Comparison the reactive capability of propargyl radical (C₃H₃) to ammonia (NH₃) and methyl radical (CH₃) in the gas phase
Main Article Content
Abstract
The reaction mechanisms between propargyl radical and ammonia (NH₃) or methyl radical (CH₃) have been studied by the Density Functional Theory (DFT) using the B3LYP functional in conjunction with the 6-311++G(3df,2p) basis set. Our calculations show that the C₃H₃ + NH₃ reaction has two main entrance channels: H-abstraction and addition while the other has only one type of entrance which is addition. If two additional reaction pathways of C₃H₃ + NH₃ have relative energies (kcal·mol⁻¹) that are found to be fairly high, the two additional directions of C₃H₃ + CH₃ have no transition states at the beginning of entrance. In terms of thermodynamic side, all of products are possible to be produced at the investigated condition, in which the product P₂ (HCCCH₃ + NH₂) of the first system and P₆ (C₂H₂ + C₂H₄) of the second reaction are the most favorable. Besides, the analytical results of energies showed that the C₃H₃ + CH₃ reaction takes place more easily compared to the C₃H₃ + NH₃ system.
Keywords
Reaction mechanism, propargyl radical, basis sets, ammonia, methyl radical
Article Details
References
[1]. Ken R D, Wu C H, Yong J N. Pamidimukkala K M & Singh H J, Energy and Fuels, 2, 454 (1988).
[2]. Ken R D, Singh H J & Wu C H, Int. J. Chem Kinet, 20, 731 (1988).
[3]. Nguyen T. L., Mebel A. M., Kaiser R. I., “A Theoretical Investigation of the Triplet Carbon Atom (C3P) Vinyl Radical C2H3(2A′)”, Reaction and Thermochemistry of C3Hn (n=1-4) Species, J. Phys. Chem. A, 105, (2001) 3284–3299.
[4]. Nguyen T. L., Mebel A. M., Lin S. H., Kaiser R. I., “Product Branching Ratios of the C(3P) + C2H3(2A′) and CH(2Π) + C2H2(1Σg⁺) Reactions and Photodissociation of H2CCCH(2B1) at 193 and 242 nm: An Ab Initio/RRKM Study”, J. Phys. Chem. A, 105, (2001) 11549–11559.
[5]. Parsons A. F., An introduction to free radical chemistry, Blackwell Science Ltd (2000).
[6]. Steven E. Wheeler, Kenneth A. Robertson, Wesley D. Allen, and Henry F. Schaefer, Thermochemistry of Key Soot Formation Intermediates: C3H3 Isomers, Center for Computational Chemistry University of Georgia, Athens, GA 30602 (2007).
[7]. Phạm Văn Tiến, Lê Kim Long, Nguyễn Thị Minh Huệ, Nghiên cứu lý thuyết cơ chế phản ứng giữa gốc propargyl với gốc hydroxyl bằng phương pháp phiêm hàm mật độ, Tạp chí Hóa học, 51(3), (2014) 305–311.
[8]. Vadim D. Knyazev, Irene R. Slagle. Kinetics of the Reactions of Allyl and Propargyl Radicals with CH3. J. Phys. Chem. A, 105, (2001) 3196–3204.
[9]. Tisdale, Samuel L.; Nelson, Werner L.; Beaton, James D. Soil fertility and fertilizers, New York: Macmillan, (1985) 161–168.
[10]. Benini, Stefano; Wojciech R. Rypniewski; Keith S. Wilson; Silvia Miletti; Stefano Ciurli; and Stefano Mangani. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure 7: (1999), 205–216.
[11]. Christianson, C. B., et al. Microsite Reactions of Urea-nBPT Fertilizer on the Soil Surface. Soil Biology and Biochemistry. (1993) 1107–1117.
[12]. (24). Torello W. A. and Wehner D. J. Urease Activity in a Kentucky Bluegrass Turf. Agronomy Journal, (1983) 654–656.
[13]. Nobel Prize in Chemistry (1918) – Haber–Bosch process. (2009).
[14]. “Chemistry of the Group 2 Elements – Be, Mg, Ca, Sr, Ba, Ra”. BBC.co.uk. (2009).
[15]. Anna L. Garden†‡ and Egill Skúlason*‡, The Mechanism of Industrial Ammonia Synthesis Revisited: Calculations of the Role of the Associative Mechanism. J. Phys. Chem. C, 119 (47), (2015) 26554–26559.
[16]. “ISO detects a new molecule in interstellar space”. Science & Technology. European Space Agency. (2013).
[17]. Hall, G. E.; Vanden Bout, D.; Sears, Trevor J. “Photodissociation of acetone at 193 nm: Rotational- and vibrational-state distributions of methyl fragments by diode laser absorption/gain spectroscopy”. The Journal of Chemical Physics. (1991).
[18]. “Trace Gases: Current Observations, Trends, and Budgets”. Climate Change, IPCC Third Assessment Report. IPCC/United Nations Environment Programme (2001).
[19]. M. J. Frisch, G. W. Trucks, H. B. Schlegel, J. A. Pople. Gaussian, Inc., Pittsburgh PA, (2009).
[20]. Frank Jensen. Introduction to Computational Chemistry; Second edition; John Wiley & Sons, Ltd (2007).
[21]. Pedley, J. B., Thermochemical Data and Structures of Organic Compounds, Thermodynamic Research Center, Texas A & M University, College Station, TX, (2015).
[2]. Ken R D, Singh H J & Wu C H, Int. J. Chem Kinet, 20, 731 (1988).
[3]. Nguyen T. L., Mebel A. M., Kaiser R. I., “A Theoretical Investigation of the Triplet Carbon Atom (C3P) Vinyl Radical C2H3(2A′)”, Reaction and Thermochemistry of C3Hn (n=1-4) Species, J. Phys. Chem. A, 105, (2001) 3284–3299.
[4]. Nguyen T. L., Mebel A. M., Lin S. H., Kaiser R. I., “Product Branching Ratios of the C(3P) + C2H3(2A′) and CH(2Π) + C2H2(1Σg⁺) Reactions and Photodissociation of H2CCCH(2B1) at 193 and 242 nm: An Ab Initio/RRKM Study”, J. Phys. Chem. A, 105, (2001) 11549–11559.
[5]. Parsons A. F., An introduction to free radical chemistry, Blackwell Science Ltd (2000).
[6]. Steven E. Wheeler, Kenneth A. Robertson, Wesley D. Allen, and Henry F. Schaefer, Thermochemistry of Key Soot Formation Intermediates: C3H3 Isomers, Center for Computational Chemistry University of Georgia, Athens, GA 30602 (2007).
[7]. Phạm Văn Tiến, Lê Kim Long, Nguyễn Thị Minh Huệ, Nghiên cứu lý thuyết cơ chế phản ứng giữa gốc propargyl với gốc hydroxyl bằng phương pháp phiêm hàm mật độ, Tạp chí Hóa học, 51(3), (2014) 305–311.
[8]. Vadim D. Knyazev, Irene R. Slagle. Kinetics of the Reactions of Allyl and Propargyl Radicals with CH3. J. Phys. Chem. A, 105, (2001) 3196–3204.
[9]. Tisdale, Samuel L.; Nelson, Werner L.; Beaton, James D. Soil fertility and fertilizers, New York: Macmillan, (1985) 161–168.
[10]. Benini, Stefano; Wojciech R. Rypniewski; Keith S. Wilson; Silvia Miletti; Stefano Ciurli; and Stefano Mangani. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure 7: (1999), 205–216.
[11]. Christianson, C. B., et al. Microsite Reactions of Urea-nBPT Fertilizer on the Soil Surface. Soil Biology and Biochemistry. (1993) 1107–1117.
[12]. (24). Torello W. A. and Wehner D. J. Urease Activity in a Kentucky Bluegrass Turf. Agronomy Journal, (1983) 654–656.
[13]. Nobel Prize in Chemistry (1918) – Haber–Bosch process. (2009).
[14]. “Chemistry of the Group 2 Elements – Be, Mg, Ca, Sr, Ba, Ra”. BBC.co.uk. (2009).
[15]. Anna L. Garden†‡ and Egill Skúlason*‡, The Mechanism of Industrial Ammonia Synthesis Revisited: Calculations of the Role of the Associative Mechanism. J. Phys. Chem. C, 119 (47), (2015) 26554–26559.
[16]. “ISO detects a new molecule in interstellar space”. Science & Technology. European Space Agency. (2013).
[17]. Hall, G. E.; Vanden Bout, D.; Sears, Trevor J. “Photodissociation of acetone at 193 nm: Rotational- and vibrational-state distributions of methyl fragments by diode laser absorption/gain spectroscopy”. The Journal of Chemical Physics. (1991).
[18]. “Trace Gases: Current Observations, Trends, and Budgets”. Climate Change, IPCC Third Assessment Report. IPCC/United Nations Environment Programme (2001).
[19]. M. J. Frisch, G. W. Trucks, H. B. Schlegel, J. A. Pople. Gaussian, Inc., Pittsburgh PA, (2009).
[20]. Frank Jensen. Introduction to Computational Chemistry; Second edition; John Wiley & Sons, Ltd (2007).
[21]. Pedley, J. B., Thermochemical Data and Structures of Organic Compounds, Thermodynamic Research Center, Texas A & M University, College Station, TX, (2015).