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Abstract 

This paper presents an in-house developed program that couples multibody dynamics and aerodynamics 
codes to simulate flapping flight of insects and micro air vehicles. The multibody dynamics code is built 
based on the numerical solution of the Lagrange equation, while the extended unsteady vortex-lattice 
method is employed to develop the aerodynamics code. The solution from the governing equation is 
obtained by the use of the fourth-order Runge-Kutta method and validated against the simulation results 
from a commercial software MSC Adams for a micro air vehicle model. In this work, parallel computing 
techniques are applied while estimating the aerodynamics force to minimize the running time of the program. 
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1. Introduction1 

The flapping flight of animals in the wild has 
been optimized by natural selection, which has lasted 
for hundreds of millions of years (Ellington, 1991). 
Nowadays, scientists have studied and adopted some 
important features of insect and bird flight to improve 
the performance of flapping-wing micro-air vehicles 
(FWMAVs) (Keennon and Klingebiel, 2012). In fact, 
flapping flight has some characteristics that do not 
exist in conventional fixed-wing and rotary-wing 
flights. While animals and micro-air vehicles flap 
their wings, the surrounding fluid moves in a such 
complex way that lift is generated to maintain a 
balanced flight. Moreover, the dynamics of flapping 
flight is characterised by the multi-degree-of-freedom 
motion, including six degrees of freedom (DOFs) for 
the body, and three DOFs for each wing. The 
interaction of aerodynamics and motion in flapping 
flight causes lots of trouble to model it. Some 
attempts have been made to simulate the multibody 
dynamics of flapping flight while considering the 
two-way interaction between aerodynamics and 
motion. Zhang and Sun (2010) coupled the Navier-
Stokes equations and the equations of motion for 
insect flight. However, this type of approach suffers 
from an excessive computation cost due to the use of 
a high-order aerodynamic model. Moreover, the 
solutions from this simulation program have not been 
rigorously validated. Another approach, which 
ignores the contribution of wing inertia, has been 
widely used to simulate and study flapping flight [2]. 
Using this approach, the dynamics properties of 
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flying systems are simplified as only the six DOFs of 
the body are considered. Some authors have indicated 
that this simplification technique is valid only for 
high-frequency flapping-wing systems with low wing 
mass. Due to these reasons, it is necessary to develop 
an efficient approach that is capable of modeling the 
multibody dynamics of flapping flight and 
considering the interaction between aerodynamics 
and motion.  
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Fig. 1. The FWMAV model and the coordinate 
systems used in this study 
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Fig. 2. Euler angles to define the wing orientation. 

The program developed in this paper couples the 
extended unsteady vortex-lattice method (UVLM), 
which is regarded as an intermediate cost and fidelity 
aerodynamic method and the multibody dynamics 
solver. The validity of the multibody dynamics solver 
is tested in a comparison with the solution from the 
MSC Adams software. In this work, the program is 
applied to an insect-like FWMAV in hover. 

2. Methodlogy  

2.1. FWMAV Model 

The FWMAV model used in this study has the 
same mass and geometric parameters as the hawkmoth 
Manduca sexta. The body and each wing weigh 1485.0 
and 46.87 mg, respectively; the wing length is 48.5 mm. 
Here, we use four coordinate systems, including the 
ground-fixed, the body-fixed and the two wing-fixed 
coordinated systems as shown in Fig. 1. In this figure, 
β is an angle between the stroke plane of the wings and 
the body axis. 

The wing orientation relative to the stroke plane 
is defined by three Euler angles φ , θ and α (Fig. 2). 
The sweep angle φ  defines the up and down motions 
of the wings, the elevation angle θ is used to control 
the for- and backward motions, and α is the rotation 
angle of the wings about their feathering axes. The 
more detailed definitions of these angles can be found 
in the literature [6]. The variations of  φ , θ and α are 
expressed by harmonic functions as follows: 
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where 0φ , 0θ  and 0α  denote the amplitudes of the 
sweep, elevation and rotation angles, f is the flapping 
frequency. In this study, it is assumed that angle β is 
held constant. 

2.2. Aerodynamic Model  

The aerodynamic model is based on the extended 
UVLM [6], which was developed using the potential 
flow theory [3]. The present aerodynamic model has 
intermediate cost and fidelity and is capable of 
handling the nonlinearity of the flow. Some important 
effects of flapping-wing aerodynamics, such as the 
wake capture and the leading-edge vorstex can be 
modeled in this work. To reduce the running time of 
the program while predicting the aerodynamic force, 
parallel computing techniques are applied. The 
validity of the present aerodynamic model for 
flapping-wing aerodynamics has been confirmed in 
previous studies [5]. 

2.3. Multibody Dynamics Model 

The present FWMAV consists of three objects, 
including the body and the two wings with 12 DOFs in 
total. The dynamics of the FWMAV is modeled using 
the Lagrange method. The kinetic energy of the body 
Tb and each wing Tw are expressed as 
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Here, M is mass, I is the tensor of moment of 
inertia, V and Ω are the velocity at the centre of mass 
and the angular velocity, respectively. The subscripts b 
and w denote the body and a wing, whereas the 
superscripts G and b refer to the ground-fixed and 
body-fixed coordinate system. 

The velocity of the wing in the body-fixed 
coordinate system b

wV  is 

/ /
b G b b b
w G b b b w b w b→= + × +V B V r VΩ                  (3) 

where G b→B  is the rotation matrix that transforms 
the velocity in the ground-fixed to the body-fixed 
coordinate system; Vw/b and rw/b are the velocity and 
the position vector of the wing mass centre relative to 
the body mass centre, respectively. 

The Lagrange equation for the present FWMAV 
can be written in the following form [8]:  

, , , , ,

d T T Q
dt

x y z

ηη η
η

 ∂ ∂
− = ∂ ∂ 

= Φ Θ Ψ

                                     (4) 

where T is the total kinetic energy; Q is the 
generalized force derived from the virtual work done 
by external forces, including gravitational and 
aerodynamic forces; x, y and z are the displacements of 
the body centre of mass along the corresponding axes 
in the ground-fixed coordinate system; Φ, Θ and Ψ are 
respectively the roll, pitch and yaw angles that are used 
to define the orientation of the body according to the 3-
2-1 sequence of rotations. 
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The governing equation of the current multibody 
dynamics problem is formulated as 

( ) ( ) ( ), ,...t t t, , ,M H = Q Φ Φ+ Φ Φ Φ            (5) 

M, H, and Q matrices are given in detail as 
follows: 
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M, H and Q matrices are obtained from 
equation (4). Equation (5) is solved by the fourth-
order Runge-Kutta method. 

The coefficients related to the body are 
expressed as 
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Here , , , , ,x y zη ϕ θ ψ= ; M and I respectively 
denote the mass and the moment of inertia. For the 
body, the moment of inertia is determined about its 
center of mass. B1 is the matrix that converts the 
derivatives of the three Euler angles , ,ϕ θ ψ  to the 
angular velocity in the body-fixed coordinate system, 
and B is a transform matrix. The superscripts b and G 
refer to the body-fixed and ground-fixed coordinate 
systems, respectively. Φ1 is ( ), ,

T
x y z and Φ2 is 

( ), ,
T

ϕ θ ψ .   

The coefficients related to the wings are given 
in the following equations. [ ]

×
r  denotes the skew-

symmetric matrix of r, which is used to represent a 
cross product in a matrix form. 
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The generalized coordinate vector Φ is 
[ ]Tx y zΦΘΨΦ =                                       (6) 

The validity of the multibody dynamics solver is 
examined in a comparison with the solution from the 
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MSC Adams software for the same FWMAV. Here, 
arbitrary external forces are applied to the two wings 
and the body. Moreover, there is a phase difference 
between the motions of the left and right wings. Fig. 3 
shows the displacements and the orientations of the 
body from the present program and from MSC Adams. 

MSC Adams is multibody dynamics software, 
which can provide a simulation framework for 
flapping-wing flight. However, the integration of 
unsteady aerodynamics solvers into the software 
framework is challenging because of its large 
computational cost. Nguyen et al. [8] have made an 
attempt to do this kind of integration. However, it 
should be noted that in that study, the aerodynamics 
solver is not entirely coupled with the iterations of the 
dynamics solver. Instead, the aerodynamic force is 
calculated for each time step, and this force is 
assumed to be constant during the iterations of the 
dynamics solver. This study presents the first attempt 
to entirely couple the unsteady aerodynamics solver 
with a multibody dynamics code. 

MSC Adams uses the GSTIFF solver for the 
multibody dynamics simulation. A predictor-corrector 
method is applied to obtain the solution to the 
dynamics equations of the system. 

Fig. 5 and Fig. 6 show the comparisons for data 
on the right and left wings, respectively. 

3. Simulation results  

The present program is applied to the FWMAV 
in hover. The wing kinematic parameters are similar to 
those of a real hawkmoth (Willmott and Ellington, 
1997) (Table 1). The initial velocities and the angular 
velocities are 0, and the initial pitch angle is 39.8 deg. 

Running the simulation with the present program 
for the hovering FWMAV we can obtain the flight 
trajectory. Next, constant lateral and vertically 
downward gust disturbances with the magnitude of 
1.0 m/s is applied to the FWMAV, and the responses 
of the FWMAV to these disturbances are investigated. 

Table 1.  Wing kinematic parameters 

Parameters Values 

0φ (deg) 60.0 

0θ (deg) 10.0 

0α (deg) 57.3 

f (Hz) 26.1 
β (deg) 54.8 

The variations of the trajectory parameters within 
the time course of one wingbeat stroke cycle 
corresponding to the cases with and without the gust 
disturbances are shown in Fig. 6 and 7. 
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Fig. 3. The validation against the MSC Adams software for the displacements and orientations of the body 
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Fig. 4. The validation against the MSC Adams software for the displacements of a marker on the right wing and the 
angular velocity and acceleration of right wing about three axes of the ground-fixed coordinate system 
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Fig. 5. The validation against the MSC Adams software for the displacements of a marker on the left wing and the 
angular velocity and acceleration of left wing about three axes of the ground-fixed coordinate system 
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Fig. 6. Displacements in the cases of lateral, vertical 
and no gust disturbances 

Fig. 7. Euler angles of the body in the cases of lateral, 
vertical and no gust disturbances 
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Fig. 8. The movements of the body and the wings in the cases of the lateral gust (a) and the vertically downward 
gust (b) 
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Fig. 9. Wakes and pressure difference in the case of no gust (up), lateral gust (middle) and downward gust (down). 
The left subfigures show the simulation in the mid of the downstroke, the right ones are corresponding to the mid of 
the upstroke 

It is seen that when the lateral gust is applied, 
the FWMAV is deflected largely about the roll axis 
and the motion along the y axis is divergent. 
Similarly, in the case of the vertically downward gust, 
the pitch angle decreases and the FWMAV moves 
downwards. 

From these data, it is possible to state that in 
hovering flight, the FWMAV is dynamically 
unstable. The movements of the body and the wings 
of the FWMAV in the cases of the gust disturbances 
are illustrated in Fig. 8. It is seen that the lateral gust 
disturbance causes a bank turn motion. On the other 
hand, the insect slightly pitches down in the case of 
the downward vertical gust disturbance. This 
response has demonstrated the dynamic instability of 
the system. 

Fig. 9 shows the wakes and nondimensional 
pressure difference on the wings in the mid of the 
downstroke and upstroke phases. Here, data are 
nondimensionalized by the reference dynamic 
pressure, in which we use the mean wing-tip speed. It 
is seen that the wake moves with the gust direction. 

Moreover, strong wing-wake interaction can be 
visualized in this figure, which is the source of the 
challenge while handling the coupling between the 
unsteady aerodynamics solver and the multibody 
dynamics code. 

4. Conclusions 

The paper has presented an in-house program 
developed for the simulation of flapping flight. The 
motion-aerodynamics interaction problem is handled 
by the integration of the multibody dynamics and 
aerodynamic codes. The multibody dynamics solver 
was validated against the MSC Adams software. 
When applying the program to a hawkmoth-like 
flapping-wing micro air vehicle model, the results 
showed that this air vehicle is dynamically unstable 
and easily deflected due to gust disturbances.  
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