Study On Acid Hydrolysis Conditions of Chaetomorpha Linum Green Seaweed to Application for Ethanol Production
Main Article Content
Abstract
Green seaweed Chaetomorpha linum has high carbohydrate content, therefore it is suitable for ethanol production. [cite: 8] In this study, C. linum was hydrolyzed by sulfuric acid. [cite: 9] This process has been investigated following factors, seaweed ratio 75-200 g/l, acid concentration 0-4 %v/v, temperature $90-130^{\circ}C$ and time 20- 80 minutes. [cite: 10] The optimal factors were determined as hydrolysis time of 54 minutes, temperature of $123^{\circ}C,$ acid concentration of 3,3 %v/v resulting in the hydrolysate 53.2 g/l of sugar which contained glucose of 32.1 g/l, galactose of 7.8 g/l and rhamnose of 12.6 g/l. [cite: 11] In conclusion, this hydrolysate contains a high glucose amount that is appropriate for yeast fermentation with 18.1 g/l ethanol production. [cite: 12]
Keywords
Chaetomorpha linum, green seaweed, hydrolysis by acid, ethanol fermentation
Article Details
References
[1]. Na Wei, Josh Quarterman, Yong-Su Jin (2013). Marine macroalgae: an untappedresource for producing fuels and chemicals. Trends in Biotechnology 31 (2), 70-77
[2]. Lynd. L.R. (1996). Overview and Evaluation of Fuel Ethanol from Cellulosic Biomass: Technology. Economics, the Environment, and Policy. Annual Review of Energy and the Environment Journal 21, 403-65.
[3]. Kalpana M., Yasmin K., Mahesh R., Pratyush M.. Harshad B., Karuppanan E., Pushpit G. (2012). 2012 Kappaphycus alvarezii as a source of bioethanol. Bioresource Technology 103, 180-185
[4]. Xin Wang, Xianhua Liu, Guangyi Wang (2011). Two-stage Hydrolysis of Invasive Algal Feedstock for Ethanol Fermentation. Journal of Integrative Plant Biology 53(3), 246-252.
[5]. Hộ P. H. (1969). Rong biên Viêtnam. Marine algae of South Vietnam. pp.
[6]. AOAC (1990). Official Methods of Analysis (16thed.) Association of Official Analytical Chemists. Washington D.C.
[7]. Dubois M., Gilies K., Hammilton J.K., Robers P.A. and Smith F.A., (1951). A colorimetric method for the determination of sugars related substances. Analysis Chemical 28, 350-356
[8]. Mitsunori Y., Kanami N., Osamu A., Kiyohiko N., (2013). Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochemistry 46, 2111-2116.
[9]. Nadja S.J, Anders T., Frank L., Sune T. T., Christian R..Hans L., Anne B. B. (2013). Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol Comparison of five pretreatment technologies. Bioresource Technology 140, 36-42.
[10]. Lee S.M., Jae-Hwa Lee (2011). The isolation and characterization of simultaneous saccharification and fermentation microorganisms for Laminaria japonica utilization. Bioresource Technology 102, 5962-5967.
[11]. Adams, J.M.et al. (2009). Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. Journal of Applied Phycology 21, 569-574.
[12]. Seung H.Y., Rupendra M., John F. R. (2003). Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohydrate Research 338 (10), 1127-1132.
[2]. Lynd. L.R. (1996). Overview and Evaluation of Fuel Ethanol from Cellulosic Biomass: Technology. Economics, the Environment, and Policy. Annual Review of Energy and the Environment Journal 21, 403-65.
[3]. Kalpana M., Yasmin K., Mahesh R., Pratyush M.. Harshad B., Karuppanan E., Pushpit G. (2012). 2012 Kappaphycus alvarezii as a source of bioethanol. Bioresource Technology 103, 180-185
[4]. Xin Wang, Xianhua Liu, Guangyi Wang (2011). Two-stage Hydrolysis of Invasive Algal Feedstock for Ethanol Fermentation. Journal of Integrative Plant Biology 53(3), 246-252.
[5]. Hộ P. H. (1969). Rong biên Viêtnam. Marine algae of South Vietnam. pp.
[6]. AOAC (1990). Official Methods of Analysis (16thed.) Association of Official Analytical Chemists. Washington D.C.
[7]. Dubois M., Gilies K., Hammilton J.K., Robers P.A. and Smith F.A., (1951). A colorimetric method for the determination of sugars related substances. Analysis Chemical 28, 350-356
[8]. Mitsunori Y., Kanami N., Osamu A., Kiyohiko N., (2013). Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochemistry 46, 2111-2116.
[9]. Nadja S.J, Anders T., Frank L., Sune T. T., Christian R..Hans L., Anne B. B. (2013). Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol Comparison of five pretreatment technologies. Bioresource Technology 140, 36-42.
[10]. Lee S.M., Jae-Hwa Lee (2011). The isolation and characterization of simultaneous saccharification and fermentation microorganisms for Laminaria japonica utilization. Bioresource Technology 102, 5962-5967.
[11]. Adams, J.M.et al. (2009). Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. Journal of Applied Phycology 21, 569-574.
[12]. Seung H.Y., Rupendra M., John F. R. (2003). Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohydrate Research 338 (10), 1127-1132.