Cost Effective System Using for Bioimpedance Measurement

Phan Kien Nguyen1, , Anh Vu Tran1
1 Hanoi University of Science and Technology - No. 1, Dai Co Viet Str., Hai Ba Trung, Ha Noi, Viet Nam

Main Article Content

Abstract

This paper presents an economical system for measuring the bioimpedance of meat. The measurement is based on the electrical Fricke model and the inverting configuration of operational amplifiers (op-amp). The system can generate testing signals with frequency ranged from 10Hz to 1MHz and adjustable amplitude up to 1.08Vpp. The sweeping input and output of the op-amp are captured by an oscilloscope that is connected to and controlled by a computer before being processed by MATLAB. The system allows performing automatic customizable sweep routines. Generally, the measurement on a resistor and a RC meat-modeling circuit and a meat sample provided favorable results. In the future, system will be used for measurement and assessment meat quality in order to create a new methods for assessment of food quality.

Article Details

References

[1] J. Lepetit, J. Culioli; Mechanical-properties of meat; Meat Science, vol. 36 (1-2), pp. 203-237, 1994.
[2] E. Tornberg; Biophysical aspects of meat tenderness; Meat Science, vol. 43, S175-S191, 1996.
[3] J. W. Stephens, J. A. Unruh, M. E. Dikeman, M. C. Hunt, T. E. Lawrence, and T. M. Loughin; Mechanical probes can predict tenderness of cooked beef longissimus using uncooked measurements; Journal of Animal Science, vol. 82 (7), pp. 2077-2086, 2004.
[4] S. D. Shackelford, T. L. Wheeler, and M. Koohmaraie; Evaluation of slice shear force as an objective method of assessing beef longissimus tenderness; Journal of Animal Science, vol. 77 (10), pp. 2693-2699, 1999.
[5] S. Abouelkaram, P. Berge, and J. Culioli; Application of ultrasonic data to classify bovine muscles; Proceedings of IEEE Ultrasonics Symposium, vol. 2, pp. 1197-1200, 1997.
[6] J. Ophir, R. K. Miller, H. Ponnekanti, I. Cespedes, and A. D. Whittaker; Elastography of beef muscle; Meat Science, vol. 36 (1-2), pp. 239-250, 1994.
[7] S. Abouelkaram, K. Suchorski, B. Buquet, P. Berge, J. Culioli, P. Delachartre, and O. Basset; Effects of muscle texture on ultrasonic measurements; Food Chemistry, vol. 69, pp. 447-455, 2000.
[8] J. Benedito, J. A. Carcel, C. Rossello, and A. Mulet; Composition assessment of raw meat mixtures using ultrasonics; Meat Science, vol. 57 (4), pp. 365-370, 2001.
[9] G. Monin; Recent methods for predicting quality of whole meat; Meat Science, vol. 49 (1), S231-S243, 1998.
[10] K. I. Hildrum, J. P. Wold, H. S. Vegard, J. P. Renou, and E. Dufour; New spectroscopic techniques for online monitoring of meat quality; Advanced technologies for meat processing, CRC Press, pp. 87-129, 2006.
[11] T. Kempen; Infrared technology in animal production; Worlds Poultry Science Journal, vol. 57 (1), pp. 29-48, 2001.
[12] S. D. Shackelford, T. L. Wheeler, and M. Koohmaraie; On-line classification of US Select beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy; Meat Science, vol. 69 (3), pp. 409-415, 2005.
[13] A. M. Herrero; Raman spectroscopy a promising technique for quality assessment of meat and fish: A review; Food Chemistry, vol. 107 (4), pp. 1642-1651, 2008.
[14] J. Xia, A. Weaver, D. E. Gerrard, and G. Yao; Monitoring Sarcomere Structure Changes in Whole Muscle Using Diffuse Light Reflectance; Journal of Biomedical Optics, vol. 11 (4), 2006.
[15] J. Xing, M. Ngadi, A. Gunenc, S. Prasher, and C. Gariepy; Use of visible spectroscopy for quality classification of intact pork meat; Journal of Food Engineering, vol. 82 (2), pp. 135-141, 2007.
[16] G. Yao, K. S. Liu, and F. Hsieh; A new method for characterizing fiber formation in meat analogs during high-moisture extrusion; Journal of Food Science, vol. 9 (7), pp. E303-E307, 2004.
[17] C. E. Byrne, D. J. Troya, and D. J. Buckley; Postmortem changes in muscle electrical properties of bovine M. longissimus dorsi and their relationship to meat quality attributes and pH fall; Meat Science, vol. 54, pp. 23-34, 2001.
[18] J. Lepetit, J. L. Damez, S. Clerjon, R. Favier, S. Abouelkaram, and B. Dominguez; Multielectrode sensor for measurement of electrical anisotropy of a biological material
[19] J. L. Damez, S. Clerjon, S. Abouelkaram, and J. Lepetit; Beef meat electrical impedance spectroscopy and anisotropy sensing for non-invasive early assessment of meat ageing; Journal of Food Engineering, vol. 85 (1), pp. 116-122, 2008.
[20] S. Clerjon, J. D. Daudin, and J. L. Damez; Water activity and dielectric properties of gels in the frequency range 200MHz-6 GHz; Food Chemistry, vol. 82, pp. 87-97, 2003.
[21] H. Fricke; A Mathematical Treatment of the Electric Conductivity; Physical Review, vol. 24, no. 5, pp. 575-587, 1924.
[22] H. Fricke; A mathematical treatment of the electric conductivity and; Physical Review, vol. 26, no. 5, pp. 678-681, 1925.
[23] J. L. Damez, S. Clerjon, S. Abouelkaram, and J. Lepetit; Dielectric behavior of beef meat in the 1-1500 kHz range: Simulation with the Fricke/Cole-Cole model; Meat Science, vol. 77, pp. 512-519, 2007.
[24] K. N. Khamil and C. K. Yin; An Analysis of Lard by using Dielectric Sensing Method; Journal of Telecommunication, Electronic and Computer Engineering, vol. 8, pp. 131-137, 2016.
[25] D. T. Trung, N. P. Kien, T. D. Hung, D. C. Hieu and T. A. Vu; Electrical impedance measurement for assessment of the Pork aging: a Preliminary study; Third International Conference of Biomedical Engineering, pp. 95-99, 2016.