Design and Simulation of Scanning Probe Micro-Cantilever for the Scanning Probe Lithography
Main Article Content
Abstract
In this paper, we report on design and simulation of a scanning probe micro-cantilever. The micro-cantilever consists of a sharp silicon tip integrated at the free end of the silicon fixed-free beam. The micro-cantilever is driven electrostatically using parallel plate capacitive-type actuation. The sharp silicon tip is in pyramidal shape, which is created by the anisotropic etching of single-crystal silicon in potassium hydroxide. An electrode is spaced upper the back side of the cantilever with an air gap to form the capacitive-type actuation. The operation characteristics of the scanning probe micro-cantilever are simulated by finite element method. We study the displacement of the tip and the variation of capacitance depending on applied voltage. The operation of the cantilever in air environment is also investigated. The micro-cantilever is designed for application in the scanning probe lithography.
Keywords
Electrostatic actuator, unsymmetrical operation mode, scanning probe lithography
Article Details
References
[1] D. S. Ginger et al., The evolution of dip-pen nanolithography, Angew.Chem. Int. Ed. 43 (2004) 30-45.
[2] P. J. Thomas, G. U. Kulkarni and C. N. R. Rao, Dip-pen lithography using aqueous metal nanocrystal dispersions, J. Mater. Chem., 14 (2004) 625–628.
[3] X. Liu, Y. Li and Z. Zheng, Programming nanostructures of polymer brushes by dip-pen nanodisplacement lithography (DNL), Nanoscale, 2 (2010) 2614–2618.
[4] E. J. Irvine, A. H. Santana, K. Faulds and D. Graham, Fabricating protein immunoassay arrays on nitrocellulose using Dip-pen lithography techniques, Analyst, 136 (2011) 2925.
[5] J. Y. Son, Y. H. Shin, S. Ryu, H. Kim, and H. M. Jang, Dip-Pen Lithography of Ferroelectric PbTiO₃ Nanodots, J. Am. Chem. Soc. 131 (2009) 14676–14678.
[6] L. V. Tam, D. V. Hieu, N. D. Vy, V. N. Hung, C. M. Hoang, Design and simulation analysis of an electrostatic actuator for improving the performance of scanning probe nanolithography, Vietnam Journal of Science and Technology 55 (4) (2017) 484–493.
[7] D. J. Resnick, S. V. Sreenivasan, and C. G. Willson, Step & flash imprint lithography, Mater. Today, 8(2) (2005) 34–42.
[8] Zheng Cui, Nanofabrication, Principles, Capabilities and Limits, 151, Springer Science+Business Media, (2008).
[9] D. Bullen, C. Liu, Electrostatically actuated dip pen nanolithography probe arrays, Sensors and Actuators A 125 (2006) 504–511.
[10] A. Gaitas, P. French, Piezoresistive Probe Array for High Throughput Applications, Procedia Engineering 25 (2011) 1445–1448.
[11] X. Wang, D. A. Bullen, J. Zou, and C. Liu, Thermally actuated probe array for parallel dip-pen nanolithography, J. Vac. Sci. Technol. B 22(6) (2004) 2563–2567.
[12] O. Brand, I. Dufour, S. Heinrich, F. Josse, Resonant MEMS: Fundamentals, Implementation, and Application (Advanced Micro and Nanosystems), 16-18, Wiley-VCH, the 1st edition (2015).
[13] R. K. Gupta, Electrostatic Pull-In Structure Design for In-Situ Mechanical Property Measurements of Microelectromechanical Systems (MEMS), Ph.D. thesis, MIT, 1997.
[14] M. Bao, H. Yang, Squeeze film air damping in MEMS, Sensors and Actuators A 136 (2007) 3–27.
[15] M. I. Younis, MEMS Linear and Nonlinear Statics and Dynamics, 225, Springer Science+Business Media, (2011).
[16] S. Abe, M. H. Chu, T. Sasaki, and K. Hane, Time Response of a Microelectromechanical Silicon Photonic Waveguide Coupler Switch, IEEE Photon. Technol. Lett. 26(15) (2014) 1553–1556.
[2] P. J. Thomas, G. U. Kulkarni and C. N. R. Rao, Dip-pen lithography using aqueous metal nanocrystal dispersions, J. Mater. Chem., 14 (2004) 625–628.
[3] X. Liu, Y. Li and Z. Zheng, Programming nanostructures of polymer brushes by dip-pen nanodisplacement lithography (DNL), Nanoscale, 2 (2010) 2614–2618.
[4] E. J. Irvine, A. H. Santana, K. Faulds and D. Graham, Fabricating protein immunoassay arrays on nitrocellulose using Dip-pen lithography techniques, Analyst, 136 (2011) 2925.
[5] J. Y. Son, Y. H. Shin, S. Ryu, H. Kim, and H. M. Jang, Dip-Pen Lithography of Ferroelectric PbTiO₃ Nanodots, J. Am. Chem. Soc. 131 (2009) 14676–14678.
[6] L. V. Tam, D. V. Hieu, N. D. Vy, V. N. Hung, C. M. Hoang, Design and simulation analysis of an electrostatic actuator for improving the performance of scanning probe nanolithography, Vietnam Journal of Science and Technology 55 (4) (2017) 484–493.
[7] D. J. Resnick, S. V. Sreenivasan, and C. G. Willson, Step & flash imprint lithography, Mater. Today, 8(2) (2005) 34–42.
[8] Zheng Cui, Nanofabrication, Principles, Capabilities and Limits, 151, Springer Science+Business Media, (2008).
[9] D. Bullen, C. Liu, Electrostatically actuated dip pen nanolithography probe arrays, Sensors and Actuators A 125 (2006) 504–511.
[10] A. Gaitas, P. French, Piezoresistive Probe Array for High Throughput Applications, Procedia Engineering 25 (2011) 1445–1448.
[11] X. Wang, D. A. Bullen, J. Zou, and C. Liu, Thermally actuated probe array for parallel dip-pen nanolithography, J. Vac. Sci. Technol. B 22(6) (2004) 2563–2567.
[12] O. Brand, I. Dufour, S. Heinrich, F. Josse, Resonant MEMS: Fundamentals, Implementation, and Application (Advanced Micro and Nanosystems), 16-18, Wiley-VCH, the 1st edition (2015).
[13] R. K. Gupta, Electrostatic Pull-In Structure Design for In-Situ Mechanical Property Measurements of Microelectromechanical Systems (MEMS), Ph.D. thesis, MIT, 1997.
[14] M. Bao, H. Yang, Squeeze film air damping in MEMS, Sensors and Actuators A 136 (2007) 3–27.
[15] M. I. Younis, MEMS Linear and Nonlinear Statics and Dynamics, 225, Springer Science+Business Media, (2011).
[16] S. Abe, M. H. Chu, T. Sasaki, and K. Hane, Time Response of a Microelectromechanical Silicon Photonic Waveguide Coupler Switch, IEEE Photon. Technol. Lett. 26(15) (2014) 1553–1556.