Effect of Sputtering Condition on Electrical and Optical Properties of Indium-Tin Oxide Thin Films
Main Article Content
Abstract
Indium-tin oxide (ITO) thin films were deposited by radio frequency (rf)-magnetron sputtering at different substrate temperatures and oxygen concentrations. Oxygen concentration affects significantly on the electrical and optical properties of ITO films. The best sample was observed at 1% oxygen with the sheet resistance of 227 Ω/□, resistivity of 56×10⁻⁴ Ω·cm, and transmittance (at 550 nm) of 73%. The substrate temperature affects strongly on the surface morphology and electrical properties of ITO films. The size of ITO nanocrystallites increased with the increasing substrate temperature, indicating an improvement of the crystallinity. The sheet resistance and resistivity of ITO films are decreased with raising the substrate temperature, and are around 17 Ω/□ and 4×10⁻⁴ Ω·cm at 400 °C, respectively. The higher substrate temperature shows better optical property.
Keywords
ITO thin films, substrate temperature, oxygen concentration, sheet resistance, transmittance
Article Details
References
[1] F. Niino, H. Hirasawa, and K. Kondo; Deposition of low-resistivity ITO on plastic substrates by DC arc-discharge ion plating; Thin Solid Films 411 (2002) 28–31.
[2] J. Lee, S. Lee, G. Li, M. A. Petruska, D. C. Paine, and S. Sun; A Facile Solution-Phase Approach to Transparent and Conducting ITO Nanocrystal Assemblies; J. Am. Chem. Soc., 134 (2012) 13410–13414.
[3] C. G. Granqvist and A. Hultåker; Transparent and conducting ITO films: new developments and applications; Thin Solid Films 411 (2012) 1–5.
[4] T. Minami; Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes; Thin Solid Films 416 (2008) 5822–5828.
[5] U. Betz, M. K. Olsson, J. Marthy, M. F. Escola, F. Atamny; Thin films engineering of indium tin oxide: Large area flat panel displays application; Surface and Coatings Technology 200 (2006) 5751–5759.
[6] D. Aaron, R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, D. B. Mitzi; Device characteristics of a 10.1% hydrazine processed Cu₂ZnSn(S,Se)₄ solar cell; Prog. Photovolt: Res. Appl. 20 (2012) 6–11.
[7] Z. K. Tan, R. S. Moghadam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, P. Robel, H. J. Snaith, and R. H. Friend; Bright light-emitting diodes based on organometal halide perovskite; Nature Nanotechnology 9 (2014) 687–692.
[8] S. K. Mishra, S. Rani, and B. D. Gupta; Surface plasmon resonance based fiber optic hydrogen sulphide gas sensor utilizing nickel oxide doped ITO thin film; Sensors and Actuators B: Chemical 195 (2014) 215–222.
[9] M. Kato, T. Cardona, A. W. Rutherford, and E. Reisner; Photoelectrochemical Water Oxidation with Photosystem II Integrated in a Mesoporous Indium–Tin Oxide Electrode; J. Am. Chem. Soc. 134 (2012) 8332–8335.
[10] M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu; Chlorinated Indium Tin Oxide Electrodes with High Work Function for Organic Device Compatibility; Science 332 (2011) 944–947.
[11] Brian G. Lewis and David C. Paine; Applications and Processing of Transparent Conducting Oxides; MRS Bulletin 25 (2000) 22–27.
[2] J. Lee, S. Lee, G. Li, M. A. Petruska, D. C. Paine, and S. Sun; A Facile Solution-Phase Approach to Transparent and Conducting ITO Nanocrystal Assemblies; J. Am. Chem. Soc., 134 (2012) 13410–13414.
[3] C. G. Granqvist and A. Hultåker; Transparent and conducting ITO films: new developments and applications; Thin Solid Films 411 (2012) 1–5.
[4] T. Minami; Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes; Thin Solid Films 416 (2008) 5822–5828.
[5] U. Betz, M. K. Olsson, J. Marthy, M. F. Escola, F. Atamny; Thin films engineering of indium tin oxide: Large area flat panel displays application; Surface and Coatings Technology 200 (2006) 5751–5759.
[6] D. Aaron, R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, D. B. Mitzi; Device characteristics of a 10.1% hydrazine processed Cu₂ZnSn(S,Se)₄ solar cell; Prog. Photovolt: Res. Appl. 20 (2012) 6–11.
[7] Z. K. Tan, R. S. Moghadam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, P. Robel, H. J. Snaith, and R. H. Friend; Bright light-emitting diodes based on organometal halide perovskite; Nature Nanotechnology 9 (2014) 687–692.
[8] S. K. Mishra, S. Rani, and B. D. Gupta; Surface plasmon resonance based fiber optic hydrogen sulphide gas sensor utilizing nickel oxide doped ITO thin film; Sensors and Actuators B: Chemical 195 (2014) 215–222.
[9] M. Kato, T. Cardona, A. W. Rutherford, and E. Reisner; Photoelectrochemical Water Oxidation with Photosystem II Integrated in a Mesoporous Indium–Tin Oxide Electrode; J. Am. Chem. Soc. 134 (2012) 8332–8335.
[10] M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu; Chlorinated Indium Tin Oxide Electrodes with High Work Function for Organic Device Compatibility; Science 332 (2011) 944–947.
[11] Brian G. Lewis and David C. Paine; Applications and Processing of Transparent Conducting Oxides; MRS Bulletin 25 (2000) 22–27.