Study on Kinetics of the Reactions between Propargyl Radical (C₃H₃) and Water Molecule (H₂O) and Hydroxyl Radical (OH) in the Gas Phase

Van Tien Pham1, , Ngoc Tue Nguyen1
1 Hanoi University of Science and Technology - No. 1, Dai Co Viet, Hai Ba Trung, Ha Noi

Main Article Content

Abstract

Kinetics of the reactions between propargyl radicals with water molecule and hydroxyl radical were investigated by TST, VST and RRKM theories on the basis of the mechanisms of both reactions researched by means of density functional theory (DFT). The calculated results show that the C₃H₃ + H₂O reaction is unlikely to occur at room temperature (k = 4,10x10⁻³⁴ cm³ molecule⁻¹ s⁻¹ at 300 K, 1atm), while the C₃H₃ + OH system reacts very fast with a rate constant k(T) = 1,39x10⁻¹¹T⁰.³⁵exp(-26,42/T) cm³ molecule⁻¹ s⁻¹ depending on the temperature in the range 300-2100 K. In addition, the results of the second reaction are in good agreement with the experimental results of Hansen and Miller (500-2100 K) and Eiteneer, B. and Frenklach (1100-2100 K).

Article Details

References

[1] Carl, S. A.; Nguyen, H. M. T.; Elsarrra, R. M.; Nguyen, M. T.; Peeters, J. Pulsed laser photolysis and quantum chemical-statistical rate study of the reaction of the ethynyl radical with water vapor. J. Chem. Phys., 122, (2005) 114307.
[2] Liu, Y. Z.; Zhang, Z. Q.; Pei, L. S.; Chen, Y.; Chen, C. X. Reaction kinetic studies of CCl₂ with C₂H₂ and H₂O molecules. Chem. Phys., 303, (2004) 255 - 263.
[3] Zabarnick, S.; Fleming, J. W.; Lin, M. C. Temperature dependence of CH radical reactions with H₂O and CH₂O. Symp. Int. Combust. Proc., 21, (1998) 713-719.
[4] Miller J. A. Concluding Remarks. Faraday Discuss., 119, (2001) 461.
[5] Cheung R.; Li, K. F.; Wang, S.; Pongetti, T. J.; Cageao, R. P.; Sander, S. P.; and Yung, Y. L. Atmospheric hydroxyl radical (OH) abundances from ground-based ultraviolet solar spectra: an improved retrieval method. Applied Optics, 47, (2008) 6277-6284.
[6] Frost, M. J.; Sharkey, P.; Smith, I. W. M. Reaction between hydroxyl (deutexyl) radicals and carbon monoxide at temperatures down to 80 K: experiment and theory. J. Phys. Chem., 97, (1993) 12254.
[7] Dong, F.; Wang, S.; Kong, F. Reaction of propargyl with oxygen. J. Phys. Chem. A, 107, (2003) 9374 - 9379.
[8] Eiteneer, B.; Frenklach, M. Experimental and Modeling Study of Shock-Tube Oxidatioon of Acetylene. Int J. Chem. Kinet., 35, (2003) 391-414.
[9] Hansen, N.; Miller, J. A.; Westmoreland, P. R.; Kasper, T.; Kohse-Hoinghaus, K.; Wang, J.; Cool, T. A. Isomer-specific combustion chemistry in allene and propyne flames. J. Combust. Flame, 156, (2009) 2153-2164.
[10] Wardlaw, D. M.; Marcus, R. A. RRKM Reaction Theory for Transition States of any Looseness. Chem. Phys. Lett., 110, (2013) 230-234.
[11] Vladimir, M. V. B.; Tsang, W.; Zachariah, M. R.; Knyazev, V. D.; Sean, M. W. ChemRate, MD 20899. NIST, Gaithersburg, USA, RRKM/Master Equation Modeling (2011).
[12] Klippenstein, S. J.; Wagner, A. F.; Dunbar, R. C.; Wardlaw, D. M.; Robertson, S. H. VariFlex. Argonne National Laboratory, Argonne, IL. (1999).
[13] Jasper, A. W.; Miller, J. A. Lennard-Jones parameters for combustion and chemical kinetics modeling from full-dimensional intermolecular potentials. Combust. and Flame, (2013) 1-30.
[14] Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics. Prentice-Hall, Inc., New Jersey, USA (1989).