A Density Functional Investigation of the Reaction Mechanism of CH3OH + HS•
Main Article Content
Abstract
CH3OH is one of potential alternative fuels. Potential energy surface of the CH3OH + HS• reaction has been revealed at the CCSD(T)/B3LYP/aug-cc-pVTZ level of theory. The chemical quantum results show that the reaction mainly occurs when the HS radical abstracts the H atoms in the OH and CH3 group of the CH3OH molecule via energy barriers at 18.2 and 9.0 kcal/mol, respectively. The predicted heats of reaction at 0 K of the corresponding products, 14.5 va 5.2 kcal/mol, are close to the experimental values, 14.5 va 5.2 kcal/mol, respectively. Similarly, the predicted heats of reaction at 298 K and the predicted geometry parameters for the reactants and products in this work are in good agreement with the available experimental data.
Keywords
Reaction mechanism, Mercapto radical (HS•), Methanol (CH3OH), PES
Article Details
References
[1] E. Marshall, Gasoline: the unclean fuel? Science, 246 (1989), 199–201.
[2] L. A. Morton, N. R. Hunter, H. D. Gesser, Methanol, a fuel for today and tomorrow. Chem. Ind., 16 (1990), 457–562.
[3] P. Venkateswarlu, W. Gordy, Methyl Alcohol II. Molecular Structure, J. Chem. Phys. 23 (1955), 1200.
[4] T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Vol. 1, NSRDS NBS-39, 1972.
[5] L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic Properties of Individual Substances, Fouth Edition, Hemisphere Pub. Co., New York, 1989.
[6] D. Aronowitz, D. W. Naegeli, I. Glassman, Kinetics of the pyrolysis of methanol, J. Phys. Chem. 81 (1977), 2555–9.
[7] P. H. Cribb, J. E. Dove, S. Yamazaki, A shock tube study of methanol pyrolysis, Symp. Int. Combust. Proc. 20 (1985), 779–787.
[8] Y. Hidaka, T. Oki, H. Kawano, T. Higashihara, Thermal decomposition of methanol in shock waves, J. Phys. Chem. 93 (1987), 7134–9.
[9] E. F. V. Carvalho, A. N. Barauna, F. B. C. Machado, O. Roberto-Neto, Theoretical calculations of energetics, structures, and rate constants for the H + CH3OH hydrogen abstraction reactions, Chem. Phys. Lett. 463 (2008), 33–37.
[10] J. T. Jodkowski, M. T. Rayez, J. C. Rayez, T. Béres, S. Döbé, Theoretical Study of the Kinetics of the Hydrogen Abstraction from Methanol. 3. Reaction of Methanol with Hydrogen Atom, Methyl, and Hydroxyl Radicals, J. Phys. Chem. A 103 (1999), 3750.
[11] S. Xu, M. C. Lin, Theoretical study on the kinetics for OH reactions with CH3OH and C2H5OH, Proc. Combust. Inst. 31 (2007), 159–166.
[12] J. Yan, J. Yang, Z. Liu, SH radical: the key intermediate in sulfur transformation during thermal processing of coal, Environ. Sci. Technol., 39 (2005), 5043.
[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
[14] W. Malcolm, Jr. Chase, Nist-Janaf thermochemical Tables, Fourth Edition, American Institute of Physics, New York, USA, 1998.
[15] J. D. Cox, D. D. Wagman, V. A. Medvedev, CODATA Key Values for Thermodynamics. Hemisphere, New York, 1989.
[16] M. Frenkel, K. N. Marsh, R. C. Wilhoit, G. J. Kabo, G. N. Roganov, Thermodynamics of Organic Compounds in the Gas State, Thermodynamics Research Center, College Station, TX, 1994.
[17] K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., 1979.
[18] G. Herzberg, Electronic spectra and electronic structure of polyatomic molecules, Van Nostrand, New York, 1966.
[19] J. Charles, A theoretical potential energy surface study of several states of the methoxy radical, J. Chem. Phys., 76 (1982), 505–515.
[20] R. L. Cook, F. C. De Lucia, P. Helminger, Molecular Force Field and Structure of Hydrogen Sulfide: Recent Microwave Results, J. Mol. Struct. 28 (1975), 237–246.
[2] L. A. Morton, N. R. Hunter, H. D. Gesser, Methanol, a fuel for today and tomorrow. Chem. Ind., 16 (1990), 457–562.
[3] P. Venkateswarlu, W. Gordy, Methyl Alcohol II. Molecular Structure, J. Chem. Phys. 23 (1955), 1200.
[4] T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Vol. 1, NSRDS NBS-39, 1972.
[5] L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic Properties of Individual Substances, Fouth Edition, Hemisphere Pub. Co., New York, 1989.
[6] D. Aronowitz, D. W. Naegeli, I. Glassman, Kinetics of the pyrolysis of methanol, J. Phys. Chem. 81 (1977), 2555–9.
[7] P. H. Cribb, J. E. Dove, S. Yamazaki, A shock tube study of methanol pyrolysis, Symp. Int. Combust. Proc. 20 (1985), 779–787.
[8] Y. Hidaka, T. Oki, H. Kawano, T. Higashihara, Thermal decomposition of methanol in shock waves, J. Phys. Chem. 93 (1987), 7134–9.
[9] E. F. V. Carvalho, A. N. Barauna, F. B. C. Machado, O. Roberto-Neto, Theoretical calculations of energetics, structures, and rate constants for the H + CH3OH hydrogen abstraction reactions, Chem. Phys. Lett. 463 (2008), 33–37.
[10] J. T. Jodkowski, M. T. Rayez, J. C. Rayez, T. Béres, S. Döbé, Theoretical Study of the Kinetics of the Hydrogen Abstraction from Methanol. 3. Reaction of Methanol with Hydrogen Atom, Methyl, and Hydroxyl Radicals, J. Phys. Chem. A 103 (1999), 3750.
[11] S. Xu, M. C. Lin, Theoretical study on the kinetics for OH reactions with CH3OH and C2H5OH, Proc. Combust. Inst. 31 (2007), 159–166.
[12] J. Yan, J. Yang, Z. Liu, SH radical: the key intermediate in sulfur transformation during thermal processing of coal, Environ. Sci. Technol., 39 (2005), 5043.
[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
[14] W. Malcolm, Jr. Chase, Nist-Janaf thermochemical Tables, Fourth Edition, American Institute of Physics, New York, USA, 1998.
[15] J. D. Cox, D. D. Wagman, V. A. Medvedev, CODATA Key Values for Thermodynamics. Hemisphere, New York, 1989.
[16] M. Frenkel, K. N. Marsh, R. C. Wilhoit, G. J. Kabo, G. N. Roganov, Thermodynamics of Organic Compounds in the Gas State, Thermodynamics Research Center, College Station, TX, 1994.
[17] K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., 1979.
[18] G. Herzberg, Electronic spectra and electronic structure of polyatomic molecules, Van Nostrand, New York, 1966.
[19] J. Charles, A theoretical potential energy surface study of several states of the methoxy radical, J. Chem. Phys., 76 (1982), 505–515.
[20] R. L. Cook, F. C. De Lucia, P. Helminger, Molecular Force Field and Structure of Hydrogen Sulfide: Recent Microwave Results, J. Mol. Struct. 28 (1975), 237–246.