Effect of Nitrogen Precursors on Lithium Storage Behavior of Nitrogen Doped-Ordered Mesoporous Carbon

Thi Thu Hang Le1,
1 Hanoi University of Science and Technology – No. 1, Dai Co Viet Str., Hai Ba Trung, Ha Noi, Viet Nam

Main Article Content

Abstract

Ordered mesoporous carbon (CMK3) before and after doping with nitrogen (N) are prepared successfully by a nanocasting method using sucrose as carbon source, and urea (or melamine) as nitrogen source. After doping N, the materials show an increase in the specific surface area and a slight decrease in the porosity. The N content of the N-doped CMK3 obtained from melamine precursor (CMK3-M) is 5.82 at.%, approximately 4 times as high as that of the N-doped CMK3 obtained from urea precursor (CMK3-U). Among the three resultant samples, the CMK3-M exhibits the highest lithium storage capability. Owing to possessing the high N content the CMK3-M can deliver a reversible capacity of 812.7 mAh/g at a current density of 100 mA/g. After 50 cycles of the charge-discharge, the CMK3-M deliveries the capacity of 652.06 mAh/g, maintaining 80.2% of its initial reversible capacity with a high coulombic efficiency of 99.5%.

Article Details

References

[1] T. Kim, W. Song, D.-Y. Son, L.K. Ono, Y. Qi, Journal of Materials Chemistry A, 7 (2019) 2942-2964.
[2] A. Manthiram, J.C. Knight, S.-T. Myung, S.-M. Oh, Y.-K. Sun, Advanced Energy Materials, 6 (2016) 1501010.
[3] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Advanced Materials, 10 (1998) 725-763.
[4] H. Chen, F. Sun, J. Wang, W. Li, W. Qiao, L. Ling, D. Long, Journal of Physical Chemistry C, 117 (2013) 8318-8328.
[5] W.H. Shin, H.M. Jeong, B.G. Kim, J.K. Kang, J.W. Choi, Nano Letters, 12 (2012) 2283-2288.
[6] H. Xu, L. Ma, Z. Jin, Journal of Energy Chemistry, 27 (2018) 146-160.
[7] R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Advanced Materials, 13 (2001) 677-681.
[8] J. Przepiórski, Journal of Hazardous Materials, 135 (2006) 453-456.
[9] V.C. Almeida, R. Silva, M. Acerce, O.P. Junior, A.L. Cazetta, A.C. Martins, X. Huang, M. Chhowalla, T. Asefa, Journal of Materials Chemistry A, 2 (2014) 15181-15190.
[10] Z. Qiang, Y. Xia, X. Xia, B.D. Vogt, Chemistry of Materials, 29 (2017) 10178-10186.
[11] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science, 279 (1998) 548.
[12] X. Ji, K.T. Lee, L.F. Nazar, Nature Materials, 8 (2009) 500.
[13] G. Tao, L. Zhang, L. Chen, X. Cui, Z. Hua, M. Wang, J. Wang, Y. Chen, J. Shi, Carbon, 86 (2015) 108-117.
[14] J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Science, 270 (1995) 590.
[15] J. Hou, C. Cao, F. Idrees, X. Ma, ACS Nano, 9 (2015) 2556-2564.
[16] F. Su, C.K. Poh, J.S. Chen, G. Xu, D. Wang, Q. Li, J. Lin, X.W. Lou, Energy & Environmental Science, 4 (2011) 717-724.
[17] B. Guo, X. Wang, P.F. Fulvio, M. Chi, S.M. Mahurin, X.-G. Sun, S. Dai, Advanced Materials, 23 (2011) 4661-4666.
[18] M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Carbon, 38 (2000) 183-197.