Comparison of Simulation and Experiment Results of Oil Film Temperature of the Connecting-Rod Big End Bearing in the Experimental Device

Trung Thien Pham1, Thi Thanh Hai Tran2, , Trong Thuan Luu2
1 University of Economics - Technology for Industries
2 Hanoi University of Science and Technology - No. 1, Dai Co Viet Road, Hanoi, Vietnam

Main Article Content

Abstract

The paper compares the simulation and experiment results of the lubricating oil temperature in the connecting-rod big end bearing. Simulating hydrodynamic lubrication for the connecting-rod big end bearing based on solving Reynolds equations, oil film thickness equations, load balancing equations and energy equations combined numerical lubrication simulation for the bearing by modeling thermal problems for oil films using finite element method. Experimental device and simulated rod made of elastic optical material are under the same load as that of a four-stroke engine. The temperature is measured by six thermocouple sensors located at positions 0°, 45°, 135°, 180°, 225°, 315° of the connecting-rod and at the middle section of the bearing along the length direction. The results from the research show the similarity between the simulation result and experience result. The temperature of the oil film in the connecting-rod big end bearing increases when the rotation speed increases and reaches the maximum value at the middle section of 360° angle of the crankshaft when there is an explosion. The higher viscosity the lubrication oil has, the higher temperature of the oil film it is in the connecting-rod big end bearing.

Article Details

References

[1] Reddi, M.M, 1969, Finite Element Solution of the Incompressible Lubrication problem. ASME, Journal of Lubrication Technology, pp. 262–270.
[2] Oh, K.P., Huebner, K.H., 1973, Solution of the Elastohydrodynamic Finite Journal Bearing Problem. ASME Journal of Lubrication Technology, Vol. 3, pp. 342–352.
[3] H. Shahmohamadi, R. Rahmani, H. Rahnejat, C. P. Garner, D. Dowson (2015), Big End Bearing Losses with Thermal Cavitation Flow Under Cylinder Deactivation. Tribol Lett (2015) 57:2.
[4] N. Morris, M. Mohammadpour, R. Rahmani, P.M. Johns-Rahnejat, H. Rahnejat1 and D. Dowson (2018), Effect of Cylinder Deactivation on tribological performance of piston compression ring and connecting-rod bearing. Tribology International (2018), doi:10.1016/j.triboint.2017.12.045.
[5] Pierre-Eugene J. (1983), Contribution à l’Etude de la Déformation Elastique d’un Coussin de Tête de Bielle en Fonctionnement Hydrodynamique Permanent, Thèse de Doctorat de l’Université de Poitiers.
[6] Moreau H. (2001), Mesures de Epaisseurs du Film d’Huile dans les Paliers de Moteur Automobile et Comparaisons avec les Résultats Théoriques, Thèse de Doctorat de l’Université de Poitiers.
[7] Michaud P. (2004), Modélisation thermo élasto hydro dynamique tridimensionnelle des paliers de moteurs. Mise en place d’un banc d’essais pour paliers sous conditions sévères, Thèse de Doctorat à l’Université de Poitiers.
[8] Fatu A. (2005), Modélisation numérique et expérimentale de la lubrification de palier de moteur soumis à des conditions sévères de fonctionnement, Thèse de doctorat de l’Université de Poitiers.
[9] M’hammed El Gadari, Aurelian Fatu, Mohamed Hajjam (2016), Shaft roughness effect on elasto-hydrodynamic lubrication of rotary lip seals: Experimentation and numerical simulation, Journal homepage: www.elsevier.com/locate/triboint