matrix Q∈Rn×n.  

Theorem 1 [21]: If existing a continuously 
differentiable function V(x,t) satisfying 

( )1 2,a abV tα α≤ ≤x x x  (3) 

and 

( ) 3, ab
tD V tα α≤ −x x , (4) 

then x=0 is global stability in the sense of Mittag-
Leffler. Here, a, b, α1, α2, and α3 are positive 
constants. 

Theorem 2 [22]: Fractional LTI system 

( ) ( )tD t tα =x Ax  (5) 

with A∈Rn×n is stable if it justifies 

arg(eig ) / 2απ>A  (6) 

 3. Dynamical Description 

We consider simultaneous motion of trolley mt 
and payload hoist ml when operating an overhead 
crane as in Fig. 1. Three outputs composed of moving 
trolley x, lifting (with varying cable length l) payload 
mc, and swinging θ payload are controlled by two 
inputs: ut is trolley-pushing force and ul is payload 
lifting force. bt and br are parameters for frictions at 
trolley and cable. 

Dynamic behavior of cranes is governed by 
actuated model:  
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corresponding qa=[x l]T, and swinging equation 

 (1/ )(cos 2 sin )l x l gθ θ θ θ= − − 

   (9) 

describes payload swing θ. Substituting Eq. (9) into 
Eqs. (7), (8) and rearranging leads to a reduced-order 
dynamics 

( , )a a+ + =Mq Bq f q q U    (10) 
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where, q=[x l θ]T are system outputs. 2 2[ ]ijm ×=M  is 
a symmetric matrix with 

2
11 sin ,t cm m m θ= + 12 21 sin ,cm m m θ= = −  and 

22 .c lm m m= +  B=diag(bt,br) denotes damping. 
2 2( , ) [( sin 0.5 sin 2 ) ( cos )] ,T

c c c cm l m g m l m gθθ θ θ θ= + − +f q q  



 and [ ]T
t lu u=U is outputs. 

4. Controller Design 

We design a structure for tracking qa to 
destination qad=[x l]T while suppressing payload 
swing (θ reaches zero). We consider a sliding 
manifold containing fractional derivative 

( ) ( )t a ad a adDα θ= − + − +s q q λ q q β   (11) 

where, 0≤α≤1 is fractional-order (FO) of Caputo 
derivative (Definition 1), λ=diag(λ1,λ2) is a positive 
matrix, and β=[β1 0]T. A control law is proposed 
compatible with surface (11) by a following 
statement. 

Statement: A structure of fractional sliding mode 
control  

(2 ){ ( ) }
( , ) sgn
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+ + −
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Bq f q q η s 

 (12) 

tracks outputs q governed by crane dynamics (7)-(9) 
to destinations qd=[xd ld 0]T asymptotically. Here, 
η=diag(η1,η2) are two positive gains. 

Proof: We begin with a bounded Lyapunov 
function 

0.5 0TV = >s Ms   (13)  

Since 2
11 ( sin ) 0t cm m m θ= + >  and 

2det [ ( ) sin ] 0,t c l c lm m m m m θ= + + >M  M  is 
positive definite. Based on Lemma 1, fractional 
derivative of Lyapunov (13) satisfies 
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Submitting equivalent dynamics (10) and 
controller (12) into Eq. (14) yields 

2( 1) sgnT T
t t tD V D Dα α α −≤ = −s M s s η s  (15)  

For α≠1, Caputo derivative 2( 1) sgn 0tD α − =s  
leads inequality (15) to 

0tD Vα ≤  (16)  

The case α=1 leads inequality (15) to 

1 1 2 2tD V s sα η η≤ − −  (17)  

The expressions (13), (16), and (17) fit 
conditions of Theorem 1. This implies that 

equilibrium s=0 is globally stable. The convergence 
of manifold (11) produces a linear fractional-order 
system 

( ) ( )t a ad a adDα θ− = − − −q q λ q q β  (18) 

Physically, θ is always toward 0 due to payload 
weight even without control, and gain β supports the 
fast convergence of θ. Eq. (18) is reduced as 

( ) ( )t a ad a adDα − = − −q q λ q q  (19) 

Applying Theorem 2 to system (19) indicates 
that (qa−qad) is locally stabile around 0 for every 
positive definite matrix λ. Thus, tracking qa to qad is 
achieved. 

Remark 1: Sign function of control law (12) may 
cause the chattering at system responses. There are 
several ways to reduce this, such as: replacing sign 
action by situation function or sigmoid function, 
using a filter or estimator, higher-order solution, 
super-twisting method, and so on. In this article, we 
utilize a hyperbolic tangent function 
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replacing for sgns function. 

Remark 2: Theoretically, sliding surface (11) of 
controller (12) only assures the infinity convergence. 
In fact, the control law (12) is designed based on the 
infinity stability of the dynamics  

sgnDα + =s η s 0  (21) 

An enhanced version [10, 14, 15] of SMC, that 
is the so-called Terminal SMC (TSMC), guarantees 
the finite-time stability of system outputs. By 
improving the dynamics of sliding surface as 

/ sgnq pDα + + =s s η s 0λ  (22) 

with η=diag(η1,η2) being positive diagonal matrix, q 
and p being positive odd integers satisfying q>p, we 
can obtain the TSMC controller in which the terminal 
stability of sliding manifold is held. 

5. Results and Analysis 

We check the quality of proposed controller (12) 
on crane dynamics (7)-(9) using a laboratory 
overhead crane whose parameters: mt= 5 kg, mc= 0.85 
kg, ml= 2 kg, bt= 20 Ns/m, br=Ns/m, and FO-SMC 
gains: λ=diag(0.7,0.9), β=[1.2 0]T, η=diag(100,100). 
The initial conditions: q(0)=[0 0.1 0]T and (0) =q 0 . 
We use three cases of fractional order α = 0.8, 0.9, 
and 1. The references of trolley and payload hoisting 
respectively compose of destinations: xd=[0 0.3 0.1 
0.7] m and ld=[0.1 0.4 0.6 0.2] m. The crane 
performances are depicted in Figs. 2-6. 
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Fig. 2. Trolley motion. 
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Fig. 3. Payload hoist. 
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Fig. 4. Payload swing. 
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Fig. 5. Trolley-moving force. 
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Fig. 6. Payload-hoisting force. 

 

Proper selection of FO decides the control 
quality. Seen at Fig. 2, FO=0.8 causes much 
oscillation of trolley motion, both FO=0.9 and 1 
assure the destination convergence, FO=0.9 makes 
overshoot while FO=1 does not. Varying FO from its 
origin FO=1 can reduce settling time but causes the 
overshoots and even steady-state errors. Payload 
hoisting (Fig. 3) seems well for cases, however, 
convergence speed of FO=0.8 is fastest. Payload 
swings are in small boundary (Fig. 4) at transient 
phase and absolutely suppressed at payload 
destinations. Depicted in Figs. 5 and 6, control inputs 
remain keen peaks due to high switched gains of 
controller. Generally, it is hard to say which FO is the 
best. Finding FO to achieve the optimal responses 
will be studied in the next article. 

As a nature of SMC, the proposed controller 
assures the system robustness despite disturbance and 
uncertain environment. Considering the case FO=1, 
we investigate the consistence of output responses 
when a crane faces parametric uncertainties. In fact, 
many crane parameters are variable and thus 
adjustable. A crane can lift and transfer the payload 
with various mass mc and volume. The frictions 
characterized by bt and br are varied up to 
environment, temperature, and humidity of operation 
area. We consider the variation of three above-
mentioned parameters with two following cases: 

Case 1: [∆mc ∆bt ∆br]=[100 20 −10]%. 

Case 2: [∆mc ∆bt ∆br]=[−50 −40 30]%. 
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Fig. 7. Robustness of trolley motion. 

0 5 10 15 20 25

 Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 C
ab

le
 L

en
gt

h 
(m

)

Origin

Uncertainties-Case 1

Uncertainties-Case 2

 
Fig. 8. Robustness of payload-hoist. 
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Fig. 9. Robustness of payload swing.
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Fig. 10. Robustness of trolley-pushing force. 
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Fig. 11. Robustness of payload-hoisting force. 

The simulation results when the system is 
subject to two cases of parametric uncertainties in 
comparison with original case are depicted in Fig.7 to 
11. Despite parametric variations, trolley motion 
(Fig. 7) and payload swing (Fig. 9) still approach 
destination precisely. Parametric uncertainties only 
impact on outputs at transient states in which it 
causes small derivation. Hoisting the payload (Fig. 8) 
seems sensitive with the variation of parameters. It 
induces much not only transient-state derivations but 
also steady-state errors. Increasing swished gains 
η=diag(η1,η2) will improve robust feature however 
cause much chattering. The way to prevent chattering 
was discussed in Section 4. 

6. Conclusion 

By integrating FD into SMC structure, we 
successfully created a robust controller for tracking 
overhead crane with simultaneous drive of three 
motions. The controller works well for three cases of 

FO that are considered as flexible control gains. 
Trolley and payload lifting responses reach 
destinations precisely while well vanishing payload 
swing. Enhancing for 3D motion and integrating 
adaptive control approaches will be conducted in the 
future study. 
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