Photocatalytic Properties of rGO/WO₃ Nanocomposites Prepared by a Hydrothermal Method
Main Article Content
Abstract
In this study, rGO/WO₃ nanocomposites were synthesized by one-pot hydrothermal method for photocatalytic applications. Properties of the synthesized materials were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), UV–Vis absorption spectroscopy and Fourier-transform infrared spectroscopy (FTIR). XRD analysis documented the formation of the hexagonal phase WO₃ with high crystalline quality. SEM images revealed that the WO₃ nanorods and layered rGO materials were synthesized. The band gap of the rGO/WO₃ composite calculated from the UV–Vis spectra is about 2.7 eV which is smaller compared to that of bare WO₃ (3.1 eV). Photocatalytic results under UV light irradiation showed that the rGO/WO₃ nanocomposite exhibited significantly higher photocatalytic activity than WO₃, where the rGO/WO₃ and WO₃ degraded about 80% and 55% of methylene blue within 100 min under UV irradiation, respectively.
Keywords
rGO/WO₃, photocatalytic, hydrothermal
Article Details
References
[1] X. Li, J. L. Shi, H. Hao, X. Lang, Visible lightinduced selective oxidation of alcohols with air by dye-sensitized TiO₂ photocatalysis, Applied Catalysis B: Environmental, 232 (2018), 260 - 267. doi:10.1016/j.apcatb.2018.03.043
[2] K. Sahu, Sinikuriakose, J. Singh, B. Satpati, S. Mohapatra, Facile synthesis of ZnO nanoplates and nanoparticle aggregates for highly efficient photocatalytic degradation of organic dyes, Journal of Physics and Chemistry of Solids, 121 (2018), 186 - 195. doi:10.1016/j.jpcs.2018.04.023
[3] S. Zhang, S. Wu, J. Wang, J. Jin, T. Peng, Controllable Syntheses of Hierarchical WO₃ Films Consisting of Orientation-Ordered Nanorod Bundles and Their Photocatalytic Properties, Cryst. Growth Des., 18 (2018), 794 – 801. Doi: 10.1021/acs.cgd.7b01254
[4] L. Wang, Y. Wang, D. Su, Y. Zhao, Enhancement of visible light photocatalytic activity over bistructural SnO₂ nanobelts, Superlattices and Microstructures, 114 (2018), 416 - 420. Doi: 10.1016/j.spmi.2017.12.058
[5] L. Han, J. Chen, Y. Zhang, Y. Liu, L. Zhang, S. Cao, Facile synthesis of hierarchical carpet-like WO₃ microflowers for high NO₂ gas sensing performance, Materials Letters, 210 (2018), 8 - 11. Doi: 10.1016/j.matlet.2017.08.065
[6] C. Wang, Y. Zhao, L. Zhou, Y. Liu, W. Zhang, Z. Zhao, Wael N. Hozzein, H. M. S. Alharbi, W. Li, D. Zhao, Mesoporous carbon matrix confinement synthesis of ultrasmall WO₃ nanocrystals for lithium ion batteries, J. Mater. Chem. A, 6 (2018), 21550 - 21557. doi: 10.1039/C8TA07145D
[7] V. Vinesh, T. Sakthivel, N. Gouthami, K. Kiranpreethi, R. P. Arulselvi, V. Gunasekaran, Enhanced Photocatalytic Properties of Nanostructured WO₃ Semiconductor - Photocatalyst Prepared via Hydrothermal Method, J. Nanoscience and Nanotechnology, 18 (2018), 3320 - 3328. Doi:10.1166/jnn.2018.14853
[8] M. B. Tahir, M. Rafique, M. Isa Khan, A. Majid, F. Nazar, M. Sagir, S. Gilani, M. Farooq, Enhanced photocatalytic hydrogen energy production of gC₃N₄-WO₃ composites under visible light irradiation, Energy Research, 42 (2018), 4667-4673. doi:10.1002/er.4208
[9] N.D. Hoa, C.V. Phuoc, C. T. Quy, P. V. Tong, V. V. Quang, N. V. Duy, N. V. Hieu L.V. Nang, Scalable Preparation of Graphene: Effect of Synthesis Methods on the Material Characteristics, Science of Advanced Materials, 7(2015), 1013 - 1020. doi:10.1166/sam.2015.2171
[10] K. Zhang, Y. Zhang, S. Wang, Enhancing thermoelectric properties of organic composites through hierarchical nanostructures, Scientific Reports, 3 (2013), DOI: 10.1038/srep03448.
[11] X. Hu, P. Xu, H. Gong, G. Yin, Synthesis and Characterization of WO₃/Graphene Nanocomposites for Enhanced Photocatalytic Activities by One-Step In-Situ Hydrothermal Reaction, Materials, 11 (2018), 147. doi: 10.3390/ma11010147
[12] B. Ahmed, A. K. Ojha, F. Hirsch, I. Fischer, D. Patrice, A. Materny, Tailoring of enhanced interfacial polarization in WO₃ nanorods grown over reduced graphene oxide synthesized by a one-step hydrothermal method, RSC Adv., 7 (2017), 13985-13996. doi:10.1039/C7RA00730B
[13] H. Huang, Z. Yue, G. Li, X. Wang, J. Huang, Y. Du, P. Yang, Ultraviolet-assisted preparation of mesoporous WO₃/reduced graphene oxide composites: superior interfacial contacts and enhanced photocatalysis, J. Mater. Chem. A, 1(2013), 15110 – 15116. doi:10.1039/C3TA13433D
[14] S.Prabhu, M.Pudukudy, S.Sohila, S.Harish, M.Navaneethan, D.Navaneethan, R.Ramesh, Y.Hayakawa, Synthesis, structural and optical properties of ZnO spindle/reduced graphene oxide composites with enhanced photocatalytic activity under visible light irradiation, Optical Materials, 79 (2018), 186 - 195. doi :10.1016/j.optmat.2018.02.
[2] K. Sahu, Sinikuriakose, J. Singh, B. Satpati, S. Mohapatra, Facile synthesis of ZnO nanoplates and nanoparticle aggregates for highly efficient photocatalytic degradation of organic dyes, Journal of Physics and Chemistry of Solids, 121 (2018), 186 - 195. doi:10.1016/j.jpcs.2018.04.023
[3] S. Zhang, S. Wu, J. Wang, J. Jin, T. Peng, Controllable Syntheses of Hierarchical WO₃ Films Consisting of Orientation-Ordered Nanorod Bundles and Their Photocatalytic Properties, Cryst. Growth Des., 18 (2018), 794 – 801. Doi: 10.1021/acs.cgd.7b01254
[4] L. Wang, Y. Wang, D. Su, Y. Zhao, Enhancement of visible light photocatalytic activity over bistructural SnO₂ nanobelts, Superlattices and Microstructures, 114 (2018), 416 - 420. Doi: 10.1016/j.spmi.2017.12.058
[5] L. Han, J. Chen, Y. Zhang, Y. Liu, L. Zhang, S. Cao, Facile synthesis of hierarchical carpet-like WO₃ microflowers for high NO₂ gas sensing performance, Materials Letters, 210 (2018), 8 - 11. Doi: 10.1016/j.matlet.2017.08.065
[6] C. Wang, Y. Zhao, L. Zhou, Y. Liu, W. Zhang, Z. Zhao, Wael N. Hozzein, H. M. S. Alharbi, W. Li, D. Zhao, Mesoporous carbon matrix confinement synthesis of ultrasmall WO₃ nanocrystals for lithium ion batteries, J. Mater. Chem. A, 6 (2018), 21550 - 21557. doi: 10.1039/C8TA07145D
[7] V. Vinesh, T. Sakthivel, N. Gouthami, K. Kiranpreethi, R. P. Arulselvi, V. Gunasekaran, Enhanced Photocatalytic Properties of Nanostructured WO₃ Semiconductor - Photocatalyst Prepared via Hydrothermal Method, J. Nanoscience and Nanotechnology, 18 (2018), 3320 - 3328. Doi:10.1166/jnn.2018.14853
[8] M. B. Tahir, M. Rafique, M. Isa Khan, A. Majid, F. Nazar, M. Sagir, S. Gilani, M. Farooq, Enhanced photocatalytic hydrogen energy production of gC₃N₄-WO₃ composites under visible light irradiation, Energy Research, 42 (2018), 4667-4673. doi:10.1002/er.4208
[9] N.D. Hoa, C.V. Phuoc, C. T. Quy, P. V. Tong, V. V. Quang, N. V. Duy, N. V. Hieu L.V. Nang, Scalable Preparation of Graphene: Effect of Synthesis Methods on the Material Characteristics, Science of Advanced Materials, 7(2015), 1013 - 1020. doi:10.1166/sam.2015.2171
[10] K. Zhang, Y. Zhang, S. Wang, Enhancing thermoelectric properties of organic composites through hierarchical nanostructures, Scientific Reports, 3 (2013), DOI: 10.1038/srep03448.
[11] X. Hu, P. Xu, H. Gong, G. Yin, Synthesis and Characterization of WO₃/Graphene Nanocomposites for Enhanced Photocatalytic Activities by One-Step In-Situ Hydrothermal Reaction, Materials, 11 (2018), 147. doi: 10.3390/ma11010147
[12] B. Ahmed, A. K. Ojha, F. Hirsch, I. Fischer, D. Patrice, A. Materny, Tailoring of enhanced interfacial polarization in WO₃ nanorods grown over reduced graphene oxide synthesized by a one-step hydrothermal method, RSC Adv., 7 (2017), 13985-13996. doi:10.1039/C7RA00730B
[13] H. Huang, Z. Yue, G. Li, X. Wang, J. Huang, Y. Du, P. Yang, Ultraviolet-assisted preparation of mesoporous WO₃/reduced graphene oxide composites: superior interfacial contacts and enhanced photocatalysis, J. Mater. Chem. A, 1(2013), 15110 – 15116. doi:10.1039/C3TA13433D
[14] S.Prabhu, M.Pudukudy, S.Sohila, S.Harish, M.Navaneethan, D.Navaneethan, R.Ramesh, Y.Hayakawa, Synthesis, structural and optical properties of ZnO spindle/reduced graphene oxide composites with enhanced photocatalytic activity under visible light irradiation, Optical Materials, 79 (2018), 186 - 195. doi :10.1016/j.optmat.2018.02.