A Density Functional Investigation of the Reaction Mechanism of CH3OH + HS•

Trong Nghia Nguyen1, , Hong Duong Nguyen1, Ngoc Tue Nguyen1, Thi Minh Hue Nguyen2
1 Hanoi University of Science and Technology – No. 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
2 Hanoi National University of Education – No. 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Main Article Content

Abstract

CH3OH is one of potential alternative fuels. Potential energy surface of the CH3OH + HS• reaction has been revealed at the CCSD(T)/B3LYP/aug-cc-pVTZ level of theory. The chemical quantum results show that the reaction mainly occurs when the HS radical abstracts the H atoms in the OH and CH3 group of the CH3OH molecule via energy barriers at 18.2 and 9.0 kcal/mol, respectively. The predicted heats of reaction at 0 K of the corresponding products, 14.5 va 5.2 kcal/mol, are close to the experimental values, 14.5 va 5.2 kcal/mol, respectively. Similarly, the predicted heats of reaction at 298 K and the predicted geometry parameters for the reactants and products in this work are in good agreement with the available experimental data.

Article Details

References

[1] E. Marshall, Gasoline: the unclean fuel? Science, 246 (1989), 199–201.
[2] L. A. Morton, N. R. Hunter, H. D. Gesser, Methanol, a fuel for today and tomorrow. Chem. Ind., 16 (1990), 457–562.
[3] P. Venkateswarlu, W. Gordy, Methyl Alcohol II. Molecular Structure, J. Chem. Phys. 23 (1955), 1200.
[4] T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Vol. 1, NSRDS NBS-39, 1972.
[5] L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic Properties of Individual Substances, Fouth Edition, Hemisphere Pub. Co., New York, 1989.
[6] D. Aronowitz, D. W. Naegeli, I. Glassman, Kinetics of the pyrolysis of methanol, J. Phys. Chem. 81 (1977), 2555–9.
[7] P. H. Cribb, J. E. Dove, S. Yamazaki, A shock tube study of methanol pyrolysis, Symp. Int. Combust. Proc. 20 (1985), 779–787.
[8] Y. Hidaka, T. Oki, H. Kawano, T. Higashihara, Thermal decomposition of methanol in shock waves, J. Phys. Chem. 93 (1987), 7134–9.
[9] E. F. V. Carvalho, A. N. Barauna, F. B. C. Machado, O. Roberto-Neto, Theoretical calculations of energetics, structures, and rate constants for the H + CH3OH hydrogen abstraction reactions, Chem. Phys. Lett. 463 (2008), 33–37.
[10] J. T. Jodkowski, M. T. Rayez, J. C. Rayez, T. Béres, S. Döbé, Theoretical Study of the Kinetics of the Hydrogen Abstraction from Methanol. 3. Reaction of Methanol with Hydrogen Atom, Methyl, and Hydroxyl Radicals, J. Phys. Chem. A 103 (1999), 3750.
[11] S. Xu, M. C. Lin, Theoretical study on the kinetics for OH reactions with CH3OH and C2H5OH, Proc. Combust. Inst. 31 (2007), 159–166.
[12] J. Yan, J. Yang, Z. Liu, SH radical: the key intermediate in sulfur transformation during thermal processing of coal, Environ. Sci. Technol., 39 (2005), 5043.
[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
[14] W. Malcolm, Jr. Chase, Nist-Janaf thermochemical Tables, Fourth Edition, American Institute of Physics, New York, USA, 1998.
[15] J. D. Cox, D. D. Wagman, V. A. Medvedev, CODATA Key Values for Thermodynamics. Hemisphere, New York, 1989.
[16] M. Frenkel, K. N. Marsh, R. C. Wilhoit, G. J. Kabo, G. N. Roganov, Thermodynamics of Organic Compounds in the Gas State, Thermodynamics Research Center, College Station, TX, 1994.
[17] K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., 1979.
[18] G. Herzberg, Electronic spectra and electronic structure of polyatomic molecules, Van Nostrand, New York, 1966.
[19] J. Charles, A theoretical potential energy surface study of several states of the methoxy radical, J. Chem. Phys., 76 (1982), 505–515.
[20] R. L. Cook, F. C. De Lucia, P. Helminger, Molecular Force Field and Structure of Hydrogen Sulfide: Recent Microwave Results, J. Mol. Struct. 28 (1975), 237–246.