Influence of Annealing Condition on the Structural and Photovoltaic Properties of Cu(In,Ga)(S,Se)₂ Solar Cells
Main Article Content
Abstract
Cu(In,Ga)S₂ (CIGS) nanoparticles were synthesized at 250 °C in oleylamine solvent by hot-injection method. Cu(In,Ga)(S,Se)₂ films were fabricated by printing CIGS nanoparticles on molybdenum substrates, then annealed at different temperatures in the range of 500-560 °C under Se vapor ambiance. After annealing, the crystallization of films was significantly improved, the big size CIGSSe crystallites were formed. Only single phase of CIGSSe existed in the films. The best conversion efficiency data of CIGSSe solar cell fabricated at 540 °C shows the best values of parameters. The parameters of the best CIGSSe solar cell are short-circuit current density (Jsc) of 27 mA/cm², open-voltage (Voc) of 0.42 V, fill factor (FF) of 0.36, and conversion efficiency (η) of 4.23%.
Keywords
CIGS, CIGSSe, solar cells
Article Details
References
1. I. Repins, M. A. Contreras, B. Egaas et al., “19.9%-efficient ZnO/CdS/CuInGaSe₂ solar cell with 81.2% fill factor”, Progress in Photovoltaics: Research and Applications, 16 (2008) 235–239.
2. J. H. Shi, Z. Q. Li, D. W. Zhang, Q. Q. Liu, Z. Z. Sun, and S. M. Huang, “Fabrication of Cu(In, Ga)Se₂ thin films by sputtering from a single quaternary chalcogenide target”, Progress in Photovoltaics: Research and Applications, 19 (2011) 160–164.
3. D. B. Mitzi, M. Yuan, W. Liu et al., “A high-efficiency solutiondeposited thin-film photovoltaic device”, Advanced Materials, 20 (2008) 3657–3662.
4. P. Jackson, R. Wurz, U. Rau, J. Mattheis, M. Kurth, T. Schlotzer, G. Bilger and Jurgen, “High Quality Baseline for High Efficiency, Cu(In₁₋ₓGaₓ)Se₂ Solar Cells”, Prog. Photovolt. Res. Appl., 15 (2007) 507–519.
5. K. Ramanathan, G. Teeter, J.C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe₂ thin film solar cells”, Thin Solid Films, 480–481 (2005) 499–502.
6. A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenooud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger & A. N. Tiwari, Nature Materials,10 (2011) 857–861.
7. http://www.solar-frontier.com/eng/news/2015/C051171.html. December 2015.
8. P. Jackson, D. Hriskos, E. Lotter et al., “New world record efficiency for Cu(In, Ga)Se₂ thin film solar cells beyond 20%”, Progress in Photovoltaics: Research and Applications, 19 (2011) 894–897.
9. P. Bloesch, A. Chirila, P. Reinhard, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Electrical back contact and impurities in CIGS solar cells,” in Proceedings of the 5th International Symposium on Innovative Solar Cells, Tsukuba, Japan, January, 2013.
10. D. B. Mitzi, M. Yuan, W. Liu et al., “A high-efficiency solution- deposited thin-film photovoltaic device”, Advanced Materials, vol. 20 (19) (2008) 3657–3662.
11. T. Wada, Y. Matsuo, S. Nomura et al., “Fabrication of Cu(In,Ga)Se₂ thin films by a combination of mechanochemical and screen-printing/sintering processes,” Physica (2006).
12. H. C. Wang, C. C. Wang, S. W. Feng, L. H. Chen, and Y. S. Lin, “Synthesis of CIGS thin film by solvothermal route,” Optical Materials Express, 3 (2013) 54–66.
13. Joint committee for powder diffraction standards, powder diffraction file No. 35-1102 JDCPS International Center Diffraction Data (1997).
2. J. H. Shi, Z. Q. Li, D. W. Zhang, Q. Q. Liu, Z. Z. Sun, and S. M. Huang, “Fabrication of Cu(In, Ga)Se₂ thin films by sputtering from a single quaternary chalcogenide target”, Progress in Photovoltaics: Research and Applications, 19 (2011) 160–164.
3. D. B. Mitzi, M. Yuan, W. Liu et al., “A high-efficiency solutiondeposited thin-film photovoltaic device”, Advanced Materials, 20 (2008) 3657–3662.
4. P. Jackson, R. Wurz, U. Rau, J. Mattheis, M. Kurth, T. Schlotzer, G. Bilger and Jurgen, “High Quality Baseline for High Efficiency, Cu(In₁₋ₓGaₓ)Se₂ Solar Cells”, Prog. Photovolt. Res. Appl., 15 (2007) 507–519.
5. K. Ramanathan, G. Teeter, J.C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe₂ thin film solar cells”, Thin Solid Films, 480–481 (2005) 499–502.
6. A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenooud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger & A. N. Tiwari, Nature Materials,10 (2011) 857–861.
7. http://www.solar-frontier.com/eng/news/2015/C051171.html. December 2015.
8. P. Jackson, D. Hriskos, E. Lotter et al., “New world record efficiency for Cu(In, Ga)Se₂ thin film solar cells beyond 20%”, Progress in Photovoltaics: Research and Applications, 19 (2011) 894–897.
9. P. Bloesch, A. Chirila, P. Reinhard, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Electrical back contact and impurities in CIGS solar cells,” in Proceedings of the 5th International Symposium on Innovative Solar Cells, Tsukuba, Japan, January, 2013.
10. D. B. Mitzi, M. Yuan, W. Liu et al., “A high-efficiency solution- deposited thin-film photovoltaic device”, Advanced Materials, vol. 20 (19) (2008) 3657–3662.
11. T. Wada, Y. Matsuo, S. Nomura et al., “Fabrication of Cu(In,Ga)Se₂ thin films by a combination of mechanochemical and screen-printing/sintering processes,” Physica (2006).
12. H. C. Wang, C. C. Wang, S. W. Feng, L. H. Chen, and Y. S. Lin, “Synthesis of CIGS thin film by solvothermal route,” Optical Materials Express, 3 (2013) 54–66.
13. Joint committee for powder diffraction standards, powder diffraction file No. 35-1102 JDCPS International Center Diffraction Data (1997).